hellog〜英語史ブログ     前の日     次の日     最新     2024-11     検索ページへ     ランダム表示    

hellog〜英語史ブログ / 2024-11-02

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2024-11-02 Sat

#5668. 3種類の言語普遍性 --- 実質的,形式的,含意的 [typology][universal][linguistics][category][implicational_scale]

 連日,言語類型論 (typology) と言語普遍性 (universal) について話題にしている.言語普遍性といっても,その強度により,絶対的な普遍性もあれば,相対的,あるいは確率論的な普遍性もあると述べた.さらにいえば,普遍性には異なる種類のものがある.今回紹介するのは,Crystal (85) が区別している3種類の普遍性だ.それぞれ「実質的」「形式的」「含意的」と訳しておきたい.

Substantive
Substantive universals comprise the set of categories that is needed in order to analyse a language, such as 'noun', 'question', 'first-person', 'antonym', and 'vowel'. Do all languages have nouns and vowels? The answer seems to be yes. But certain categories often thought of as universal turn out not to be so: not all languages have case endings, prepositions, or future tenses, for example, and there are several surprising limitations on the range of vowels and consonants that typically occur . . . . Analytical considerations must also be borne in mind. Do all languages have words? The answer depends on how the concept of 'word' is defined . . . .

Formal
Formal universals are a set of abstract conditions that govern the way in which a language analysis can be made --- the factors that have to be written into a grammar, if it is to account successfully for the way sentences work in a language. For example, because all languages make statements and ask related questions (such as The car is ready vs Is the car ready?), some means has to be found to show the relationship between such pairs. Most grammars derive question structures from statement structures by some kind of transformation (in the above example, 'Move the verb to the beginning of the sentence'). If it is claimed that such transformations are necessary in order to carry out the analysis of these (and other kinds of) structures, as one version of Chomskyan theory does, then they would be proposed as formal universals. Other cases include the kinds of rules used in a grammar, or the different levels recognized by a theory . . . .

Implicational
Implicational universals always take the form 'If X, then Y', their intention being to find constant relationships between two or more properties of language. For example, three of the universals proposed in a list of 45 by the American linguist Joseph Greenberg (1915--) are as follows:

Universal 17. With overwhelmingly more-than-chance frequency, languages with dominant order VSO [=Verb-Subject-Object] have the adjective after the noun.

Universal 31. If either the subject or object noun agrees with the verb in gender, then the adjective always agrees with the noun in gender.

Universal 43. If a language has gender categories in the noun, it has gender categories in the pronoun.

As is suggested by the phrasing, implicational statements have a statistical basis, and for this reason are sometimes referred to as 'statistical' universals . . . .


 以上の3種類の言語普遍性をまとめると次のようになるだろう.

 1. 実質的普遍性 (Substantive universals): 名詞,疑問文,人称,母音など,言語分析に必要な基本的な範疇 (category) のこと.すべて言語に共通して存在する要素もあれば,前置詞や未来時制のように必ずしも普遍的でない要素もある.
 2. 形式的普遍性 (Formal universals): 文の構造を説明するために必要な抽象的な条件や文法規則のこと.例えば,平叙文から疑問文への変換規則などが含まれ,チョムスキーの理論では,このような変形規則は形式的普遍性として扱われる.
 3. 含意的普遍性 (Implicational universals): 「もし X ならば Y」という形式で表わされる言語特性間の関係のこと.統計的な傾向に基づいており,例えば VSO 語順の言語では形容詞が名詞の後に来る傾向がある等の指摘がなされる.

 ・ Crystal, David. The Cambridge Encyclopedia of Language. 2nd. Cambridge: CUP, 2003.

[ 固定リンク | 印刷用ページ ]

2025 : 01 02 03 04 05 06 07 08 09 10 11 12
2024 : 01 02 03 04 05 06 07 08 09 10 11 12
2023 : 01 02 03 04 05 06 07 08 09 10 11 12
2022 : 01 02 03 04 05 06 07 08 09 10 11 12
2021 : 01 02 03 04 05 06 07 08 09 10 11 12
2020 : 01 02 03 04 05 06 07 08 09 10 11 12
2019 : 01 02 03 04 05 06 07 08 09 10 11 12
2018 : 01 02 03 04 05 06 07 08 09 10 11 12
2017 : 01 02 03 04 05 06 07 08 09 10 11 12
2016 : 01 02 03 04 05 06 07 08 09 10 11 12
2015 : 01 02 03 04 05 06 07 08 09 10 11 12
2014 : 01 02 03 04 05 06 07 08 09 10 11 12
2013 : 01 02 03 04 05 06 07 08 09 10 11 12
2012 : 01 02 03 04 05 06 07 08 09 10 11 12
2011 : 01 02 03 04 05 06 07 08 09 10 11 12
2010 : 01 02 03 04 05 06 07 08 09 10 11 12
2009 : 01 02 03 04 05 06 07 08 09 10 11 12

最終更新時間: 2025-01-19 21:09

Powered by WinChalow1.0rc4 based on chalow