hellog〜英語史ブログ     前の日     次の日     最新     2017-08     検索ページへ     ランダム表示    

hellog〜英語史ブログ / 2017-08-12

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2017-08-12 Sat

#3029. 統語論の3つの次元 [syntax][semantics][word_order][generative_grammar][semantic_role]

 言語学において統語論 (syntax) とは何か,何を扱う分野なのかという問いに対する答えは,どのような言語理論を念頭においているかによって異なってくる.伝統的な統語観に則って大雑把に言ってしまえば,統語論とは文の内部における語と語の関係の問題を扱う分野であり,典型的には語順の規則を記述したり,句構造を明らかにしたりすることを目標とする.
 もう少し抽象的に統語論の課題を提示するのであれば,Los の "Three dimensions of syntax" がそれを上手く要約している.これも1つの統語観にすぎないといえばそうなのだが,読んでなるほどと思ったので記しておきたい (Los 8) .

1. How the information about the relationships between the verb and its semantic roles (AGENT, PATIENT, etc.) is expressed. This is essentially a choice between expressing relational information by endings (inflection), i.e. in the morphology, or by free words, like pronouns and auxiliaries, in the syntax.
2. The expression of the semantic roles themselves (NPs, clauses?), and the syntactic operations languages have at their disposal for giving some roles higher profiles than others (e.g. passivisation).
3. Word order.


 Dimension 1 は,動詞を中心として割り振られる意味役割が,屈折などの形態的手段で表わされるのか,語の配置による統語的手段で表わされるのかという問題に関係する.後者の手段が用いられていれば,すなわちそれは統語論上の問題となる.
 Dimension 2 は,割り振られた意味役割がいかなる表現によって実現されるのか,そこに関与する生成(や変形)といった操作に焦点を当てる.
 Dimension 3 は,結果として実現される語と語の配置に関する問題である.

 これら3つの次元は,最も抽象的で深層的な Dimension 1 から,最も具体的で表層的な Dimension 3 という順序で並べられている.生成文法の統語観に基づいたものであるが,よく要約された統語観である.

 ・ Los, Bettelou. A Historical Syntax of English. Edinburgh: Edinburgh UP, 2015.

[ 固定リンク | 印刷用ページ ]

2024 : 01 02 03 04 05 06 07 08 09 10 11 12
2023 : 01 02 03 04 05 06 07 08 09 10 11 12
2022 : 01 02 03 04 05 06 07 08 09 10 11 12
2021 : 01 02 03 04 05 06 07 08 09 10 11 12
2020 : 01 02 03 04 05 06 07 08 09 10 11 12
2019 : 01 02 03 04 05 06 07 08 09 10 11 12
2018 : 01 02 03 04 05 06 07 08 09 10 11 12
2017 : 01 02 03 04 05 06 07 08 09 10 11 12
2016 : 01 02 03 04 05 06 07 08 09 10 11 12
2015 : 01 02 03 04 05 06 07 08 09 10 11 12
2014 : 01 02 03 04 05 06 07 08 09 10 11 12
2013 : 01 02 03 04 05 06 07 08 09 10 11 12
2012 : 01 02 03 04 05 06 07 08 09 10 11 12
2011 : 01 02 03 04 05 06 07 08 09 10 11 12
2010 : 01 02 03 04 05 06 07 08 09 10 11 12
2009 : 01 02 03 04 05 06 07 08 09 10 11 12

最終更新時間: 2024-11-26 08:10

Powered by WinChalow1.0rc4 based on chalow