Original Papers

  1. Quantum Elliptic Calogero-Moser Systems from Gauge Origami
  2. Web Construction of ABCDEFG and Affine Quiver Gauge Theories
  3. Twisted reduction of quiver W-algebras
  4. Super instanton counting and localization
  5. Partition Functions of N = 1 Gauge Theories on S2 × R2ε and Duality
  6. Quantum mirror curve of periodic chain geometry
  7. Conformal field theory analysis for QCD Kondo effect
  8. Quantum integrability from non-simply laced quiver gauge theory
  9. Fractional quiver W-algebras
  10. Refined geometric transition and qq-characters
  11. Edge-of-edge states
  12. Fermi/non-Fermi mixing in SU(N) Kondo effect
  13. Quantum Monte Carlo simulation of topological phase transitions
  14. Boundary Conditions of Weyl Semimetals
  15. Quiver elliptic W-algebras
  16. Topological Number of Edge States
  17. Quiver W-algebras
  18. 2d partition function in Ω-background and vortex/instanton correspondence
  19. Band spectrum is D-brane
  20. Transport Process in Multi-Junctions of Quantum Systems
  21. Linking loops in ABJM and refined theory
  22. Duality and integrability of a supermatrix model with an external source
  23. Towards U(N|M) knot invariant from ABJM theory
  24. Bulk Angular Momentum and Hall Viscosity in Chiral Superconductors
  25. Current reflection and transmission at conformal defects: applying BCFT to transport process
  26. Note on a duality of topological branes
  27. Towards holographic spintronics
  28. Phase structure of two-dimensional topological insulators by lattice strong coupling expansion
  29. Hofstadter problem in higher dimensions
  30. Euler products beyond the boundary
    • T. Kimura, S. Koyama, and N. Kurokawa
    • Lett. Math. Phys. 104 (2014) 1–19 [link] [arXiv:1210.1216]

  31. QCD phase diagram with two-flavor lattice fermion formulations
  32. Viscoelastic-electromagnetism and Hall viscosity
  33. Strong-coupling analysis of parity phase structure in staggered-Wilson fermions
    • T. Misumi, T. Z. Nakano, T. Kimura, and A. Ohnishi
    • Phys. Rev. D86 (2012) 034501 [link] [arXiv:1205.6545]

  34. Vortex counting from field theory
    • T. Fujimori, T. Kimura, M. Nitta, and K. Ohashi
    • JHEP 1206 (2012) 028 [link] [arXiv:1204.1968]

  35. Spinless basis for spin-singlet FQH states
  36. Revisiting symmetries of lattice fermions via spin-flavor representation
    • T. Kimura, S. Komatsu, T. Misumi, T. Noumi, S. Torii, and S. Aoki
    • JHEP 1201 (2012) 048 [link] [arXiv:1111.0402]

  37. The chiral heat effect
  38. β-ensemble for toric orbifold partition function
  39. Vortices on orbifolds
  40. Matrix model from N = 2 orbifold partition function
  41. Aoki phases in the lattice Gross-Neveu model with flavored mass terms
  42. Index theorem and overlap formalism with naive and minimally doubled fermions
  43. Hall and spin Hall viscosity ratio in topological insulators
  44. Lattice fermions based on higher-dimensional hyperdiamond lattices
  45. Character of lattice fermions based on the hyperdiamond lattice
  46. Vortex description of quantum Hall ferromagnets

Conference Proceedings

  1. Double quantization of Seiberg-Witten geometry and W-algebras
  2. Domain-wall, overlap, and topological insulators
  3. Phase structure of topological insulators by lattice strong-coupling expansion
    • Y. Araki, T. Kimura, A. Sekine, K. Nomura, and T. Z. Nakano
    • PoS: Lattice 2013 (2013) 050 [link] [arXiv:1311.3973]

  4. QCD Phase Diagram with two-flavor Lattice Fermion Formulations
  5. Strong coupling analysis of Aoki phase in Staggered-Wilson fermions
    • T. Z. Nakano, T. Misumi, T. Kimura, and A. Ohnishi
    • PoS: Lattice 2012 (2012) 203 [link] [arXiv:1210.6357]

  6. Index theorem and overlap formalism with naive and minimally doubled fermions
  7. Aoki phases in staggered-Wilson fermions
    • T. Misumi, M. Creutz, T. Kimua, T. Z. Nakano, and A. Ohnishi
    • PoS: Lattice 2011 (2011) 108 [link] [arXiv:1110.1231]]

  8. Classification and generalization of minimal-doubling actions

Review Articles

Book Chapters

Research Grants