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 最尤法

最尤法とはモデルの未知パラメーターの推定法の一つで
あり、その適用範囲が広いため統計分析において非常に
よく用いられる方法である。

ここでは最尤法の性質についてやや理論的な測面も含め
て解説する。

 最尤法の定義

最尤法とは一言で定義するなら尤度関数を最大化する未
知パラメーターの値を推定値とする推定方法である。そこ
でまず尤度関数について述べる。
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分析される変数は n× 1の確率ベクトル

yn = [y1, y2, …, yn]
T

であるとする。ynは結合確率密度関数（もしくはynが離
散型確率変数の場合は結合確率関数)

f(yn ; θ ) = f(y1, y2, …, yn; θ)

を持つとする。ここで θ はこの密度関数を特徴づける
p×1 の未知パラメーターのベクトルである。
この時、尤度関数とはこの結合密度関数をこの未知パ
ラメーターベクトル θの関数と見なしたものである。
すなわち、尤度関数を Ln(θ) と表すとすると

Ln(θ) = f(yn; θ)

である。
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 最尤推定と最尤推定量

最尤推定値とは観測値 ynが与えられた時に、尤度関数
を最大化する未知パラメーター θの値であり、最尤推定
量とはそれを与える観測値 ynの関数のことである。最尤
推定量は確率変数であり、最尤推定値はその実現値の
ことである。
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 例1:  正規分布

確率変数 yi , i =1,…,n は i.i.d. 確率変数で yi ~ N(μ, σ2) 

であるとし、未知パラメータ θ = [μ, σ2]Tを推定したいとす
る。この時、 yi が独立であることに注意すると yn = [y1, … 

, yn]
Tの結合密度関数は yiの密度関数の積で

f(yn; θ) = f(y1; θ) f(y2; θ) … f(yn; θ) =

となる。ここで

である。
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 例2 ベルヌーイ確率変数

確率変数 yi , i =1,…, nはベルヌーイ確率変数、すなわ
ち、確率 pで yi = 1 をとり、確率 1 – pで 0をとる i.i.d. 確
率変数であるとする。 このとき、その結合確率関数は(

ややくだけた書き方だが)

と表せる。ここで

である。推定する未知パラメータは pである。
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 例3 ポアソン分布

確率変数 yi , i =1,…, nは i.i.d. 確率変数でポアソン分布
に従っているとする。Xi がポアソン分布に従ってるとする
とその確率関数は

で与えられる。 yn = [y1, …, yn]
Tの同時確率関数は(これ

もやや砕けた書き方だが)

であり、ここで である。
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 例4  指数分布

確率変数 yiは指数分布に従う i.i.d. 確率変数であると
する。このとき、yiの密度関数は

f(yi; λ) = λ exp ( – λ yi),   yi ≥ 0

であり、その結合密度関数は

である。
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 対数尤度関数

実際に最尤推定値を計算する際には、尤度関数を直接
最大化するよりも、尤度関数の自然対数をとった対数尤
度関数、すなわち

ℓn(θ) = log Ln(θ)

を最大化する方が計算が簡単である。対数は単調増加
関数であるから、このように計算した最尤推定値は尤度
関数を最大化して計算した最尤推定値と同じになる。
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対数尤度関数はそれぞれの観測値に関する密度関数
の対数の和になることに注意。すなわち

である。
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 最尤推定法の例 1 – 4

先ほどの正規分布の例において実際に最尤推定量を
導出してみよう。

ホワイトボードで導出
, i =1,…,n, i =1,…,n, i =1,…,n
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 最尤法の性質

最尤法の性質として主に以下のものがあげられる

(1) 一致性

(2) 漸近正規性

(3) 漸近有効性

ここでは(1) について見てみる。
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 最尤法の一致性

最尤推定量を と表すとする。一致性とは が
観測数 nが増えるにつれて真の値 θ0に確率収束する、
すなわち、どのような ε > 0 に対しても n → ∞ の時

が成り立つことである。以下では最尤推定量の一致性
の証明のスケッチを与える。
ある数列 xnが x0に確率収束するとき

xn →p x0 や plimn →∞xn = x0

というような書き方をする。
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 ヤンセンの不等式

最尤推定量の一致性の証明には以下のヤンセンの不
等式と呼ばれる不等式を用いるのが一般的である。

（ヤンセンの不等式) 確率変数 X と凹関数 h(.) に対して

E(h(X)) ≤ h(E(X)) 

が成り立つ。

凹関数とは 0 ≤ α ≤ 1 に対して、

h((1 – α)x + αy) ≥  (1 – α)h(x) + α f (y) 

が成り立つ関数のこと。
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 一致性

ここでは、最尤推定量の一致性の証明を、対数尤度関
数の期待値を最大化する θの値は真の値 θ0 と等しく
、さらに最尤推定量 はその値に確率収束することを
示すという手順で行う。以下の期待値は全て真の値 θ0

における期待値とする。

まず対数関数は凹関数なのでヤンセンの不等式より

が任意の θで成り立つ。等号はLn(θ)/Ln(θ0)が確率変数
でないとき。
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Ln(θ0)は ynの（真の値の下での)結合密度関数である
から

を得る。ここで は n次元ベクトルの(その取りう

る値の範囲である) Yn上での積分を表す。最後の等号
は Ln(θ) も任意の θ で結合確率密度関数であることによ
る。
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よって任意のθ* ≠ θ0において

が成り立っている。これは任意の nで成り立っているこ
とに注意。これより対数尤度関数の期待値は真の値 θ0

で最大化されていることがわかる。
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ここである条件の下で

が成り立つとすると（例えば yi がi.i.d. の時など)、先ほ

どの不等式の極限をとると

が成り立つことがわかる（ここで極限を取っているので不
等号は等式を含むようになることに注意)
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一方、最尤推定量 は定義により常に

を満たす。この2つの不等式がともに成立するのは

の時だけであるので最尤推定量はこの等式を満たすこ
とがわかる。
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ただしこの式自体は の一致性を保証しない。なぜ
なら

となる θの値が θ0以外にもある可能性があるからであ
る。これを排除するためには θ ≠ θ0 の時

というような仮定を置く。この仮定は漸近識別条件と呼
ばれる。
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