「#471. toilet の豊富な婉曲表現を WordNet と Visuwords でみる」 ([2010-08-11-1]) や「#1270. 類義語ネットワークの可視化ツールと類義語辞書」 ([2012-10-18-1]) で,オンラインで利用できるヴィジュアル類義語ツールを紹介した(特に後者[2012-10-18-1]にリンク集を作ってあるので参照).今回,新たに instaGrok なるウェブサービスを発見した.grok とは米俗語で "to understand sth completely using your feelings rather than considering the facts" を意味するが,instaGrok ではヴィジュアルで直感的に語のネットワークを把握することができる.
出力されるネットワーク図は,Graph Words, Visuwords, Visual Thesaurus などとおよそ同じだが,右欄に定義らしき例文,キーワードと結びつけられるウェブページや画像・動画へのリンク,関連する選択クイズなどが現われるのが革新的だ.さらに,右下の Glossary 欄には,指定したキーワードと連辞的 (syntagmatic) および範列的 (paradigmatic) に緩いつながりを示す類義語群(むしろ連想語群と呼ぶべきか)が簡単な説明とともに列挙されるが,これは指定キーワードを出発点とする発想支援を促すツールともなり得る.例えば,キーワードに "tsunami" を指定すると,以下のような画面が得られる(画像をクリックすると拡大版).
データソースはウェブ上のデータのようだが,内部でどのようなエンジンを使っているのかは不明である.
Glossary 欄の連想語群だけでも簡単に抜き出せると便利かもしれないと思い,次のツールを作った.並一通りの類義語辞書的な語群とは異なった連想語が得られておもしろい.ウェブベースなので,"Japan", "Pacific ocean" などの固有名詞などを入れると時事的な連想語が現われたりする.100語までのリストが出力される.
「#1401. hellog で最も多くアクセスされている記事」 ([2013-02-26-1]) で示したようなアクセスランキングを定期的に更新し,どのような記事が読まれ続けているかをチェックしたいと思ったので,以下のようなアクセスランキング確認ツールをこしらえた.トップ約500件のランキング表を出力する.
・ 最新のアクセスランキング(適当なタイミングで更新してゆく予定)
・ 最新および過去のアクセスランキング一覧
3月2日現在のランキングを眺めていると,意外と最近の記事でも上位に食い込んでいるものがあり,筆者としてはありがたい.#1300 以降の記事に限ってみると,トップ100位に次の11記事が含まれていた.
Helsinki Corpus (The Diachronic Part of the Helsinki Corpus of English Texts) は1991年に公開されて以来,英語歴史コーパスの元祖として重用されてきた.HC の役割は現在でも薄れておらず,本ブログでも「#381. oft と often の分布の通時的変化」 ([2010-05-13-1]) を始め,hc の各記事で言及してきた.
HC を本格的に使いこなすには,こちらのマニュアルを熟読する必要がある.とりわけ時代別サブコーパスの語数は押さえておく必要があるし,COCOA Format による参照コードの理解も重要だ.COCOA Format は,HC のソーステキスト内にそのテキストに関する種々の情報を付与するための形式である.各テキストについて,その年代,方言,著者の性別,韻文か散文かなどの情報が,この形式により付与されている.使用者は,この情報を利用することにより,特定の条件を満たすテキストを選び出すことができるというわけだ.
HC の COCOA 情報を利用した条件の絞り込みを簡便にするために,まず表形式にまとめ,それをデータベース化 (SQLite) した.
A = "author"
B = "name of text file"
C = "part of corpus"
D = "dialect"
E = "participant relationship"
F = "foreign original"
G = "relationship to foreign original"
H = "social rank of author"
I = "setting"
J = "interaction"
K = "contemporaneity"
M = "date of manuscript"
N = "name of text"
O = "date of original"
P = "page"
Q = "text identifier"
R = "record"
S = "sample"
T = "text type"
U = "audience description"
V = "verse" or "prose"
W = "relationship to spoken language"
X = "sex of author"
Y = "age of author"
Z = "prototypical text category"
典型的な検索式を例として挙げておく.
# 表全体を再現[ 固定リンク | 印刷用ページ ]
select * from hccocoa
# 時代区分別のテキスト数
select C, count(*) from hccocoa group by C
# テキストタイプ別のテキスト数
select T, count(*) from hccocoa group by T
# ME に時代区分されているテキストの各種情報を一覧
select B, C, D, V from hccocoa where C like 'M%' order by C
昨日の記事「#1321. BNC Frequency Extractor」 ([2012-12-08-1]) に引き続き,ANC (American National Corpus) に基づく頻度表がANC Second Release Frequency Data のページに公開されていたので,"ANC Frequency Extractor" を作成した.
# 書き言葉テキストで,英米差があるとされる "diarrhoea" vs. "diarrhea" の綴字の生起頻度を確認
select * from written where word like "diarrh%"
# 書き言葉テキストで,英米差があるとされる "judgement" vs. "judgment" の綴字の生起頻度を確認.(その他,[2009-12-27-1]の記事「#244. 綴字の英米差のリスト」の綴字を放り込んでゆくとおもしろい.)
select * from written where word like "judg%ment%"
# -ly で終わらない副詞を探す(flat adverb かもしれない例を探す)
select * from anc where lemma not like "%ly" and pos like "RB%"
# -s で終わる副詞を探す(adverbial genitive の名残かもしれない例を探す)
select * from anc where pos like "RB%" and word like "%s"
# 単数名詞と複数名詞の token 数の比較を written subcorpus と spoken subcorpus で([2011-06-07-1]の記事「#771. 名詞の単数形と複数形の頻度」を参照)
select pos, sum(freq) from written where pos in ("NN", "NNS") group by pos
select pos, sum(freq) from spoken where pos in ("NN", "NNS") group by pos
select pos, sum(freq) from anc where pos in ("NN", "NNS") group by pos
ANC は有料だが,そこから抜粋された OANC (Open American National Corpus) は無料.ANC 及び OANC については,「#708. Frequency Sorter CGI」 ([2011-04-05-1]) や「#509. Dracula に現れる whilst (2)」 ([2010-09-18-1]) を参照.
"BNC Frequency Extractor" と "ANC Frequency Extractor" を組み合わせて使えば,語彙の英米差について頻度の観点から簡単に調査できる.
Adam Kilgarriff が公開している BNC database and word frequency lists から,見出し語化されていない頻度表 (unlemmatised lists) をダウンロードし,検索できるようにデータベースをこしらえた.
# 書き言葉テキストで,英米差があるとされる "diarrhoea" vs. "diarrhea" の綴字の生起頻度を確認
select * from written where word like "diarrh%"
# s で始まる語形を分散の高い順に
select * from variances where word like "s%" order by variance desc limit 100
# 母音変異の複数形を示す語の単数形の頻度(cf. 「#708. Frequency Sorter CGI」([2011-04-05-1]) の例では lemma 検索だった)
select * from bnc where word in ("foot", "goose", "louse", "man", "mouse", "tooth", "woman") and pos = "nn1" order by freq desc
# 母音変異の複数形の頻度
select * from bnc where word in ("feet", "geese", "lice", "men", "mice", "teeth", "women") and pos = "nn2"
# POSでまとめて頻度の高い順に(話し言葉 'demog')
select pos, sum(freq) from demog group by pos order by sum(freq) desc
# 最も広く多く使われる名詞
select * from variances where pos like "n%" order by variance desc limit 100
# 最も広く多く使われる形容詞
select * from variances where pos like "aj%" order by variance desc limit 100
なお,見出し語化されている頻度表 (lemmatised list) については,頻度にして800回以上現われる,上位6318位までの見出し語のみに限定されており,その検索ツールは「#708. Frequency Sorter CGI」 ([2011-04-05-1]) として実装してある.関連して,「#956. COCA N-Gram Search」 ([2011-12-09-1]) も参照.
中英語にフランス語から借用された単語リストはどの英語史概説書にも掲載されているが,本ブログでも簡便に参照できるように一覧化ツールを作ってみた.
フランス借用語の簡易データベースを,Baugh and Cable (169--74, 177) に基づいて作成し,意味その他の基準で9個のカテゴリーに分けた (Miscellany; Fashion, Meals, and Social Life; Art, Learning, Medicine; Government and Administration; Law; Army and Navy; Christian Church; 15th-Century Literary Words; Phrases) .954個の語句からなるデータを納めたテキストファイルはこちら.ここから,カテゴリーごとに10語句をランダムに取り出したのが,以下のリストである.このリストに飽き足りなければ,
please, curious, scandal, approach, faggot, push, fierce, double, purify, carpenter
train, pullet, mustard, sugar, enamel, mackerel, sole, fashion, jollity, russet
pulse, color, cloister, pen, pillar, ceiling, base, lattice, cellar, sulphur
rebel, retinue, reign, duchess, allegiance, treaty, nobility, court, tax, statute
mainpernor, arson, judge, property, culpable, amerce, convict, bounds, innocent, legacy
arm, array, arms, soldier, chieftain, portcullis, havoc, brandish, stratagem, combat
incense, faith, abbey, passion, immortality, cardinal, friar, legate, virtue, convent
ingenious, appellation, destitution, harangue, prolongation, furtive, sumptuous, combustion, diversify, representation
according to, to hold one's peace, without fail, in vain, on the point of, subject to, to make believe, by heart, at large, to draw near
綴字ではなく発音で引ける(電子)辞書はいくつかあるが,ある発音をもつ語を一覧にするなどの目的には,今ひとつ使い勝手が悪い.特に,本格的なリストを作るというよりは,軽く単語例を列挙したいなどの日常的な目的には,もっと簡便に使える検索ツールが欲しい.そこで,Grady Ward's Moby からダウンロードできる Moby Pronunciator の圧縮ファイルに含まれている,無償で無制限に利用可能な発音データベース The Carnegie Mellon Pronouncing Dictionary を下敷きにした発音検索ツールを作成した.このデータベースは110935個のエントリーからなるアメリカ英語の発音辞書である(3MB以上あるデータファイルはこちら).
Phoneme | Example | Translation |
---|---|---|
AA | odd | AA D |
AE | at | AE T |
AH | hut | HH AH T |
AO | ought | AO T |
AW | cow | K AW |
AY | hide | HH AY D |
B | be | B IY |
CH | cheese | CH IY Z |
D | dee | D IY |
DH | thee | DH IY |
EH | Ed | EH D |
ER | hurt | HH ER T |
EY | ate | EY T |
F | fee | F IY |
G | green | G R IY N |
HH | he | HH IY |
IH | it | IH T |
IY | eat | IY T |
JH | gee | JH IY |
K | key | K IY |
L | lee | L IY |
M | me | M IY |
N | knee | N IY |
NG | ping | P IY NG |
OW | oat | OW T |
OY | toy | T OY |
P | pee | P IY |
R | read | R IY D |
S | sea | S IY |
SH | she | SH IY |
T | tea | T IY |
TH | theta | TH EY T AH |
UH | hood | HH UH D |
UW | two | T UW |
V | vee | V IY |
W | we | W IY |
Y | yield | Y IY L D |
Z | zee | Z IY |
ZH | seizure | S IY ZH ER |
MED (Middle English Dictionary) が2001年にオンライン化されてから,中英語の研究環境はとてつもなく便利になった.見出し語と異綴りの検索に関しては,通常のインターフェースのほか正規表現対応インターフェースも用意されており,自由度が高い.
しかし,いずれの検索結果の出力も,見出し語とそのエントリーへのリンクが張られているだけで,異綴りの種類を一覧したい場合には不便である.それを確認するには,いちいちエントリーの本文へ飛ばなければならない.そこで,Perl5相当の正規表現に対応し,出力結果で見出し語とともに異綴りも確認できる検索ツールを作成した.綴字に注目したMED検索にどうぞ.
検索対象は,辞書の各エントリーの "headword and forms" 部分である.正規表現検索では,辞書上の母音に付された長音記号や短音記号のは無視される.<æ, Æ> は <A>, <þ, Þ, ð, ð> は <T>, <ȝ, Ȝ> は <3>, <œ> は <O> として検索文に指定できる.例として,一般の見出し語検索には "^taken\b" を,-li 副詞を一覧するには "li\b \(adv\.\)" を指定(前後の引用符は除く).
昨日の記事[2012-06-28-1]で紹介した英語語彙データベース MRC Psycholinguistic Database を,本ブログ上から簡易検索するツールを作成した.実際には検索ツールというよりは,MRC Psycholinguistic Database を用いると,こんなことができるということを示すデモ版にすぎず,出力結果は10行のみに限定してある.本格的な使用には,昨日示したページからデータベースと検索プログラムをダウンロードするか,ウェブ上のインターフェース (Online search (answers limited to 5000 entries) or Online search (limited search capabilities)) よりどうぞ.
# 文字数で語彙を分別
select NLET, count(NLET) from mrc2 group by NLET;
# 音素数で語彙を分別
select NPHON, count(NPHON) from mrc2 group by NPHON;
# 音節数で語彙を分別
select NSYL, count(NSYL) from mrc2 group by NSYL;
# -ed で終わる形容詞を頻度順に
select WORD, K_F_FREQ from mrc2 where WTYPE = 'J' and WORD like '%ed' order by K_F_FREQ desc;
# 2音節の名詞,形容詞,動詞を強勢パターンごとに分別 (「#814. 名前動後ならぬ形前動後」 ([2011-07-20-1]) 及び「#801. 名前動後の起源 (3)」 ([2011-07-07-1]) を参照)
select WTYPE, STRESS, count(*) from mrc2 where NSYL = 2 and WTYPE in ('N', 'J', 'V') group by WTYPE, STRESS;
# <gh> の綴字で終わり,/f/ の発音で終わる語
select distinct WORD, DPHON from mrc2 where WORD like '%gh' and DPHON like '%f';
# 不規則複数形を頻度順に
select WORD, K_F_FREQ from mrc2 where IRREG = 'Z' and TQ2 != 'Q' order by K_F_FREQ desc;
# 馴染み深く,具体的な意味をもつ語
select distinct WORD, FAM from mrc2 where FAM > 600 and CONC > 600;
# イメージしやすい語
select distinct WORD, IMAG from mrc2 order by IMAG desc limit 30;
# 「有意味」な語
select distinct WORD, MEANC, MEANP from mrc2 order by MEANC + MEANP desc limit 30;
# 名前動後など品詞によって強勢パターンの異なる語
select WORD, WTYPE, DPHON from mrc2 where VAR = 'O';
[2011-11-25-1]の記事「#942. LAEME Index of Sources の検索ツール」で SQL による検索用 CGI を公開した.最近,研究で LAEME を本格的に使う機会があり,検索用のデータベースに少しく情報を追加した.そこで,上位互換となる Ver. 2 を作ったので,公開する.
追加した情報は,PERIOD, COUNTY, DIALECT の3フィールド.PERIOD は,もともとの IOS で与えられていたテキストの DATE をもとに,半世紀区切りで大雑把に区分しなおしたもの.C13b2--C14a1 など区分のまたがる場合には,早いほうをとって C13b と読み替えた."ca. 1300" なども同様に,早いほうへ倒して C13b とした.DATE において C13, C14 など半世紀で区切れない年代が与えられている場合には,C13, C14 のようにそのまま残した.
COUNTY は,LOC に与えられていた情報をもとに,3文字の略字表記で示した.DIALECT は,所属する州 (county) をもとに大雑把に N (Northern), NWM (North-West Midland), NEM (North-East Midland), SEM (South-East Midland), SWM (South-West Midland), SW (Southwestern), SE (Southeastern) の7方言に区分したものである.方言線は州境と一致しているわけではないし,方言線そのものの選定も,「#130. 中英語の方言区分」 ([2009-09-04-1]) や「#1030. England の現代英語方言区分 (2)」 ([2012-02-21-1]) で見たように,難しい.したがって,今回の DIALECT の付与も,[2009-09-04-1]の中英語方言地図に大雑把に照らしての仮のものである.参考までに,COUNTY と DIALECT の対応表はこちら.
# 各 PERIOD に振り分けられたテキストの数
select distinct PERIOD, count(*) from ios group by PERIOD;
# 各 COUNTY に振り分けられたテキストの数
select distinct COUNTY, count(*) from ios group by COUNTY;
# 各 DIALECT に振り分けられたテキストの数
select distinct DIALECT, count(*) from ios group by DIALECT;
# DIALECT/PERIOD ごとに,所属するテキストの多い順にリストアップ
select distinct DIALECT, PERIOD, count(*) from ios group by DIALECT, PERIOD order by count(*) desc;
# Worcestershire のテキストを取り出し,PERIOD 順に諸情報を羅列
select TEXT_ID, FILE, MS, COUNTY, PERIOD, TAGGED_WORDS from ios where COUNTY = 'WOR' order by PERIOD;
##953,954,955 の記事で,最近公開された COCA ( Corpus of Contemporary American English ) の n-gram データベースを利用してみた.COCA に現われる 2-grams, 3-grams, 4-grams, 5-grams について,それぞれ最頻約100万の表現を羅列したデータベースで,手元においておけば,工夫次第で COCA のインターフェースだけでは検索しにくい共起表現の検索が可能となる.
ただし,各 n-gram のデータベースは,数十メガバイトの容量のテキストファイルで,直接検索するには重たい.そこで,SQLite データベースへと格納し,SQL 文による検索が可能となるように検索プログラムを組んだ.以下は,検索結果の最初の10行だけを出力する CGI である.
# 1-grams で,前置詞を頻度順に取り出す(ただし,case-sensitive なので再集計が必要)
select * from one where pos1 like "i%" order by freq desc;
# 2-grams で,ハンサムなものを頻度順に取り出す
select * from two where word1 = "handsome" and pos1 = "jj" and pos2 like "nn_" order by freq desc;
# 2-grams で,"absolutely (adj.)" で強調される形容詞を頻度順に取り出す([2011-03-12-1]の記事「#684. semantic prosody と文法カテゴリー」を参照)
select * from two where word1 = "absolutely" and pos2 = "jj" order by freq desc;
# 3-grams で,高頻度の as ... as 表現を取り出す
select * from three where word1 = "as" and word3 = "as" order by freq desc;
# 4-grams で,高頻度の from ... to ... 表現を取り出す
select * from four where word1 = "from" and pos1 = "ii" and word3 = "to" and pos3 = "ii" order by freq desc;
# 5-grams で,死因を探る; "die of" と "die from" の揺れを観察する
select * from five where word1 in ("die", "dies", "died", "dying") and pos1 like "vv%" and word2 in ("of", "from") and pos2 like "i%" order by word3;
n-gram データベースを最大限に使いこなすには,このようにして得られた検索結果をもとにさらに条件を絞り込んだり,複数の検索結果を付き合わせるなどの工夫が必要だろう.
LAEME で Auxiliary Data Sets -> Index of Sources とメニューをたどると,LAEME が対象としているテキストソースのリスト (The LAEME Index of Sources) を,様々な角度から検索して取り出すことができる.LAEME のテキストデータベースを年代別,方言別,Grid Reference 別などの基準で分析したい場合に,適切なテキストの一覧を得られるので,LAEME 使いこなしのためには非常に重要な機能である.
しかし,もう少し検索式に小回りを利かせられたり,一覧の出力がコンパクトに表形式で得られれば使い勝手がよいだろうと思っていた.そこで,Index of Sources を独自にデータベース化し,SQL を用いて検索可能にしてみた.LAEME の使用者で,かつSQLを扱える人以外には何も役に立たないのだが,せっかく作ったので公開.
# Ancrene Wisse/Riwle のテキスト情報の取り出し
select TEXT_ID, MS, FILE, GRID, LOC, DATE, TEXT from ios where FILE like "%ar%t.tag" and TEXT like "%Ancrene%";
# Poema Morale のテキスト情報の取り出し
select TEXT_ID, MS, FILE, GRID, LOC, DATE, TEXT from ios where FILE like "%pm%t.tag" and TEXT like "%Poema%";
# Grid Reference の与えられているテキストの取り出し
select TEXT_ID, MS, FILE, GRID from ios where GRID != "000 000";
# DATE に "C13a" を含むテキストの取り出し
select TEXT_ID, DATE from ios where DATE like "%C13a%";
# 年代ごとに集計
select DATE, count(DATE) from ios group by DATE order by DATE;
# タグ付けされている語数をテキストごとに確認
select TEXT_ID, TAGGED_WORDS, PLACE_NAMES, PERSONAL_NAMES from ios;
# 全テキスト情報へのリンク集
select TEXT_ID, MS, FILE, URL from ios;
中英語の方言を研究していると,LALME の Dot Map 風のイングランド地図を描けると便利だと思う機会がある.LALME の地図を用いるのであればコピーしたりスキャンしたりすればよいし,オンラインの LAEME であれば "Mapping" 機能から "Feature Maps" で特に注目すべき言語項目に関する地図はデジタル画像で得られる.後者では,"Create a Feature Map" なるユーザーによる地図作成機能もおいおい追加されるとのことで,中英語方言学のヴィジュアル化は今後も進展して行くと思われる.
しかし,それでも様々な困難や不便はある.例えば,LAEME でも,自分の関心のある言語項目が LAEME 自体で扱われていなければ地図作成機能は役に立たないし(例えば,私の中英語名詞複数の研究では名詞の歴史的な文法性が重要だが,LAEME text database では性がタグ付けされていないのでフルには活用できなかった),LALME についてはそもそも地図がデジタル化されていず応用しにくい(地図のデジタル化,少なくともテキスト情報や座標情報のデジタル化が一刻も早く望まれる).
それでも,手をこまねいて待っているわけには行かない.既存のツールと自分の関心は大概ずれているものであり,自ら研究環境を作る必要に迫られるのが常だからだ.中英語の方言地図に関する限り,LALME や LAEME からテキストの方言付与情報さえ得られれば,自ら集めた言語項目に関するデータを地図上にプロットすることは十分に可能である.(需要は少ないと思われるが)その作業を少しでも簡便化するために,HelMapperUK なる CGI を作成してみた.英国のベースマップ上にデータポイントをプロットするという単機能に特化しており,凡例をつけるなどの付加機能はないが,ヴィジュアル化して概観をつかむという用途には十分と思われる.
本ブログでは,古英語,中英語,現代フランス語の引用や,IPA 「国際音標文字」などの発音記号を入力する機会が多いのだが,量が多いと,特殊文字や特殊記号の打ち込みが患わしくなってくる.この際だからと思い,ASCII文字だけで入力できる記法を定義し,それを目的の文字・記号へ変換するツールを作成してみた.英語史の周辺で用いることの多い文字・記号だけを変換の対象にしたので,名付けて hel typist.仕様,入力例,記法一覧はこちら.
以下に,汎用の Log-Likelihood Tester, Ver. 2 を公開.(後に説明するように,入力データのフォーマットに不備がある場合や,モードが適切に選択されていない場合にはサーバーでエラーが生じる可能性があるので注意.)
though | although | |
---|---|---|
Natural and pure sciences | 56.3 | 80.13 |
Applied science | 37.36 | 68.31 |
World affairs | 45.81 | 68.2 |
Social science | 48.98 | 63.38 |
Commerce and finance | 46.18 | 57.21 |
Arts | 74.07 | 52.93 |
Leisure | 45.85 | 49.46 |
Belief and thought | 70.78 | 46.75 |
Imaginative prose | 80.2 | 26.37 |
何らかの基準で集めた英単語のリストを,一般的な頻度の順に並び替えたいことがある.例えば,[2011-03-22-1]で論じたように,頻度と不規則な振る舞いとの関係を調べたいときに,注目する語(群)の一般的な頻度を知る必要がある.この目的には,[2010-03-01-1]で紹介したような大規模な汎用コーパスに基づく頻度表が有用である.BNC lemma-pos list (122KB) や ANC word-tagset list (7.2MB) などで問題の語を一つひとつ検索し,頻度数や頻度順位を調べてゆけばよいが,語数が多い場合には面倒だ.そこで,上記2つの頻度表から,入力した語(群)の頻度と順位を取り出す CGI を作成した.
改行でもスペースでもカンマでもよいのだが,区切られた単語リストを以下のボックスに入力し,"Frequency Sort Go!" をクリックする.出力結果を頻度順位の高い順にソートする場合には,"sort by rank?" をオンにする(デフォルトでオン.オフにすると,入力順に出力される).例えば,現代標準英語に残る純粋に i-mutation を示す複数形は以下の7語のみである(複合語,二重複数,[2011-04-01-1]で話題にした sister(e)n は除く).これをコピーしてボックスに入力する.
foot, goose, louse, man, mouse, tooth, woman
昨日の記事[2011-03-24-1]で Log-Likelihood Test を話題にした.計算には Rayson 氏の Log-likelihood calculator を利用すればよいと述べたが,実際の検定の際に作業をもう少し自動化したいと思ったので CGI を自作してみた.細かい不備はあると思うが,とりあえず公開.
BNC_Male_Speakers BNC_Female_Speakers new 149 91 good 408 310 free 173 75 fresh 84 118 delicious 12 34 full 210 107 sure 532 328 clean 197 223 wonderful 270 258 special 177 82 crisp 10 16 fine 347 215 big 470 415 great 203 96 real 163 80 easy 326 157 bright 113 110 extra 347 203 safe 182 92 rich 120 45 #-------- corpus_size 4949938 3290569
男女間で有意差の特に大きいのは,対応行が赤で塗りつぶされた fresh, delicious, clean, wonderful, big で,いずれも期待度数に基づいて計算された Diff_Co ( "Difference Coefficient" 「差異係数」 ) がマイナスであることから,女性に特徴的な形容詞ということになる.big は意外な気がしたが,おもしろい結果である.一方,男性に偏って有意差を示すのは黄色で示した easy や rich である.この結果はいろいろと読み込むことができそうだし,より詳細に調べることもできる.広告の形容詞という観点からは,話者ではなく聞き手の性別,年齢,社会階級などを軸に調査してもおもしろそうだ.いろいろと応用できる.
[2011-01-03-1], [2011-01-04-1]の記事で,OED 検索語彙を初出世紀ごとに分類して数え上げるという作業を行なった.よく考えてみると,このような作業はこれまでにも様々な調査・研究で繰り返し行なってきたことである.通時的語彙研究の基礎作業として今後も繰り返し行なう作業だと思われるので,OED の出力結果をもとに世紀ごとに数え上げるためのツールを作っておくことにした.名付けて "OED Century-by-Century Sorter".
以下は使用方法の説明だが,The Oxford English Dictionary. 2nd ed. CD-ROM. Version 3.1. Oxford: OUP, 2004. での作業を前提としている.ヴァージョンが異なると動かないかもしれないのであしからず.
(1) OED の ADVANCED SEARCH 等により,特定の条件に該当する語彙リストを出力させる.
(2) 下のテキストボックスに,(1) の検索に適当につけた簡便なタイトルを,ピリオド1文字の後に続けて入力する.例えば ".alchemy" .これが見出し行となる.
(3) テキストボックスで改行後に,(1) の出力結果を丸ごとコピーして貼り付ける.OED での出力結果が1画面に収まらない場合には次ページに進んで累積コピーし,テキストボックスに累積して貼り付けてゆく.年代順にソートされていなくても可.
(4) 続けて別の検索を行なう場合には (1), (2), (3) の作業を繰り返す.テキストボックスには,貼り付けたテキストが累積されてゆくことになる.
(5) Go をクリックすると,各検索結果について世紀ごとにカウントされた表が現われる.
説明するよりも実例を見るのが早いので,こちらのテキストファイルを用意した.これは,OED の ADVANCED SEARCH で "language names" にそれぞれ Japanese, Chinese, Malay, Korean, Vietnamese を入れて検索した結果の語彙リストを上記の仕様で納めたもの.これらの言語からの借用語数を世紀ごとに把握するのが狙いである.もっとも,OED の検索機能の限界で,それなりの数の雑音が結果リストに混じっているのでその点には注意.この(ような仕様に則った)テキストをコピーして,以下のテキストボックスに貼り付け,Go をクリックすれば表が出力される.
CGI スクリプトは大雑把な仕様なので,およその傾向を知るためのツールとして参考までに.特に以下の点に注意.
・ 初出年が "a1866", "c1629", "15..", "?c1400" などとなっている語はそれぞれ19, 17, 16, 14世紀へ振り分けられる
・ 初出年の記載のない語は一括して「0世紀」として振り分けられる
(後記 2011/04/24(Sun):OED Online の Timeline 表示では,初出世紀の頻度をグラフ化までしてくれるので,今回の CGI よりも使い勝手がよい.ただし,CD-ROM版の OED で作業するときや,設定に細かいチューニングが必要な場合のために自作した.)
[2010-04-03-1]の語源情報抜きだしCGIの改良版.情報源は同じ Online Etymology Dictionary.今回の「一括版」は複数の語の語源を一覧したいときに便利.1行1語で入力された単語リストを用意し,それを以下のテキストエリアに入れて Go するだけ.1語だけでも使えるので,事実上,前回の版の上位互換.語数が多いと時間がかかるし,サーバに負担がかかるので注意.
こうしてますます面倒くさがりになってゆく.
Powered by WinChalow1.0rc4 based on chalow