Package 'tsDyn'

August 29, 2013

Type Package

Title Nonlinear time series models with regime switching

Version 0.9-32

Date 13/7/2013

Depends methods

Imports mnormt, mgcv, nnet, tseriesChaos, tseries, utils, vars, urca,methods, forecast, nlme, MASS, Matrix, foreach

Suggests sm, scatterplot3d, rgl, FinTS

Enhances forecast

Maintainer Matthieu Stigler < Matthieu Stigler@gmail.com>

Description Implements nonlinear autoregressive (AR) time series models. For univariate series, a non-parametric approach is available through additive nonlinear AR. Parametric modeling and testing for regime switching dynamics is available when the transition is either direct (TAR: threshold AR) or smooth (STAR: smooth transition AR, LSTAR). For multivariate series, one can estimate a range of TVAR or threshold cointegration TVECM models with two or three regimes. Tests can be conducted for TVAR as well as for TVECM (Hansen and Seo 2002 and Seo 2006).

License GPL (>= 2)

URL http://tsdyn.googlecode.com

Author Antonio Fabio Di Narzo [aut, cre], Jose Luis Aznarte [ctb], Matthieu Stigler [aut, cre]

NeedsCompilation yes

Repository CRAN

Date/Publication 2013-07-13 16:36:30

R topics documented:

tsDyn-package	3
aar	4
accuracy_stat	5
addRegime	6
autopairs	7
autotriples	8
autotriples.rgl	9
availableModels	10
barry	10
BBCTest	11
delta	12
delta.lin	13
extendBoot	14
fevd	15
fitted	16
getTh	17
IIPUs	18
irf	19
isLinear	21
	22
lags.select	23
LINEAR	24
	25
llar	27
logLik.nlVar	29
logLik.VECM	30
LSTAR	32
MakeThSpec	34
MAPE	36
mse	36
nlar methods	37
NNET	38
plot methods	40
predict	41
predict_rolling	43
rank.select	45
rank.test	46
regime	49
resVar	50
selectHyperParms	51
selectSETAR	52
SETAR	55
setar.sim	57
setarTest	58
sigmoid	60
STAR	61

tsDyn-package	2
tellun naekaga	4
ISIJVII-DACKASC	.)

tsDyr	n-package	Getting s	started	with the	e tsDyn pa	ckage		
Index								85
	zeroyld							. 83
	VECM_symbolic .							
	VECM.sim							
	VECM							. 78
	VARrep							. 77
	UsUnemp							. 76
	TVECM.SeoTest .						 .	. 74
	TVECM.HStest							. 72
	TVECM							. 70
	TVAR.sim						. 	. 68
	TVAR.LRtest						. .	. 66
	TVAR.boot						. 	. 65
	TVAR						. .	. 63
	toLatex.setar						. .	. 62

Description

Getting started with the tsDyn package

Details

This package provide some tools inspired by nonlinear dynamics for the analysis-modelling of observed time series.

For loading the package, type:

library(tsDyn)

A good place to start learning the package usage, is the vignette. It contains a more detailed guide on package contents, and an applied case study. At the R prompt, write:

vignette("tsDyn")

For a full list of functions exported by the package, type:

ls("package:tsDyn")

There is also an experimental GUI for built-in NLAR models. Call it with:

nlarDialog(timeSeries)

where timeSeries is an available time series object.

Each exported function has a corresponding man page (some man pages are in common to more functions). Display it by typing help(functionName)

riesp (rancesonitam

Author(s)

Antonio, Fabio Di Narzo

4 aar

See Also

availableModels for listing all currently available NLAR models autopairs,autotriples,autotriples.rgl for graphical explorative functions llar, delta, lin for nonlinearity checking tools

aar

Additive nonlinear autoregressive model

Description

Additive nonlinear autoregressive model.

Usage

```
aar(x, m, d=1, steps=d, series)
```

Arguments

x time series

m, d, steps embedding dimension, time delay, forecasting steps

series time series name (optional)

Details

Nonparametric additive autoregressive model of the form:

$$x_{t+s} = \mu + \sum_{j=1}^{m} s_j(x_{t-(j-1)d})$$

where s_j are nonparametric univariate functions of lagged time series values. They are represented by cubic regression splines. s_j are estimated together with their level of smoothing using routines in the **mgcv** package (see references).

Value

An object of class nlar, subclass aar, i.e. a list with mostly internal structures for the fitted gam object.

Author(s)

Antonio, Fabio Di Narzo

References

Wood, mgcv:GAMs and Generalized Ridge Regression for R. R News 1(2):20-25 (2001)

Wood and Augustin, GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecological Modelling 157:157-177 (2002)

accuracy_stat 5

Examples

```
#fit an AAR model:
mod <- aar(log(lynx), m=3)
#Summary informations:
summary(mod)
#Diagnostic plots:
plot(mod)</pre>
```

accuracy_stat

Forecasting accuracy measures.

Description

Compute forecasting accuracies. This is very similar of the accuracy method form forecast.

Usage

```
accuracy_stat(object, ...)
## Default S3 method:
accuracy_stat(object, true, ...)
## S3 method for class 'pred_roll'
accuracy_stat(object, w, ...)
```

Arguments

object	A data-frame, matrix, or object of class pred_roll
true	If object is just a matrix or data-frame, true values to be compared to should be supplied
W	Optional. For objects of class pred_roll containing multiple variables, user can specify the way to aggregate the specific x-step-ahead into the 'all' category
	Not used currently.

Details

The function works either for a simple data.frame or for objects pred_roll. For simple data.frames, the argument true, i.e. a data frame containing the true values, has to be provided. For pred_roll objects, the true values are contained in the object, so no need (nor possibility) to provide the true values.

Value

A data-frame containing the forecasting accuracy measures.

6 addRegime

Author(s)

Matthieu Stigler

Examples

```
## univariate:
mod_ar <- linear(lynx[1:100], m=1)
mod_ar_pred <- predict_rolling(mod_ar, newdata=lynx[101:114])
accuracy_stat(object=mod_ar_pred$pred, true=mod_ar_pred$true)

## multivariate
data(barry)
mod_var <- lineVar(barry, lag=1)

mod_var_pred <-predict_rolling(object=mod_var, nroll=10, n.ahead=1:3)
accuracy_stat(object=mod_var_pred)
accuracy_stat(object=mod_var_pred, w=c(0.7, 0.2, 0.1))</pre>
```

 ${\tt addRegime}$

addRegime test

Description

addRegime test

Usage

```
addRegime(object, ...)
```

Arguments

object fitted model object with at least 2 regimes
... arguments to and from other methods

Value

A list containing the p-value of the F statistic and a boolean, true if there is some remaining nonlinearity and false otherwise.

Author(s)

J. L. Aznarte

References

TODO

autopairs 7

See Also

star

Examples

##TODO

autopairs Bivariate time series plots

Description

Bivariate time series plots: scatterplots, directed lines and kernel density estimations using functions in the **sm** package.

Usage

```
autopairs(x, lag = 1, h,
  type = c("levels", "persp", "image", "lines", "points", "regression"))
```

Arguments

x time series lag time lag

h kernel window (useful only for kernel estimations)

type of plot: contour levels, perspective plots, image, directed lines, points or

points with superposed kernel regression

Details

Bivariate time series plots: scatterplots, directed lines and kernel density and regression functions estimations using functions in the package **sm**. In particular, for kernel density estimation **sm.density** is used, with smoothing parameter h defaulting to hnorm. For kernel regression, **sm.regression** is used.

Value

None. Plots are produced on the default graphical device.

Author(s)

Wrappers to sm by Antonio, Fabio Di Narzo

See Also

For finer control on density estimation, consider using directly sm. density and, especially, sm. ts.pdf from package sm.

8 autotriples

Examples

```
x <- log10(lynx)
autopairs(x, lag=2, type="lines")</pre>
```

autotriples

Trivariate time series plots

Description

Trivariate time series plots: kernel autoregression using functions in the sm package

Usage

```
autotriples(x, lags = 1:2, h,
  type = c("levels", "persp", "image", "lines", "points"))
```

Arguments

x time series

lags vector of regressors lags

h kernel window

type type of plot: contour levels, perspective plots, image

Details

This function displays trivariate time series plots, i.e. kernel regression of x[t-lags[1]], x[t-lags[2]] against x[t] using functions in the package **sm**. In particular, **sm.regression** is used, with smoothing parameter defaulting to hnorm(x).

Value

None. Plots are produced on the default graphical device.

Author(s)

Wrappers to sm by Antonio, Fabio Di Narzo

See Also

For finer control on kernel regression, consider using directly sm.regression and, especially, sm.autoregression in package sm.

Examples

```
autotriples(log(lynx))
autotriples(log(lynx), type="persp")
autotriples(log(lynx), type="image")
```

autotriples.rgl 9

			_	_
aut.	at,	~ir	J D C	.rgl
aut	ULI	_ I L	TCO	. 1 2 1

Interactive trivariate time series plots

Description

Interactive trivariate time series plots

Usage

```
autotriples.rgl(x, lags = 1:2,
  type = c("lines", "points"))
```

Arguments

x time series

lags vector of regressors lags

type type of plot: contour levels, perspective plots, image

Details

This function displays interactive trivariate time series plots x[t-lags[1]], x[t-lags[2]] against x[t] using the interactive rgl device.

Value

None. A plot is produced on the current rgl device.

Author(s)

Wrapper to 'sm' and GUI by Antonio, Fabio Di Narzo

See Also

autotriples for 3d visualization via **scatterplot3d** package and for kernel post-processing of the cloud for nonparametric autoregression functions estimates.

Examples

```
if(interactive())
autotriples.rgl(log(lynx))
```

10 barry

availableModels

Available models

Description

Available built-in time series models

Usage

```
availableModels()
```

Details

Return the list of built-in available 'nlar' time series models

Value

A character vector containing built-in time series models. For help on a specific model, type: help(modelName).

Author(s)

Antonio, Fabio Di Narzo

Examples

```
availableModels()
```

barry

Time series of PPI used as example in Bierens and Martins (2010)

Description

This data set contains the series used by *Bierens and Martins* for testing for PPI between Canada and US.

Usage

```
data(barry)
```

Format

A data frame with 324 monthly observations, ranging from 1973:M1 until 1999:M12.

dolcan Exchange rate US/Can dollar.
cpiUSA US Consumer Price Index.
cpiCAN Canada Consumer Price Index.

BBCTest 11

Author(s)

Matthieu Stigler

Source

Bierens, H. and Martins, L. (2010), Time Varying Cointegration,

BBCTest

Test of unit root against SETAR alternative

Description

Test of unit root against a stationnary three regime SETAR alternative

Usage

```
BBCTest(x, m, series, testStat = c("LR", "Wald", "LM"),
   trim = 0.1, grid = c("minPerc", "minObs"))
```

Arguments

x time series

m Number of lags under the alternative

series time series name (optional)
testStat Type of test statistic to use

trim trimming parameter indicating the minimal percentage of observations in each

regime

grid Whether a minimal number of percentage or observations should be imposed.

See details

Details

TODO

Value

A object of class "BBC2004Test" containing:

- -The value of the sup Test
- -The version of test used (either Wald, LM or LR).

Author(s)

Matthieu Stigler

12 delta

See Also

setarTest for a test with stationarity as a null.

Examples

```
BBCTest(lynx, m=3, test="Wald", grid="minPerc")
```

delta

delta test of conditional independence

Description

delta statistic of conditional independence and associated bootstrap test

Usage

```
delta(x, m, d = 1, eps)

delta.test(x, m = 2:3, d = 1,
   eps = seq(0.5 * sd(x), 2 * sd(x), length = 4), B = 49)
```

Arguments

X	time	series

m vector of embedding dimensions

d time delay

eps vector of length scales

B number of bootstrap replications

Details

delta statistic of conditional independence and associated bootstrap test. For details, see Manzan(2003).

Value

delta returns the computed delta statistic. delta.test returns the bootstrap based 1-sided p-value.

Warning

Results are sensible to the choice of the window eps. So, try the test for a grid of m and eps values. Also, be aware of the course of dimensionality: m can't be too high for relatively small time series. See references for further details.

Author(s)

Antonio, Fabio Di Narzo

delta.lin 13

References

Sebastiano Manzan, Essays in Nonlinear Economic Dynamics, Thela Thesis (2003)

See Also

```
BDS marginal independence test: bds.test in package tseries
Teraesvirta's neural network test for nonlinearity: terasvirta.test in package tseries
delta test for nonlinearity: delta.lin.test
```

Examples

```
delta(log10(lynx), m=3, eps=sd(log10(lynx)))
```

delta.lin

delta test of linearity

Description

delta test of linearity based on conditional mutual information

Usage

```
delta.lin(x, m, d = 1)

delta.lin.test(x, m = 2:3, d = 1,
    eps = seq(0.5 * sd(x), 2 * sd(x), length = 4), B = 49)
```

Arguments

X	time series
m	vector of embedding dimensions
d	time delay
eps	vector of length scales
В	number of bootstrap replications

Details

delta test of linearity based on conditional mutual information

Value

delta.lin returns the parametrically estimated delta statistic for the given time series (assuming linearity). delta.lin.test returns the bootstrap based 1-sided p-value. The test statistic is the difference between the parametric and nonparametric delta estimators.

14 extendBoot

Author(s)

Antonio, Fabio Di Narzo

References

Sebastiano Manzan, Essays in Nonlinear Economic Dynamics, Thela Thesis (2003)

Examples

```
delta.lin(log10(lynx), m=3)
```

extendBoot

extension of the bootstrap replications

Description

This function updates an existing bootstrap test with new bootstrap replications.

Usage

```
extendBoot(x, nboot)
```

Arguments

x A object from setarTest (hence of class Hansen99Test)

nboot The number of new bootstrap replications

Details

The plot function will draw the old and new distribution, hence allowing to test the sensitivity of the results obtained.

Value

Returns an object of the same class with same objects but updated values.

Author(s)

Matthieu Stigler

See Also

BBCTest for a similar test. setarTest for a test with stationarity as a null.

fevd 15

Examples

```
## Not run:
# test with 10 bootstrap replications:
a<-setarTest(sun[1:100], m=1, nboot=10)
plot(a)

#use old results and compue 20 new replications
b<-extendBoot(a, n=20)
#see the different distributions:
plot(b)

## End(Not run)</pre>
```

fevd

Forecast Error Variance Decomposition

Description

Use the fevd function from package **vars** to compute the forecast error variance decomposition of a VAR(p) or VECM for n. ahead steps.

Usage

```
## S3 method for class 'nlVar'
fevd(x, n.ahead=10, ...)
```

Arguments

X	Object of class 'VAR' generated by lineVar(), or an object of class 'VECM' generated by VECM().
n.ahead	Integer specifying the number of steps.
	Currently not used.

Details

The function converts the VAR or VECM computed by package tsDyn into an object of class 'vec2var', on which then the fevd method is applied. For details, see package vars.

Value

A list with class attribute 'varfevd' of length K holding the forecast error variances as matrices.

Author(s)

Bernhard Pfaff

16 fitted

References

```
Hamilton, J. (1994), Time Series Analysis, Princeton University Press, Princeton.
LÃ<sup>1</sup>/<sub>4</sub>tkepohl, H. (2006), New Introduction to Multiple Time Series Analysis, Springer, New York.
```

See Also

```
plot for the plot method. lineVar, VECM for the models.
```

Examples

```
data(zeroyld)
mod_vecm <- VECM(zeroyld, lag = 2)
fevd(mod_vecm, n.ahead = 5)</pre>
```

fitted

fitted method for objects of class nlVar, i.e. VAR and VECM models.

Description

Returns the fitted values of the model, either as computed in the model, or back to the original series level.

Usage

```
## S3 method for class 'nlVar'
fitted(object, level=c("model", "original"),...)
```

Arguments

object An object of class 'nlVar'; generated by VECM or lineVar.

level How to return the fitted values. See below.

... Currently not used.

Details

In case of a VAR in differences, in ADF specification, or a VECM, the fitted values are actually in differences. With the option level="original", the function returns the series in the original level.

For VAR in levels, the two arguments are evidently the same and hence it is not taken into account, returning a warning.

Value

A matrix.

getTh 17

Author(s)

Matthieu Stigler

Examples

```
## estimate models
data(barry)

ve <- VECM(barry, lag=2)
va <- lineVar(barry, lag=1)
va_diff <- lineVar(barry, lag=1, I="diff")
va_ADF <- lineVar(barry, lag=1, I="ADF")

## get fitted values:
tail(fitted(ve))
tail(fitted(ve, level="original"))

tail(fitted(va))
tail(fitted(object=va, level="original"))

tail(fitted(object=va_diff, level="original"))

tail(fitted(va_ADF))
tail(fitted(object=va_ADF, level="original"))</pre>
```

getTh

Extract threshold(s) coefficient

Description

Extract threshold coefficient(s)

Usage

```
getTh(object, ...)
## Default S3 method:
getTh(object, ...)
```

Arguments

```
object of class setar, summary.setar, nlVar additional arguments to getTh
```

18 IIPUs

Value

Threshold value.

Author(s)

Matthieu Stigler

Examples

```
set<-setar(lynx, m=3)
getTh(set)
getTh(summary(set))</pre>
```

IIPUs

US monthly industrial production from Hansen (1999)

Description

This data, used as example in Hansen (1999), contains the US monthly industrial production.

Usage

```
data(IIPUs)
```

Format

A monthly time series of class ts starting in January 1960 and ending in September 1997. Note that the series ends at 1997 and not 1998 as in the paper of Hansen, even if the data was taken from hi site and the graph is exactly the same.

Source

Hansen (1999) Testing for linearity, Journal of Economic Surveys, Volume 13, Number 5, December 1999, pp. 551-576(26) available at: http://www.ssc.wisc.edu/~bhansen/papers/cv.htm

Examples

```
data(IIPUs)
end(IIPUs) #not same date as in the paper
plot(IIPUs)#exactly same graph as in the paper
sel<-selectSETAR(IIPUs, m=16, thDelay=5, criterion="SSR", trim=0.1, plot=FALSE)
sel #R function obtains a lower SSR with another thresold
plot(sel)
setar(IIPUs, m=16, thDelay=5, trim=0.1, th=sel$th)

sel2<-selectSETAR(IIPUs, m=16, thDelay=5, criterion="SSR", trim=0.1, plot=FALSE, nthresh=2)
sel2
#all results agree
set2<-setar(IIPUs, m=16, thDelay=5, th=sel2$th, trim=0.1)</pre>
```

irf 19

```
#most of the results agree, except constant in the low regime which has opposed signs!
summary(set2)
#this is obviously a error in Hansen, see:
XX<-embed(IIPUs, 17)
Y<-XX[,1]
X < -XX[,-1]
dummyDown < -ifelse(X[,6] <= -2.5, 1,0)
sum(dummyDown)
M<-cbind(1*dummyDown,X*dummyDown )</pre>
lm(Y\sim M-1)
## see the test functions (not run, due to long computing time, even with small nboot
  setarTest(IIPUs, m=16, thDelay=5, nboot=10, check=TRUE)
  #because of the discrepency. test1vs2 does not correspond, test 1vs3 conforms
  setarTest(IIPUs, m=16, thDelay=5, nboot=10, check=TRUE, test="2vs3")
  #test 2vs3 is also different of the version in the article (27)
## End(Not run)
```

irf

Impulse response function

Description

Use the fevd function from package **vars** to tompute the impulse response coefficients of a VAR(p) (or transformed VECM to VAR(p)) for n. ahead steps.

Usage

```
## S3 method for class 'nlVar'
irf(x, impulse = NULL, response = NULL, n.ahead = 10,
ortho = TRUE, cumulative = FALSE, boot = TRUE, ci = 0.95,
runs = 100, seed = NULL, ...)
```

Arguments

X	Object of class 'VAR'; generated by lineVar(), or object of class 'VECM'; generated by VECM().
impulse	A character vector of the impulses, default is all variables.
response	A character vector of the responses, default is all variables.
n.ahead	Integer specifying the steps.
ortho	Logical, if TRUE (the default) the orthogonalised impulse response coefficients are computed (only for objects of class 'varest').
cumulative	Logical, if TRUE the cumulated impulse response coefficients are computed. The default value is false.

20 irf

boot Logical, if TRUE (the default) bootstrapped error bands for the imuplse response coefficients are computed.

ci Numeric, the confidence interval for the bootstrapped errors bands.

runs An integer, specifying the runs for the bootstrap.

seed An integer, specifying the seed for the rng of the bootstrap.

... Currently not used.

Details

The function converts the VAR or VECM computed by package tsDyn into an object of class 'vec2var', on which then the irf method is applied. For details, see the relevant package.

Value

A list of class 'varirf' with the following elements is returned:

irf A list with matrices for each of the impulse variables containing the impulse

response coefficients.

Lower If boot = TRUE, a list with matrices for each of the impulse variables containing

the lower bands.

Upper If boot = TRUE, a list with matrices for each of the impulse variables containing

the upper bands.

response Character vector holding the names of the response variables.

impulse Character vector holding the names of the impulse variables.

or tho Logical, if TRUE, orthogonalised impulse reponses have been computed.

cumulative Logical, if TRUE, cumulated impulse reponses have been computed.

runs An integer, specifying the number of bootstrap runs.

ci Numeric, defining the confidence level.

boot Logical, if TRUE bootstrapped error bands have been computed.

model Character, containing 'class(x)'.

Author(s)

Bernhard Pfaff

References

Efron, B. and R. J. Tibshirani (1993), *An Introduction to the Bootstrap*, Chapman & Hall, New York.

Hamilton, J. (1994), Time Series Analysis, Princeton University Press, Princeton.

Lù/4tkepohl, H. (2006), New Introduction to Multiple Time Series Analysis, Springer, New York.

isLinear 21

See Also

plot for the plot method. lineVar, VECM for the models.

Examples

```
data(barry)
## For VAR
mod_var <- lineVar(barry, lag = 2)
irf(mod_var, impulse = "dolcan", response = c("dolcan", "cpiUSA", "cpiCAN"), boot =
FALSE)
## For VECM
mod_VECM <- VECM(barry, lag = 2, estim="ML", r=2)
irf(mod_VECM, impulse = "dolcan", response = c("dolcan", "cpiUSA", "cpiCAN"), boot =
FALSE)</pre>
```

isLinear

isLinear

Description

Generic NLAR linearity test

Usage

```
isLinear(object, ...)
```

Arguments

object fitted time series model

... arguments to and from other methods

Author(s)

A. F. Di Narzo

22 KapShinTest

KapShinTest	Test of unit root against SETAR alternative with	
-------------	--	--

Description

Test of unit root against a stationnary 3 regime SETAR alternative with random walk in the inner regime

Usage

```
KapShinTest(x, m=1, series, include = c("none","const", "trend", "both"),
c=3, delta=0.5, points=NULL,minObsMid=10,
trick=c("for", "apply", "mapply"), trace=FALSE)
```

Arguments

d

Details

This function is currently spurious.

Value

A object of class KapShin2006Test containing:

statistic The three (SupW, AvgW, ExpW) test statistics computed

case Whether the data was transformed, corresponds to input argument include

series The name of the series

Author(s)

Matthieu Stigler

lags.select 23

See Also

BBCTest for a similar test. setarTest for a test with stationarity as a null.

Examples

```
KapShinTest(lynx, m=1, trace=FALSE, include="none", points=10)
```

lags.select

Selection of the lag with Information criterion.

Description

Selection of the cointegrating rank and the lags with Information criterion (AIC, BIC).

Usage

```
lags.select(data, lag.max = 10,
  include = c("const", "trend", "none", "both"),
  fitMeasure = c("SSR", "LL"), sameSample = TRUE)
```

Arguments

data multivariate time series.

lag.max Maximum number of lags to investigate.
include Type of deterministic regressors to include.

fitMeasure Whether the AIC/BIC should be based on the full likelihood, or just the SSR.

See explanations in logLik. VECM.

sameSample Logical. Whether the data should be shortened so that the AIC/BIC are esti-

mated on the same sample. Default to TRUE.

Details

This function selects the lag according to AIC, BIC and Hannan-Quinn.

Value

An object of class rank.select, with 'print' and 'summary methods', containing among other the matrices of AIC/BIC/HQ.

Author(s)

Matthieu Stigler

See Also

```
rank.select, the underlying function, to estimate the rank also. VARselect in package vars, does basically the same.
```

24 LINEAR

Examples

```
data(barry)
#
rk_sel <- lags.select(barry)
rk_sel
summary(rk_sel)</pre>
```

LINEAR

Linear AutoRegressive models

Description

AR(m) model

Usage

Arguments

x time series

m, d, steps embedding dimension, time delay, forecasting steps

series time series name (optional)

include Type of deterministic regressors to include

type Whether the variable is taken is level, difference or a mix (diff y= y-1, diff lags)

as in the ADF test

Details

AR(m) model:

$$x_{t+s} = \phi_0 + \phi_1 x_t + \phi_2 x_{t-d} + \dots + \phi_m x_{t-(m-1)d} + \epsilon_{t+s}$$

Value

A nlar object, linear subclass.

Author(s)

Antonio, Fabio Di Narzo

See Also

nlar for fitting this and other models to time series data

lineVar 25

Examples

```
#fit an AR(2) model
mod.linear <- linear(log(lynx), m=2)
mod.linear
summary(mod.linear)</pre>
```

lineVar

Multivariate linear models: VAR and VECM

Description

Estimate either a VAR or a VECM.

Usage

```
lineVar(data, lag, r = 1,
  include = c("const", "trend", "none", "both"),
  model = c("VAR", "VECM"),
  I = c("level", "diff", "ADF"), beta = NULL,
  estim = c("20LS", "ML"),
  LRinclude = c("none", "const", "trend", "both"),
  exogen = NULL)
```

Arguments

data	multivariate time series (first row being first=oldest value)
lag	Number of lags to include in each regime
r	Number of cointegrating relationships
include	Type of deterministic regressors to include
model	Model to estimate. Either a VAR or a VECM
I	For VAR only: whether in the VAR the variables are to be taken in levels (original series) or in difference, or similarly to the univariate ADF case.
beta	for VECM only: cointegrating value. If null, will be estimated
LRinclude	Possibility to include in the long-run relationship and the ECT trend, constant Can also be a matrix with exogeneous regressors
estim	Type of estimator for the VECM: '2OLS' for the two-step approach or 'ML' for Johansen MLE
exogen	Inclusion of exogenous variables (first row being first=oldest value). Is either of same size than data (then automatically cut) or than end-sample.

26 lineVar

Details

This function provides basic functionalities for VAR and VECM models. More comprehensive functions are in package **vars**. A few differences appear in the VECM estimation:

Engle-Granger estimator The Engle-Granger estimator is available

Presentation Results are printed in a different ways, using a matrix form

lateX export The matrix of coefficients can be exported to latex, with or without standard-values and significance stars

Two estimators are available: the Engle-Granger two step approach (20LS) or the Johansen (ML). For the 2OLS, deterministic regressors (or external variables if LRinclude is of class numeric) can be added for the estimation of the cointegrating value and for the ECT. This is only working when the beta value is not pre-specified.

The arg beta is the cointegrating value, the cointegrating vector will be taken as: (1, -beta).

Value

Fitted model data

Author(s)

Matthieu Stigler

See Also

```
VECM which is just a wrapper for lineVar(..., model="VECM")
```

TVAR and TVECM for the corresponding threshold models. linear for the univariate AR model.

Examples

```
data(zeroyld)
data<-zeroyld

#Fit a VAR
VAR<-lineVar(data, lag=1)
VAR
summary(VAR)

#compare results with package vars:
if(require(vars)) {
a<-VAR(data, p=1)
coef_vars <- t(sapply(coef(a), function(x) x[c(3,1,2),1]))
all.equal(coef(VAR),coef_vars, check=FALSE)
}

###VECM
VECM.EG<-lineVar(data, lag=2, model="VECM")
VECM.EG
summary(VECM.EG)</pre>
```

llar 27

```
VECM.ML<-lineVar(data, lag=2, model="VECM", estim="ML")</pre>
VECM.ML
summary(VECM.ML)
###Check Johansen MLE
myVECM<-lineVar(data, lag=1, include="const", model="VECM", estim="ML")</pre>
summary(myVECM, digits=7)
#comparing with vars package
if(require(vars)){
a<-ca.jo(data, spec="trans")
summary(a)
#same answer also!
##export to Latex
toLatex(VECM.EG)
toLatex(summary(VECM.EG))
options("show.signif.stars"=FALSE)
toLatex(summary(VECM.EG), parenthese="Pvalue")
options("show.signif.stars"=TRUE)
```

llar

Locally linear model

Description

Casdagli test of nonlinearity via locally linear forecasts

Usage

```
llar(x, m, d = 1, steps = d, series, eps.min = sd(x)/2,
eps.max = diff(range(x)), neps = 30, trace = 0)

llar.predict(x, m, d=1, steps=d, series, n.ahead=1,
eps=stop("you must specify a window value"),
onvoid=c("fail","enlarge"), r = 20, trace=1)

llar.fitted(x, m, d=1, steps=d, series, eps, trace=0)
```

Arguments

```
x time series
m, d, steps embedding dimension, time delay, forecasting steps
series time series name (optional)
n.ahead n. of steps ahead to forecast
eps.min, eps.max
min and max neighbourhood size
```

28 Ilar

neps number of neighbourhood levels along which iterate

eps neighbourhood size

onvoid what to do in case of an isolated point: stop or enlarge neighbourhood size by

an r%

r if an isolated point is found, enlarge neighbourhood window by r% trace tracing level: 0, 1 or more than 1 for llar, 0 or 1 for llar. forecast

Details

11ar does the Casdagli test of non-linearity. Given the embedding state-space (of dimension m and time delay d) obtained from time series series, for a sequence of distance values eps, the relative error made by forecasting time series values with a linear autoregressive model estimated on points closer than eps is computed. If minimum error is reached at relatively small length scales, a global linear model may be inappropriate (using current embedding parameters). This was suggested by Casdagli(1991) as a test for non-linearity.

llar.predict tries to extend the given time series by n. ahead points by iteratively fitting locally (in the embedding space of dimension m and time delay d) a linear model. If the spatial neighbourhood window is too small, your time series last point would be probably isolated. You can ask to automatically enlarge the window eps by a factor of r% sequentially, until enough neighbours are found for fitting the linear model.

llar.fitted gives out-of-sample fitted values from locally linear models.

Value

11ar gives an object of class 'llar'. I.e., a list of components:

RMSE vector of relative errors

eps vector of neighbourhood sizes (in the same order of RMSE)
frac vector of fractions of the time series used for RMSE computation

avfound vector of average number of neighbours for each point in the time

vector of average number of neighbours for each point in the time series which can be plotted using the plot method, and transformed to a regular data. frame

id d

with the as.data.frame function.

Function llar. forecast gives the vector of n steps ahead locally linear iterated forecasts.

Function 11ar. fitted gives out-of-sample fitted values from locally linear models.

Warning

For long time series, this can be slow, especially for relatively big neighbourhood sizes.

Note

The C implementation was re-adapted from that in the TISEAN package ("Il-ar" routine, see references). However, here the euclidean norm is used, in place of the max-norm.

Author(s)

Antonio, Fabio Di Narzo

logLik.nlVar 29

References

M. Casdagli, Chaos and deterministic versus stochastic nonlinear modelling, J. Roy. Stat. Soc. 54, 303 (1991)

Hegger, R., Kantz, H., Schreiber, T., Practical implementation of nonlinear time series methods: The TISEAN package; CHAOS 9, 413-435 (1999)

Examples

```
res <- llar(log(lynx), m=3, neps=7)
plot(res)

x.new <- llar.predict(log(lynx),n.ahead=20, m=3, eps=1, onvoid="enlarge", r=5)
lag.plot(x.new, labels=FALSE)

x.fitted <- llar.fitted(log(lynx), m=3, eps=1)
lag.plot(x.fitted, labels=FALSE)</pre>
```

logLik.nlVar

Extract Log-Likelihood

Description

Log-Likelihood method for VAR models.

Usage

```
## S3 method for class 'nlVar'
logLik(object, ...)
```

Arguments

object of class VAR computed by lineVar.
... additional arguments to logLik.

Details

The Log-Likelihood is computed as in Luetkepohl (2006) equ. 3.4.5 (p. 89) and Juselius (2006) p. 56:

$$LL = -(TK/2)\log(2\pi) - (T/2)\log|\Sigma| - (1/2)\sum^{T} \left[(y_t - A^{'}x_t)^{'}\Sigma^{-1}(y_t - A^{'}x_t) \right]$$

Where Σ is the Variance matrix of residuals, and x_t is the matrix stacking the regressors (lags and deterministic).

However, we use a computationally simpler version:

30 logLik.VECM

$$LL = -(TK/2)\log(2\pi) - (T/2)\log|\Sigma| - (TK/2)$$

See Juselius (2006), p. 57.

(Note that Hamilton (1994) 11.1.10, p. 293 gives $+(T/2) \log |\Sigma^{-1}|$, which is the same as $-(T/2) \log |\Sigma|$).

Value

Log-Likelihood value.

Author(s)

Matthieu Stigler

References

Hamilton (1994) Time Series Analysis, Princeton University Press

Juselius (2006) The Cointegrated VAR model: methodology and Applications, Oxford University Press

Luetkepohl (2006) New Introduction to Multiple Time Series Analysis, Springer

Examples

```
data(zeroyld)
data<-zeroyld

#Fit a VAR
VAR<-lineVar(data, lag=1)
logLik(VAR)</pre>
```

logLik.VECM

Extract Log-Likelihood

Description

Log-Likelihood method for VECM models.

Usage

```
## S3 method for class 'VECM'
logLik(object, r, ...)
```

Arguments

object of class VECM computed by VECM.

r The cointegrating rank. By default the rank specified in the call to VECM, but can

be set differently by user.

. . . additional arguments to logLik.

logLik.VECM 31

Details

The Log-Likelihood is computed in two dfferent ways, depending on whether the VECM was estimated with ML (Johansen) or 2OLS (Engle and Granger).

When the model is estimated with ML, the LL is computed as in Hamilton (1994) 20.2.10 (p. 637):

$$LL = -(TK/2)\log(2\pi) - (TK/2) - (T/2)\log|\hat{\Sigma}_{UU}| - (T/2)\sum_{i=1}^{r}\log(1-\hat{\lambda}_i)$$

Where Σ_{UU} is the variance matrix of residuals from the first auxiliary regression, i.e. regressing Δy_t on a constant and lags, $\Delta y_{t-1}, \ldots, \Delta y_{t-p}$. λ_i are the eigenvalues from the $\Sigma_{VV}^{-1} \Sigma_{VU} \Sigma_{UU}^{-1} \Sigma_{UV}$, see 20.2.9 in Hamilton (1994).

When the model is estimated with 2OLS, the LL is computed as:

$$LL = \log |\Sigma|$$

Where Σ is the variance matrix of residuals from the VECM model. There is hence no correspondance between the LL from the VECM computed with 20LS or ML.

Value

Log-Likelihood value.

Author(s)

Matthieu Stigler

References

Hamilton (1994) Time Series Analysis, Princeton University Press

Examples

```
data(zeroyld)
data<-zeroyld

#Fit a VAR
vecm<-VECM(data, lag=1,r=1, estim="ML")
logLik(vecm)</pre>
```

LSTAR

LSTAR

Logistic Smooth Transition AutoRegressive model

Description

Logistic Smooth Transition AutoRegressive model.

Usage

Arguments

Х	time series	
m, d, steps	embedding dimension, time delay, forecasting steps	
series	time series name (optional)	
mL	autoregressive order for 'low' regime (default: m). Must be <=m	
mH	autoregressive order for 'high' regime (default: m). Must be <=m	
thDelay	'time delay' for the threshold variable (as multiple of embedding time delay d)	
mTh	coefficients for the lagged time series, to obtain the threshold variable	
thVar	external threshold variable	
th, gamma	starting values for coefficients in the LSTAR model. If missing, a grid search is performed	
trace	should additional infos be printed? (logical)	
include	Type of deterministic regressors to include	
control	further arguments to be passed as control list to optim	
starting.control		

further arguments for the grid search (dimension, bounds). See details below.

Details

```
x_{t+s} = (\phi_{1,0} + \phi_{1,1}x_t + \phi_{1,2}x_{t-d} + \dots + \phi_{1,mL}x_{t-(mL-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_t + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_t + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \phi_{2,1}x_t + \dots + \phi_{2,mH}x_{t-(mH-1)d})G(z_t, th, \gamma) + (\phi_{2,0} + \dots + \phi_{2,
```

with z the threshold variable, and G the logistic function, computed as plogis(q, location = th, scale = 1/gamma), so see plogis documentation for details on the logistic function formulation and parameters meanings. The threshold variable can alternatively be specified by:

```
mTh z[t]=x[t]mTh[1]+x[t-d]mTh[2]+\ldots+x[t-(m-1)d]mTh[m]
thDelay z[t]=x[t-thDelay*d]
thVar z[t]=thVar[t]
```

LSTAR 33

Note that if starting values for phi1 and phi2 are provided, isn't necessary to specify mL and mH. Further, the user has to specify only one parameter between mTh, thDelay and thVar for indicating the threshold variable.

Estimation of the transition parameters th and gamma, as well as the regression parameters phi1 and phi2, is done using concentrated least squares, as suggested in Leybourne et al. (1996).

Given th and gamma, the model is linear, so regression coefficients can be obtained as usual by OLS. So the nonlinear numerical search needs only to be done for th and gamma; the regression parameters are then recovered by OLS again from the optimal th and gamma.

For the nonlinear estimation of the parameters th and gamma, the program uses the optim function, with optimization method BFGS using the analytical gradient. For the estimation of standard values, optim is re-run using the complete Least Squares objective function, and the standard errors are obtained by inverting the hessian. You can pass further arguments to optim directly with the control list argument. For instance, the option maxit maybe useful when there are convergence issues (see examples).

Starting parameters are obtained doing a simple two-dimensional grid-search over *th* and *gamma*. Parameters of the grid (interval for the values, dimension of the grid) can be passed to starting.control.

nTh The number of threshold values (th) in the grid. Defaults to 200

nGamma The number of smoothing values (gamma) in the grid. Defaults to 40

trim The minimal percentage of observations in each regime. Defaults to 10% (possible threshold values are between the 0.1 and 0.9 quantile)

gammaInt The lower and higher smoothing values of the grid. Defaults to c(1,40)

thInt The lower and higher threshold values of the grid. When not specified (default, i.e NA), the interval are the trim quantiles above.

Value

An object of class nlar, subclass 1star, i.e. a list with fitted model informations.

Author(s)

Antonio, Fabio Di Narzo

References

Non-linear time series models in empirical finance, Philip Hans Franses and Dick van Dijk, Cambridge: Cambridge University Press (2000).

Non-Linear Time Series: A Dynamical Systems Approach, Tong, H., Oxford: Oxford University Press (1990).

Leybourne, S., Newbold, P., Vougas, D. (1998) Unit roots and smooth transitions, Journal of Time Series Analysis, 19: 83-97

See Also

plot.lstar for details on plots produced for this model from the plot generic.

34 MakeThSpec

Examples

```
#fit a LSTAR model. Note 'maxit': slow convergence
mod.lstar <- lstar(log10(lynx), m=2, mTh=c(0,1), control=list(maxit=3000))</pre>
mod.lstar
#fit a LSTAR model without a constant in both regimes.
mod.lstar2 <- lstar(log10(lynx), m=1, include="none")</pre>
mod.lstar2
#Note in example below that the initial grid search seems to be to narrow.
# Extend it, and evaluate more values (slow!):
controls <- list(gammaInt=c(1,2000), nGamma=50)</pre>
mod.lstar3 <- lstar(log10(lynx), m=1, include="none", starting.control=controls)</pre>
mod.lstar3
# a few methods for lstar:
summary(mod.lstar)
residuals(mod.lstar)
AIC(mod.lstar)
BIC(mod.lstar)
plot(mod.lstar)
predict(mod.lstar, n.ahead=5)
```

MakeThSpec

Specification of the threshold search

Description

This optional function allows the user to set different restrictions for the threshold grid search in function selectSETAR.

Usage

```
MakeThSpec(ngrid = c("All", "Half", "Third", "Quarter"),
  exact = NULL, int = c("from", "to"), around = "val",
   ...)
```

Arguments

exact	The user give an exact threshold value
int	The user gives an interval to search inside
around	The user gives an point to search around
ngrid	The number of values to search for
	currently unused

MakeThSpec 35

Details

This function is just to check the inputs for the specification of the grid search. If not provided, the search will be in the biggest interval (ngrid ="All") between the minimum and maximum values. The user can reduce it by giving setting "Half" (only every two points is taken) and so on, or setting a number.

The search can also be made around a point, or between two points. When between a point, the argument ngrid is still used, whereas for around, a value of 30 is taken as default value if ngrid is not specified by user.

Value

The input values are given as output after checking for consistency (only one of exact/int/around should be given).

Author(s)

Matthieu Stigler

See Also

selectSETAR

Examples

```
sun<-(sqrt(sunspot.year+1)-1)*2
selectSETAR(sun, m=3, th=MakeThSpec(exact=10.40967),criterion="SSR", d=1, thDelay=0:2,
           plot=FALSE, nthresh=1)
#when pre-sepcified value does not correspond, function will search nearest value
selectSETAR(sun, m=3, th=MakeThSpec(exact=10.4),criterion="SSR", d=1, thDelay=0:2,
           plot=FALSE, nthresh=1)
#search around:
selectSETAR(sun, m=3, th=MakeThSpec(around=10.40967, ngrid=20),criterion="SSR", d=1, thDelay=0:2,
           plot=FALSE, nthresh=1)
#search in an interval
selectSETAR(sun, m=3, th=MakeThSpec(int=c(10, 11), ngrid=20),criterion="SSR", d=1, thDelay=0:2,
           plot=FALSE, nthresh=1)
#reduce size of the grid:
selectSETAR(sun, m=3, th=MakeThSpec(ngrid="Half"),criterion="SSR", d=1, thDelay=0:2,
           plot=FALSE, nthresh=1)
# 2 thresholds:
selectSETAR(sun, m=3, th=MakeThSpec(ngrid="Half"),criterion="SSR", d=1, thDelay=0:2,
           plot=FALSE, nthresh=2)
```

36 mse

MAPE

Mean Absolute Percent Error

Description

Generic function to compute the Mean Absolute Percent Error of a fitted model.

Usage

```
MAPE(object, ...)
## Default S3 method:
MAPE(object, ...)
```

Arguments

```
object object of class nlar.fit
... additional arguments to MAPE
```

Value

Computed Mean Absolute Percent Error for the fitted model.

Author(s)

Antonio, Fabio Di Narzo

mse

Mean Square Error

Description

Generic function to compute the Mean Squared Error of a fitted model.

Usage

```
mse(object, ...)
## Default S3 method:
mse(object, ...)
```

Arguments

```
object object of class nlar.fit
... additional arguments to mse
```

nlar methods 37

Value

Computed MSE for the fitted model.

Author(s)

Antonio, Fabio Di Narzo

nlar methods

nlar methods

Description

Generic 'nlar' methods. Method 'nlar' is described in a separate page: predict.nlar

Usage

```
## S3 method for class 'nlar'
AIC(object, k=2,...)
## S3 method for class 'nlar'
coef(object, ...)
## S3 method for class 'nlar'
fitted(object, ...)
## S3 method for class 'nlar'
MAPE(object, ...)
## S3 method for class 'nlar'
mse(object, ...)
## S3 method for class 'nlar'
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'nlar'
residuals(object, ...)
## S3 method for class 'nlar'
summary(object, ...)
## S3 method for class 'nlar'
plot(x, ask=interactive(), ...)
## S3 method for class 'nlar'
toLatex(object, digits, label, ...)
```

Arguments

x, object	fitted 'nlar' object
ask	graphical option. See par
digits	For print method, see printCoefmat.
k	numeric, the penalty per parameter to be used; the default $k=2$ is the classical AIC
label	LaTeX label passed to the equation
	further arguments to be passed to and from other methods

NNET NNET

Details

```
MAPE Mean Absolute Percent Error
mse Mean Square Error
plot Diagnostic plots
```

Author(s)

Antonio, Fabio Di Narzo

See Also

availableModels for listing all currently available models.

Examples

```
x <- log10(lynx)
mod.setar \leftarrow setar(x, m=2, thDelay=1, th=3.25)
mod.setar
AIC(mod.setar)
mse(mod.setar)
MAPE(mod.setar)
coef(mod.setar)
summary(mod.setar)
e <- residuals(mod.setar)</pre>
e <- e[!is.na(e)]
plot(e)
acf(e)
plot(x)
lines(fitted(mod.setar), lty=2)
legend(x=1910, y=3.9,lty=c(1,2), legend=c("observed","fitted"))
plot(mod.setar)
```

NNET

Neural Network nonlinear autoregressive model

Description

Neural Network nonlinear autoregressive model.

Usage

```
nnetTs(x, m, d = 1, steps = d, series, size,
control = list(trace = FALSE))
```

NNET 39

Arguments

X	time series
m, d, steps	embedding dimension, time delay, forecasting steps
series	time series name (optional)
size	number of hidden units in the neural network
control	control list to be passed to nnet::nnet optimizer

Details

Neural network model with 1 hidden layer and linear output:

$$x_{t+s} = \beta_0 + \sum_{j=1}^{D} \beta_j g(\gamma_{0j} + \sum_{i=1}^{m} \gamma_{ij} x_{t-(i-1)d})$$

Model is estimated using the nnet function in **nnet** package. Optimization is done via the BFGS method of optim. Note that for this model, no additional model-specific summary and plot methods are made available from this package.

Value

An object of class nlar, subclass nnetTs, i.e. a list with mostly nnet::nnet internal structures.

Author(s)

Antonio, Fabio Di Narzo

References

Non-linear time series models in empirical finance, Philip Hans Franses and Dick van Dijk, Cambridge: Cambridge University Press (2000).

Non-Linear Time Series: A Dynamical Systems Approach, Tong, H., Oxford: Oxford University Press (1990).

Chaos: A Statistical Perspective, Chan, K., Tong, H., New York: Springer-Verlag (2001).

```
#fit a Neural Network model
mod.nnet <- nnetTs(log(lynx), m=2, size=3)
mod.nnet</pre>
```

40 plot methods

plot methods

Plotting methods for SETAR and LSTAR subclasses

Description

Plotting methods 'setar' and 'lstar' subclasses

Usage

```
## S3 method for class 'setar'
plot(x, ask=interactive(), legend=FALSE, regSwStart, regSwStop, ...)
## S3 method for class 'lstar'
plot(x, ask=interactive(), legend=FALSE, regSwStart, regSwStop, ...)
```

Arguments

```
x fitted 'setar' or 'lstar' object
ask graphical option. See par
legend Should a legend be plotted? (logical)
regSwStart, regSwStop
optional starting and stopping time indices for regime switching plot
... further arguments to be passed to and from other methods
```

Details

These plot methods produce a plot which gives to you an idea of the behaviour of the fitted model.

Firstly, if embedding dimension is, say, *m*, *m* scatterplots are produced. On the x axis you have the lagged time series values. On the y axis the 'response' time series values. Observed points are represented with different colors-symbols depending on the level of the threshold variable. Specifically, for the setar model, black means 'low regime', red means 'high regime'. For the lstar model, where the self-threshold variable is continuous, threshold values are grouped in 5 different zones with the same number of points in each. Note that if more than 300 points are to be plotted, they all share the same symbol, and regimes can be distinguished only by color. If you want, by specifying legend=TRUE a legend is added at the upper-left corner of each scatterplot. To each scatterplot, a dashed line is superposed, which links subsequent fitted values.

Finally, a new time series plot is produced, with lines segments coloured depending on the regime (colors meanings are the same of those in the preceding scatterplots). Optionally, you can specify a starting and ending time indices, for zooming on a particular segment of the time series.

Author(s)

Antonio, Fabio Di Narzo

predict 41

See Also

```
setar, 1star
```

nlar-methods for other generic available methods for this kind of objects.

Examples

```
##
##See 'setar' examples
##
```

predict

Predict method for objects of class 'nlar', 'VAR' or 'VECM'

Description

Forecating a non-linear model object of general class 'nlar', or a linear multivariate 'VAR' / 'VECM', including 'setar' and 'star'.

Usage

Arguments

object	An object of class 'nlar'; generated by setar() or lstar(). Alternatively, a multivariate object of class 'VAR' or 'VECM'
newdata	Optional. A new data frame to predict from.
n.ahead	An integer specifying the number of forecast steps.
type	Type of forecasting method used. See details.
nboot	The number of replications for type MC or bootstrap.
ci	The forecast confidence interval (available only with types MC and bootstrap).
block.size	The block size when the block-bootstrap is used.
boot1Zero	Whether the first innovation for MC/bootstrap should be set to zero.
	Currently not used.

42 predict

Details

The forecasts are obtained recursively from the estimated model. Given that the models are non-linear, ignoring the residuals in the 2- and more steps ahead forecasts leads to biased forecasts (so-called naive). Different resampling methods, averaging n.boot times over future residuals, are available:

naive No residuals

MC Monte-Carlo method, where residuals are taken from a normal distribution, with sd. equal to the residuals sd.

bootstrap Residuals are resampled from the empirical residuals from the model.

block-bootstrap Same as bootstrap, but residuals are resampled in block, with size block.size

The MC and bootstrap methods correspond to equations 3.90 and 3.91 of Franses and van Dijk (2000, p. 121). The bootstrap/MC is initiated either from the first forecast, n.ahead=1 (set with boot1zero to TRUE), or from the second only.

When the forecast method is based on resampling, forecast intervals are available. These are obtained simply as empirical ci quantiles of the resampled forecasts (cf Method 2 in Franses and van Dijk, 2000, p. 122).

Value

A 'ts' object, or, in the case of MC/bootstrap, a list containing the prediction (pred) and the forecast standard errors (se).

Author(s)

Matthieu Stigler

References

Non-linear time series models in empirical finance, Philip Hans Franses and Dick van Dijk, Cambridge: Cambridge University Press (2000).

See Also

The model fitting functions setar, 1star; or lineVar and VECM.

A more sophisticated predict function, allowing to do sub-sample rolling predictions: predict_rolling.

```
x.train <- window(log10(lynx), end = 1924)
x.test <- window(log10(lynx), start = 1925)

### Use different forecasting methods:
mod.set <- setar(x.train, m=2, thDelay=0)
pred_setar_naive <- predict(mod.set, n.ahead=10)
pred_setar_boot <- predict(mod.set, n.ahead=10, type="bootstrap", n.boot=200)</pre>
```

predict_rolling 43

```
pred_setar_Bboot <- predict(mod.set, n.ahead=10, type="block-bootstrap", n.boot=200)</pre>
pred_setar_MC <- predict(mod.set, n.ahead=10, type="bootstrap", n.boot=200)</pre>
## Plot to compare results:
pred_range <- range(pred_setar_naive, pred_setar_boot$pred, pred_setar_MC$pred, na.rm=TRUE)</pre>
plot(x.test, ylim=pred_range, main="Comparison of forecasts methods from same SETAR")
lines(pred_setar_naive, lty=2, col=2)
lines(pred_setar_boot$pred, lty=3, col=3)
lines(pred_setar_Bboot$pred, lty=4, col=4)
lines(pred_setar_MC$pred, lty=5, col=5)
legLabels <- c("Observed", "Naive F", "Bootstrap F", "Block-Bootstrap F", "MC F")</pre>
legend("bottomleft", leg=legLabels, lty=1:5, col=1:5)
## Multivariate:
data(barry)
mod_vecm <- VECM(barry, lag=2)</pre>
predict(mod_vecm)
# note that when providing newdata, newdata has to be ordered chronologically,
# so that the first row/element is the earliest value:
all.equal(predict(mod_vecm), predict(mod_vecm, newdata=barry[c(322, 323, 324),]))
```

predict_rolling

Rolling forecasts

Description

Forecasts a VAR or VECM by discarding a part of the sample, and generating a series of updated forecasts.

Usage

```
predict_rolling(object, ...)

## S3 method for class 'nlVar'
predict_rolling(object, nroll = 10,
    n.ahead = 1, refit.every, newdata, ...)
```

Arguments

object A linear object of class 'nlVar'; generated by lineVar or VECM.

nroll The number of rolling forecasts

n.ahead An integer specifying the number of forecast steps.

refit.every Determines every how many periods the model is re-estimated.

newdata In case the model given is already estimated on the sub-sample, the out of sample

data can be provided. Note it should contain observations to predict the first

values, that are also contained in the in-sample.

44 predict_rolling

. . . Currently not used.

Details

This function allows to check the out-of sample forecasting accuracy by estimating the model on a sub-sample of the original, then making nroll forcasts of horizont n. ahead, each time by updating the sample. In other words, with a given model estimated on 100 observations, the function will estimate it on say 90 first obs (nroll=10), generate a say 1 step-ahead n. ahead=1 from obs 90, then using true value 91, 92,... till full sample.

Unlike usual predict() methods, specifiying n.ahead=2 will not generate a 1 step-ahead and a 2 step-ahead forecasts, but only nroll 2 step-ahead forecasts.

Note that while the forecasts are updated with new values, the model estimation is (by default) not updated. This can however be done with the argument fit.every, specifiying at which frequency the model should be re-estimated. By setting it to 1 for example, each time a new observation is taken, the model is reestimated. This is similar to the ugarchroll in package rugarch.

Value

A matrix containing the forecasts.

Author(s)

Matthieu Stigler

See Also

predict.nlar for the standard predict function.

```
data(barry)
## model estimated on full sample:
mod_vec <- VECM(barry, lag=2)
## generate 10 1-step-ahead forecasts:
preds_roll <- predict_rolling(mod_vec, nroll=10)

## plot the results:
plot(window(barry[,"dolcan"],start=1998), type="1", ylab="barry: dolcan")
preds_roll_ts <- ts(preds_roll$pred, start=time(barry)[nrow(barry)-10], freq=12)
lines(preds_roll_ts[,"dolcan"], col=2, lty=2)
legend("bottomright", lty=c(1,2), col=1:2, leg=c("True", "Fitted"))
title("Comparison of true and rolling 1-ahead forecasts\n")</pre>
```

rank.select 45

		-	
ran	k	SE	ect

Selection of the cointegrating rank with Information criterion.

Description

Selection of the cointegrating rank and the lags with Information criterion (AIC, BIC).

Usage

```
rank.select(data, lag.max = 10, r.max = ncol(data) - 1,
  include = c("const", "trend", "none", "both"),
  fitMeasure = c("SSR", "LL"), sameSample = TRUE,
  returnModels = FALSE)

## S3 method for class 'rank.select'
print(x, ...)

## S3 method for class 'rank.select'
summary(object, ...)
```

Arguments

data	multivariate time series.
lag.max	Maximum number of lags to investigate.
r.max	Maximum rank to investigate.
include	Type of deterministic regressors to innclude. See VECM or lineVar.
fitMeasure	Whether the AIC/BIC should be based on the full likelihood, or just the SSR. See explanations in logLik.VECM.
sameSample	Logical. Whether the data should be shortened so that the AIC/BIC are estimated on the same sample. Default to TRUE.
returnModels	Logical, default to FALSE. Whether the output should also contain the list of each model computed.
X	The output from rank.select for the print method.
object	The output from rank.select for the summary method.
	Unused.

Details

This function estimates the AIC, BIC and Hannan-Quinn for each rank (up to lags.max) and lags (up to lags.max). This method has been shown to be useful to select simultaneously the rank and the lags, see references.

Value

An object of class 'rank.select', with 'print' and 'summary methods', containing among other the matrices of AIC/BIC/HQ, the Likelihood, and best ranks according to each criterion.

46 rank.test

Author(s)

Matthieu Stigler

References

- Aznar A and Salvador M (2002). Selecting The Rank Of The Cointegration Space And The Form Of The Intercept Using An Information Criterion. Econometric Theory, *18*(04), pp. 926-947. <URL: http://ideas.repec.org/a/cup/etheor/v18y2002i04p926-947_18.html>.

-Cheng X and Phillips PCB (2009). Semiparametric cointegrating rank selection. Econometrics Journal , *12*(s1), pp. S83-S104. <URL: http://ideas.repec.org/a/ect/emjrnl/v12y2009is1ps83-s104.html>.

- Gonzalo J and Pitarakis J (1998). Specification via model selection in vector error correction models. Economics Letters, *60*(3), pp. 321 328. ISSN 0165-1765, <URL: http://dx.doi.org/DOI: 10.1016/S0165-1765(98)00129-3>.
- Kapetanios G (2004). The Asymptotic Distribution Of The Cointegration Rank Estimator Under The Akaike Information Criterion. Econometric Theory, *20*(04), pp. 735-742. <URL: http://ideas.repec.org/a/cup/etheor/v20y2004i04p735-742_20.html>.
- Wang Z and Bessler DA (2005). A Monte Carlo Study On The Selection Of Cointegrating Rank
 Using Information Criteria. Econometric Theory, *21*(03), pp. 593-620. <URL: http://ideas.repec.org/a/cup/etheor/v21y200620 05.html>.

See Also

VECM for estimating a VECM. rank.test (or ca.jo in package **urca**) for the classical Johansen cointegration test.

Examples

```
data(barry)
#
rk_sel <- rank.select(barry)
rk_sel
summary(rk_sel)</pre>
```

rank.test

Test of the cointegrating rank

Description

Maximum-likelihood test of the cointegrating rank.

rank.test 47

Usage

```
rank.test(vecm, type = c("eigen", "trace"), r_null,
    cval = 0.05)

## S3 method for class 'rank.test'
print(x, ...)

## S3 method for class 'rank.test'
summary(object,
    digits = max(1, getOption("digits") - 3), ...)
```

Arguments

vecm	'VECM' object computed with the function VECM.
type	Type of test, either 'trace' or 'eigenvalue'. See details below.
r_null	Rank to test specifically.
cval	Critical value level for the automatic test.
X	The output from rank.test for the print method.
object	The output from rank.test for the summary method.
	Unused.
digits	The number of digits to use in format.pval

Details

This function computes the two maximum-likelihood tests for the cointegration rank from Johansen (1996). Tests are:

trace Test the hypothesis of rank 'h' against rank 'K', i.e. against the alternative that the system is stationary.

eigenvalue Test the hypothesis of rank 'h' against rank 'h+1'.

The test works for five specifications of the deterministic terms as in Doornik et al (1998), to be specified in the previous call to VECM:

- **H_ql** Unrestricted constant and trend: use include="both"
- **H_l** Unrestricted constant and restricted trend: use include="const"and LRinclude="trend"
- **H_lc** Unrestricted constant and no trend: use include="const"
- **H_c** Restricted constant and no trend: use LRinclude="const"
- **H_z** No constant nor trend: use include="none"

Two testing procedures can be used:

Specific test By specifying a value for 'r_null'. The 'pval' value returned gives the specific pvalue.

Automatic test If not value is specified for 'r_null', the function makes a simple automatic test: returns the rank (slot 'r') of the first test not rejected (level specified by arg 'cval') as recommend i.a. in Doornik et al (1998, p. 544).

48 rank.test

A full table with both test statistics ad their respective p-values is given in the summary method.

P-values are obtained from the gamma approximation from Doornik (1998, 1999). Small sample values adjusted for the sample site are also available in the summary method. Note that the 'effective sample size' for the these values is different from output in gretl for example.

Value

An object of class 'rank.test', with 'print' and 'summary methods'.

Comparison with urca

While ca. jo in package **urca** and rank.test both implement Johansen tests, there are a few differences:

- rank. test gives p-values, while ca. jo gives only critical values.
- rank.test allows for five different specifications of deterministic terms (see above), ca.jo for only three.
- ca. jo allows for seasonal and exogenous regressors, which is not available in rank.test.
- The lag is specified differently: K from ca. jo corresponds to lag+1 in rank.test.

Author(s)

Matthieu Stigler

References

- Doornik, J. A. (1998) Approximations to the Asymptotic Distributions of Cointegration Tests, Journal of Economic Surveys, 12, 573-93
- Doornik, J. A. (1999) Erratum [Approximations to the Asymptotic Distribution of Cointegration Tests], Journal of Economic Surveys, 13, i
- Doornik, Hendry and Nielsen (1998) Inference in Cointegrating Models: UK M1 Revisited, Journal of Economic Surveys, 12, 533-72
- Johansen, S. (1996) Likelihood-based inference in cointegrated Vector Autoregresive Models, Oxford University Press

See Also

VECM for estimating a VECM. rank. select to estimate the rank based on information criteria.

ca. jo in package **urca** for another implementation of Johansen cointegration test (see section 'Comparison with urca' for more infos).

```
data(barry)
## estimate the VECM with Johansen!
ve <- VECM(barry, lag=1, estim="ML")</pre>
```

regime 49

```
## specific test:
ve_test_spec <- rank.test(ve, r_null=1)</pre>
ve_test_spec_tr <- rank.test(ve, r_null=1, type="trace")</pre>
ve_test_spec
ve_test_spec_tr
## No specific test: automatic method
ve_test_unspec <- rank.test(ve)</pre>
ve_test_unspec_tr <- rank.test(ve, type="trace")</pre>
ve_test_unspec
ve_test_unspec_tr
## summary method: output will be same for all types/test procedure:
summary(ve_test_unspec_tr)
## The function works for many specification of the VECM(), try:
rank.test(VECM(barry, lag=3, estim="ML"))
rank.test(VECM(barry, lag=3, include="both",estim="ML"))
rank.test(VECM(barry, lag=3, LRinclude="const",estim="ML"))
## Note that the tests are simple likelihood ratio, and hence can be obtained also manually:
-2*(logLik(ve, r=1)-logLik(ve, r=2)) # eigen test, 1 against 2
-2*(logLik(ve, r=1)-logLik(ve, r=3)) # eigen test, 1 against 3
```

regime

Extract variable showing regime

Description

This function allows to extract the indicator variable specifying the regime in which the process is at time t.

Usage

```
regime(object,initVal=TRUE,timeAttr=TRUE,...)
## Default S3 method:
regime(object,initVal=TRUE,timeAttr=TRUE,...)
```

Arguments

object	object of class setar or nlVar
initVal	Logical. Whether the NA initial values should be returned. Default to TRUE.
timeAttr	Logical. Whether the time attributes should be returned. Default to TRUE.
	additional arguments to regime

50 resVar

Value

Time series of same attributes as input to setar.

Author(s)

Matthieu Stigler

Examples

```
set<-setar(lynx, m=3)
regime(set)
regime(set, time=FALSE, initVal=FALSE)
plot(regime(set))</pre>
```

resVar

Residual variance

Description

Extracts the global and regime-dependant variance of the residuals

Usage

```
resVar(x, adj=c("OLS", "ML"))
```

Arguments

x setar object

adj Degrees of freedom adjustment for the variance

Details

The degree of freedom adjustment in the formula for the variance is the number of parameters when adj="OLS" or zero when adj="ML".

Value

A vector containing:

Total The residual variance of the full sample

L, (M), H The residual variance of the lower (L), middle (if two thresholds) (M) and higher

(H) regimes

Author(s)

Matthieu Stigler

selectHyperParms 51

References

Non-Linear Time Series: A Dynamical Systems Approach, Tong, H., Oxford: Oxford University Press (1990).

Examples

```
#Lynx model as in Tong (1980, p. 387)
mod.setar <- setar(log10(lynx), mL=7,mH=2, thDelay=1, th=3.116)
summary(mod.setar)
#coefficients are same for lower regime but differ for higer

resVar(mod.setar, adj="ML")
#variance or the residuals is same for lower regime but differ for higer regime and hence for total

#Lynx model as in Tong (1980, p. 405)
mod.setar2 <- setar(log10(lynx), mL=1,mM=7,mH=2, thDelay=1, nthresh=2,th=c(2.373, 3.154))
round(coefficients(mod.setar2),3)

resVar(mod.setar2, adj="ML")</pre>
```

selectHyperParms

Automatic selection of model hyper-parameters

Description

Automatic selection of model hyper-parameters

Usage

Arguments

X	time series
m, d, steps	embedding parameters. For their meanings, see help about nlar
mL,mH	Vector of 'low' and 'high' regimes autoregressive orders
thDelay	Vector of 'threshold delay' values
size	Vector of numbers of hidden units in the nnet model
maxit	Max. number of iterations for each model estimation
fast	For LSTAR selection, whether a fast algorithm using starting values fro previous models should be used
trace	Logical. Whether informations from each model should be returned.

52 selectSETAR

Details

Functions for automatic selection of LSTAR and NNET models hyper parameters. An exhaustive search over all possible combinations of values of specified hyper-parameters is performed. Embedding parameters m, d, steps are kept fixed.

Selection criterion is the usual AIC.

For the LSTAR model, two methods are offered:

fast=FALSE Each model is run separately, each time using the full grid search for starting values.

fast=TRUE Only the first model is run with a full grid search, while the subsequent use the first model results for their starting values.

Value

A data-frame, with columns giving hyper-parameter values and the computed AIC for each row (only the best 10s are returned)

Author(s)

Antonio, Fabio Di Narzo

Examples

```
llynx <- log10(lynx)
selectLSTAR(llynx, m=2)
selectNNET(llynx, m=3, size=1:5)</pre>
```

selectSETAR

Automatic selection of SETAR hyper-parameters

Description

Automatic selection of SETAR hyper-parameters

Usage

```
selectSETAR(x, m, d=1, steps=d, series, mL, mH,mM, thDelay=0, mTh, thVar,
    th=MakeThSpec(), trace=TRUE, include = c("const", "trend","none", "both"),
    common=c("none", "include","lags", "both"), model=c("TAR", "MTAR"),
    ML=seq_len(mL), MH=seq_len(mH), MM=seq_len(mM), nthresh=1, trim=0.15,
    criterion = c("pooled-AIC", "AIC","BIC", "SSR"),thSteps = 7, plot=TRUE,
    max.iter=2, type=c("level", "diff", "ADF"), same.lags=FALSE,
    restriction=c("none","OuterSymAll","OuterSymTh"), hpc=c("none", "foreach"))
```

selectSETAR 53

Arguments

x	time series
m, d, steps	embedding parameters. For their meanings, see help about nlar
series	time series name (optional)
mL, mH,mM	autoregressive order for 'low' (mL) 'middle' (mM, only useful if nthresh=2) and 'high' (mH)regime (default values: m). Must be \leq m. Alternatively, you can specify ML
thDelay	Vector of possible 'threshold delay' values to check for
mTh	coefficients for the lagged time series, to obtain the threshold variable
thVar	external threshold variable
th	Different specifications of the grid search, to pre-specify a value or set the number of points to search. SeeMakeThSpec
trace	should additional infos be printed? (logical)
include	Type of deterministic regressors to include
common	Indicates which elements are common to all regimes: no, only the include variables, the lags or both
model	Currently not implemented
ML,MM,MH	vector of lags for order for 'low' (ML) 'middle' (MM, only useful if nthresh=2) and 'high' (MH)regime. Max must be <=m
nthresh	Number of threshold of the model
trim	trimming parameter indicating the minimal percentage of observations in each regime. Default to 0.15
criterion	Model selection criterion
thSteps	Not used
plot	Should a plot showing the criterion values be printed? (logical)
max.iter	Number of iterations for the alogorithm
type	Whether the variable is taken is level, difference or a mix (diff $y=y-1$, diff lags) as in the ADF test
same.lags	Logical. When AIC or pooled-AIC is used and arg m is given, should it search for same number of lags in each regime (TRUE) or allow for different (FALSE) lags in each regime. Different lags involves more computation
restriction	Restriction on the threshold. OuterSymAll will take a symmetric threshold and symmetric coefficients for outer regimes. OuterSymTh currently unavailable
hpc	Possibility to run the bootstrap on parallel core. See details

Details

Routine for automatic selection of SETAR models hyper parameters.

An exhaustive search over all possible combinations of values of specified hyper-parameters is performed. Thus the threshold delay, the number of lags in each regime and the threshold value are computed.

54 selectSETAR

Embedding parameters d, steps are kept fixed.

Possible criteria are the usual SSR, AIC and a pooled AIC formula: AIC(lowregimemodel) + AIC(highregimemodel). The default criterion is the pooled AIC formula. SSR criterion can't be used to compare models with different lags.

When two thresholds(nthresh=2) have to be computed, the search for the second is made conditional on results for first threshold as suggested in Gonzalo and Pittarakis (2002). Refinements can be obtained by using max.iter (first threshold being re-estimated based on the second one). If SSR is used, the number of lags in the inner regime is either the same if only arg m was given, otherwise it has to be pre-specified. Criterion AIC can be used to determine the number of lags in the nner regime, whereas pooled-aic is currently not implemented for nthresh=2.

By default, all threshold values excluding the upper and lower trim of the threshold values are taken as potential threshold. restriction can be made with arg th. See function MakeThSpec.

With the argument hpc, the heavy grid search can be run on parallel cores, thus alleviating the time of computation. Preliminary results indicate however that the length of the series must be very considerable in order that the parallel code becomes advantageous. To use it, the user needs simply to choose a package (among doMC, doMPI, doSNOW or doRedis) and register the backend. See the vignette for more details.

Value

An object of class select SETAR (print and plot methods) with:

res A data-frame, with columns giving hyper-parameter values and the computed

AIC for each row (only the best 10/5s are returned)

res2 Same as res, returned if nthresh=2 otherwise set to NULL

bests estimated hyper-parameters th, firstBests, bests2th, ML, MM, MH

estimated parameters, from first and conditional search

criterion, nthresh,same.lags

returns args given by user

all threshold values and correspoinding criterion from first search

Author(s)

Antonio, Fabio Di Narzo and Stigler, Matthieu

References

Gonzalo, J. & Pitarakis, J. (2002) Estimation and model selection based inference in single and multiple threshold models, Journal of Econometrics, 110, 319 - 352

See Also

selectLSTAR, selectNNET, MakeThSpec

SETAR 55

Examples

```
llynx <- log10(lynx)
selectSETAR(llynx, m=2)
#Suggested model is the following:
setar(llynx, m=2, thDelay=1, th=3.4)</pre>
```

SETAR

Self Threshold Autoregressive model

Description

Self Exciting Threshold AutoRegressive model.

Usage

```
setar(x, m, d=1, steps=d, series, mL, mM, mH, thDelay=0, mTh, thVar, th, trace=FALSE,
    nested=FALSE, include = c( "const", "trend", "none", "both"),
    common=c("none", "include", "lags", "both"), model=c("TAR", "MTAR"), ML=seq_len(mL),
    MM=seq_len(mM), MH=seq_len(mH),nthresh=1,trim=0.15, type=c("level", "diff", "ADF"),
    restriction=c("none", "OuterSymAll", "OuterSymTh") )
```

Arguments

X	time series
m, d, steps	embedding dimension, time delay, forecasting steps
series	time series name (optional)
mL,mM, mH	autoregressive order for 'low' (mL) 'middle' (mM, only useful if nthresh=2) and 'high' (mH)regime (default values: m). Must be <=m. Alternatively, you can specify ML
thDelay	'time delay' for the threshold variable (as multiple of embedding time delay d)
mTh	coefficients for the lagged time series, to obtain the threshold variable
thVar	external threshold variable
th	threshold value (if missing, a search over a reasonable grid is tried)
trace	should additional infos be printed? (logical)
include	Type of deterministic regressors to include
common	Indicates which elements are common to all regimes: no, only the include variables, the lags or both
ML,MM,MH	vector of lags for order for 'low' (ML) 'middle' (MM, only useful if nthresh=2) and 'high' (MH)regime. Max must be <=m
model	Currently not implemented
nthresh	Number of threshold of the model
trim	trimming parameter indicating the minimal percentage of observations in each regime. Default to 0.15

56 SETAR

type	Whether the variable is taken is level, difference or a mix (diff y= y-1, diff lags) as in the ADF test
restriction	Restriction on the threshold. OuterSymAll will take a symmetric threshold and symmetric coefficients for outer regimes. OuterSymTh currently unavailable
nested	Whether is this a nested call? (useful for correcting final model df)
	further arguments to be passed to nlar

Details

Self Exciting Threshold AutoRegressive model.

$$X_{t+s} = x_{t+s} = (\phi_{1,0} + \phi_{1,1}x_t + \phi_{1,2}x_{t-d} + \ldots + \phi_{1,mL}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_{t-d} + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_t + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_t + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_t + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_t + \ldots + \phi_{2,mH}x_{t-(mL-1)d})I(z_t \le th) + (\phi_{2,0} + \phi_{2,1}x_t + \phi_{2,2}x_t + \ldots + \phi_{2,mH}x_t + \phi_{2,2}x_t + \ldots + \phi_{2,mH$$

with z the threshold variable. The threshold variable can alternatively be specified by (in that order):

```
thDelay z[t] = x[t - thDelay*d]

mTh z[t] = x[t] mTh[1] + x[t-d] mTh[2] + ... + x[t-(m-1)d] mTh[m]

thVar z[t] = thVar[t]
```

For fixed th and threshold variable, the model is linear, so phi1 and phi2 estimation can be done directly by CLS (Conditional Least Squares). Standard errors for phi1 and phi2 coefficients provided by the summary method for this model are taken from the linear regression theory, and are to be considered asymptoticals.

Value

An object of class nlar, subclass setar

Author(s)

Antonio, Fabio Di Narzo

References

Non-linear time series models in empirical finance, Philip Hans Franses and Dick van Dijk, Cambridge: Cambridge University Press (2000).

Non-Linear Time Series: A Dynamical Systems Approach, Tong, H., Oxford: Oxford University Press (1990).

See Also

plot. setar for details on plots produced for this model from the plot generic.

setar.sim 57

Examples

```
#fit a SETAR model, with threshold as suggested in Tong(1990, p 377)
mod.setar <- setar(log10(lynx), m=2, thDelay=1, th=3.25)
mod.setar
summary(mod.setar)

if(require(FinTS)) {
    data(m.unrate)
    setar(diff(m.unrate), ML=c(2,3,4,12), MH=c(2,4,12), th=0.1, include="none")
}</pre>
```

setar.sim

Simulation and bootstrap of Threshold Autoregressive model

Description

Simulate or bootstrap a Threshold VAR

Usage

```
setar.sim(data, B, setarObject, n = 200, lag = 1,
  trend = TRUE, nthresh = 0, thDelay = 0, Thresh,
  type = c("boot", "simul", "check"), starting = NULL,
  rand.gen = rnorm, innov = rand.gen(n, ...), ...)
```

Arguments

data	univariate time series
В	vector of coefficients to simulate
setarObject	Object of class linear or setar to be bootstrapped
n	Number of observations to create when type="simul"
Thresh	The threshold value(s). Vector of length nthresh
nthresh	number of threshold (see details)
lag	Number of lags to include in each regime
type	Whether a bootstrap or simulation is to employ. See details
trend	If a trend should be included in the model
thDelay	'time delay' for the threshold variable (as multiple of embedding time delay d).
starting	Starting values when a simulation with given parameter matrix is made
rand.gen	optional: a function to generate the innovations.
innov	an optional times series of innovations. If not provided, rand.gen is used.
•••	additional arguments for rand.gen. Most usefully, the standard deviation of the innovations generated by rnorm can be specified by sd.

58 setarTest

Details

This function offers the possibility to generate series following a TAR from two approaches: bootstrap or simulation. When the data is given, one can use a simple residual bootstrap or simulate a series from the parameter matrix and with normal distributed residuals (with variance pre-specified). The choice "check" is just there to check the function: one should obtain the same values as the given values. Please report if different. When the parameter matrix is given, there is only the possibility to simulate series. The starting values (of length equal to the number of lags) can be given. The user should take care for the choice of the starting values and parameters values, since it is not sure that the simulated values will cross the threshold even once.

Value

a list with the simulated/bootstraped data and the parameter matrix used.

Author(s)

Matthieu Stigler

See Also

SETAR to estimate a SETAR, arima. sim to simulate an ARMA.

Examples

```
##Simulation of a TAR with 1 threshold
TvarMat <- c(2.9,-0.4,-0.1,-1.5, 0.2,0.3)
sim<-setar.sim(B=TvarMat,lag=2, type="simul", nthresh=1, Thresh=2, starting=c(2.8,2.2))$serie
mean(ifelse(sim>2,1,0)) #approximation of values over the threshold

#check the result
selectSETAR(sim, m=2)

##Bootstrap a TAR with two threshold (three regimes)
sun<-(sqrt(sunspot.year+1)-1)*2
setar.sim(data=sun,nthresh=2,n=500, type="boot", Thresh=c(6,9))$serie

##Check the bootstrap
cbind(setar.sim(data=sun,nthresh=2,n=500, type="check", Thresh=c(6,9))$serie,sun)</pre>
```

setarTest

Test of linearity

Description

Test of linearity against threshold of Hansen (1999) with bootstrap distribution

setarTest 59

Usage

Arguments

^	time series
m, d, steps	embedding dimension, time delay, forecasting steps
series	time series name (optional)
thDelay	'time delay' for the threshold variable (as multiple of embedding time delay d)
nboot	number of bootstrap replications
trim	trimming parameter indicating the minimal percentage of observations in each regime
test	Type of test. See details
hpc	Possibility to run the bootstrap on parallel core. See details in TVECM. HStest
check	Possibility to check if the bootstrap is correct by not sampling the residuals. The result given should be the same as in the original data

Details

Estimation of the first threshold parameter is made with CLS, a conditional search with one iteration is made for the second threshold. The Ftest comparing the residual sum of squares (SSR) of each model is computed.

$$F_{ij} = T((S_i - S_j)/S_j)$$

where S_i is the SSR of the model with i regimes (and so i-1 thresholds).

Three test are avalaible. The both first can be seen as linearity test, whereas the third can be seen as a specification test: once the 1vs2 or/and 1vs3 rejected the linearity and henceforth accepted the presence of a threshold, is a model with one or two thresholds preferable?

Test 1vs2: Linear AR versus 1 threshold TAR

time series

Test 1vs3: Linear AR versus 2 threshold2 TAR

Test 2vs3: 1 threshold TAR versus 2 threshold2 TAR

The both first are computed together and avalaible with test="1vs". The third test is avalaible with test="2vs3".

The homoskedastic bootstrap distribution is based on resampling the residuals from H0 model (ar for test 1vs, and setar(1) for test 2vs3), estimating the threshold parameter and then computing the Ftest, so it involves many computations and is pretty slow.

60 sigmoid

Value

A object of class "Hansen99Test" containing:

SSRs The residual Sum of squares of model AR, 1 threshold TAR and 2 thresholds

TAR

Ftests The Ftest statistic for the test

PvalBoot The bootstrap p-values for the test selected

CriticalValBoot

The critical values for the test selected

Ftestboot All the F-test computed

firstBests, secBests

The thresholds for the original series, obtained from search for 1 thresh (firstBests)

and conditional search for 2 thresh (secBests)

nboot, m, type The number of bootstrap replications (nboot), the lags used (m) and the type of

test (type)

Author(s)

Matthieu Stigler

References

Hansen (1999) Testing for linearity, Journal of Economic Surveys, Volume 13, Number 5, December 1999, pp. 551-576(26) avalaible at: http://www.ssc.wisc.edu/~bhansen/papers/cv.htm

See Also

TVAR.LRtest for the multivariate version. SETAR for estimation of the model.

Examples

```
#Data used by Hansen
sun<-(sqrt(sunspot.year+1)-1)*2

#Test 1vs2 and 1vs3
#setarTest(sun, m=11, thDelay=0:1, nboot=5,trim=0.1, test="1vs")</pre>
```

sigmoid

sigmoid functions

Description

Some sigmoid functions. See R sources for their definition

Usage

```
sigmoid(x)
```

STAR 61

Arguments

x numeric vector

Author(s)

J. L. Aznarte

STAR STAR model

Description

STAR model fitting with automatic selection of the number of regimes based on LM tests.

Usage

Arguments

X	time series
m, d, steps	embedding dimension, time delay, forecasting steps
noRegimes	max number of regimes
series	time series name (optional)
rob	perform robust test (not implemented)
thDelay	'time delay' for the threshold variable (as multiple of embedding time delay d)
mTh	coefficients for the lagged time series, to obtain the threshold variable
thVar	external threshold variable
sig	significance level for the tests to select the number of regimes.
control	further arguments to be passed as control list to optim
trace	should additional infos be printed out?
	currently unused

Details

The function star implements the iterative building strategy described in [1] to identify and estimate Smooth Transition AutoRegressive models.

[1] T. Terasvirta, "Specification, estimation and evaluation of smooth transition autoregresive models", J. Am. Stat. Assoc. 89 (1994): 208-218.

Value

star returns an object of class nlar, subclass star, i.e. a list with informations about the fitted model.

62 toLatex.setar

Author(s)

J. L. Aznarte M.

See Also

 ${\tt addRegime}$

Examples

```
mod.star <- star(log10(lynx), mTh=c(0,1), control=list(maxit=3000))
mod.star
addRegime(mod.star)</pre>
```

toLatex.setar

Latex representation of fitted setar models

Description

Latex representation of fitted setar models

Usage

```
## S3 method for class 'setar'
toLatex(object, digits = 3, label, ...)
```

Arguments

object fitted setar model (using nlar)

digits options to be passed to format for formatting numbers

label LaTeX label passed to the equation

... Not used

Author(s)

Antonio, Fabio Di Narzo

See Also

```
setar, nlar-methods
```

```
mod.setar <- setar(log10(lynx), m=2, thDelay=1, th=3.25)
toLatex(mod.setar)</pre>
```

TVAR 63

IVAN WIUUVUITUUE I IITESHOU AUTOTEGTESSIVE HIOU	TVAR	Multivariate Threshold Autoregressive mode
---	------	--

Description

Estimate a multivariate Threshold VAR

Usage

```
TVAR(data, lag,
  include = c("const", "trend", "none", "both"),
  model = c("TAR", "MTAR"), commonInter = FALSE,
  nthresh = 1, thDelay = 1, mTh = 1, thVar, trim = 0.1,
  ngrid, gamma = NULL, around, plot = FALSE,
  dummyToBothRegimes = TRUE, trace = TRUE, trick = "for",
  max.iter = 2)
```

Arguments

max.iter

•	
data	time series
lag	Number of lags to include in each regime
include	Type of deterministic regressors to include
model	Whether the transition variable is taken in levels (TAR) or difference (MTAR)
commonInter	Whether the deterministic regressors are regime specific (commonInter=FALSE) or not.
nthresh	Number of thresholds
thDelay	'time delay' for the threshold variable (as multiple of embedding time delay d) PLEASE NOTE that the notation is currently different to univariate models in tsDyn. The left side variable is taken at time t, and not t+1 as in univariate cases.
mTh	combination of variables with same lag order for the transition variable. Either a single value (indicating which variable to take) or a combination
thVar	external transition variable
trim	trimming parameter indicating the minimal percentage of observations in each regime
ngrid	number of elements of the grid, especially for nthresh=3
gamma	prespecified threshold values
around	The grid search is restricted to <i>ngrid</i> values around this point. Especially useful for nthresh=3.
plot	Whether a plot showing the results of the grid search should be printed
dummyToBothRegi	
	Whether the dummy in the one threshold model is applied to each regime or not.
trace	should additional infos be printed out?
trick	type of R function called: for or mapply
	lag include model commonInter nthresh thDelay mTh thVar trim ngrid gamma around plot dummyToBothRegin

Number of iterations for the algorithm

64 TVAR

Details

For fixed th and threshold variable, the model is linear, so estimation can be done directly by CLS (Conditional Least Squares). The search of the parameters values is made upon a grid of potential values. So it is pretty slow.

nthresh=1: estimation of one threshold model (two regimes) upon a grid of *ngrid* values (default to ALL) possible thresholds and delays values.

nthresh=2: estimation of two thresholds model (three regimes) Conditional on the threshold found in model where nthresh=1, the second threshold is searched. When both are found, a second grid search is made with 30 values around each threshold.

nthresh=3: DOES NOT estimate a 3 thresholds model, but a 2 thresholds model with a whole grid over the thresholds parameters (so is really slow) with a given delay, is there rather to check the consistency of the method nthresh=2

Value

An object of class TVAR, with standard methods.

Author(s)

Matthieu Stigler

References

Lo and Zivot (2001) "Threshold Cointegration and Nonlinear Adjustment to the Law of One Price," Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 533-76, September.

See Also

lineVar for the linear VAR/VECM, TVAR.LRtest to test for TVAR, TVAR.sim to simulate/bootstrap a TVAR.

```
data(zeroyld)
data<-zeroyld

TVAR(data, lag=2, nthresh=2, thDelay=1, trim=0.1, mTh=1, plot=TRUE)

##The one threshold (two regimes) gives a value of 10.698 for the threshold and 1 for the delay.
#Conditional on this values, the search for a second threshold (three regimes) gives 8.129.
#Starting from this values, a full grid search finds the same values and confims
#the first step estimation.</pre>
```

TVAR.boot 65

TVAR.boot	Bootstrap a multivariate Threshold Autoregressive (TVAR) model

Description

Recursive bootstrap of a multivariate Threshold VAR (TVAR)

Usage

```
TVAR.boot(TVARobject, innov, seed, ...)
VAR.boot(VARobject, innov, seed, ...)
```

Arguments

TVARobject Object of class TVAR generated by function TVAR

VARobject Object of class VAR generated by function lineVar

innov Innovations used for bootstrap. If missing, residuals are resampled.

seed Optional. Seed for the random resampling function.

Further arguments passed to the underlying (un-exported) TVAR.gen function

Details

The function bootstraps a given model. This is done on a object generated by TVECM (or VECM). A simple residual recursive bootstrap is done.

Value

A matrix with the bootstraped series.

Author(s)

Matthieu Stigler

See Also

TVAR to estimate a TVAR, VAR. sim to simulate/bootstrap a VAR, TVECM. sim to simulate/bootstrap a TVECM.

```
##Bootstrap a TVAR with two threshold (three regimes)
data(zeroyld)
serie<-zeroyld
mod <- TVAR(data=serie,lag=1, nthresh=1)
TVAR.boot(mod)</pre>
```

TVAR.LRtest

TVAR.LRtest Test of linearity

Description

Multivariate extension of the linearity against threshold test from Hansen (1999) with bootstrap distribution

Usage

```
TVAR.LRtest(data, lag = 1, trend = TRUE, series,
  thDelay = 1:m, mTh = 1, thVar, nboot = 10,
  plot = FALSE, trim = 0.1, test = c("1vs", "2vs3"),
  model = c("TAR", "MTAR"), hpc = c("none", "foreach"),
  trace = FALSE, check = FALSE)
```

Arguments

trend whether a trend should be added series name of the series thDelay 'time delay' for the threshold variable (as multiple of embedding time delay d) PLEASE NOTE that the notation is currently different to univariate models in tsDyn. The left side variable is taken at time t, and not t+1 as in univariate cases. mTh combination of variables with same lag order for the transition variable. Either a single value (indicating which variable to take) or a combination thVar external transition variable nboot Number of bootstrap replications plot Whether a plot showing the results of the grid search should be printed trim trimming parameter indicating the minimal percentage of observations in each regime test Type of usual and alternative hypothesis. See details model Whether the threshold variable is taken in level (TAR) or difference (MTAR) hpc Possibility to run the bootstrap on parallel core. See details in TVECM. HStest trace should additional infos be printed? (logical) check Possibility to check the function by no sampling: the test value should be the	data	multivariate time series
series name of the series thDelay 'time delay' for the threshold variable (as multiple of embedding time delay d) PLEASE NOTE that the notation is currently different to univariate models in tsDyn. The left side variable is taken at time t, and not t+1 as in univariate cases. mTh combination of variables with same lag order for the transition variable. Either a single value (indicating which variable to take) or a combination thVar external transition variable nboot Number of bootstrap replications plot Whether a plot showing the results of the grid search should be printed trim trimming parameter indicating the minimal percentage of observations in each regime test Type of usual and alternative hypothesis. See details model Whether the threshold variable is taken in level (TAR) or difference (MTAR) hpc Possibility to run the bootstrap on parallel core. See details in TVECM. HStest trace should additional infos be printed? (logical)	lag	Number of lags to include in each regime
'time delay' for the threshold variable (as multiple of embedding time delay d) PLEASE NOTE that the notation is currently different to univariate models in tsDyn. The left side variable is taken at time t, and not t+1 as in univariate cases. mTh combination of variables with same lag order for the transition variable. Either a single value (indicating which variable to take) or a combination thVar external transition variable nboot Number of bootstrap replications plot Whether a plot showing the results of the grid search should be printed trim trimming parameter indicating the minimal percentage of observations in each regime test Type of usual and alternative hypothesis. See details model Whether the threshold variable is taken in level (TAR) or difference (MTAR) hpc Possibility to run the bootstrap on parallel core. See details in TVECM. HStest trace should additional infos be printed? (logical)	trend	whether a trend should be added
PLEASE NOTE that the notation is currently different to univariate models in tsDyn. The left side variable is taken at time t, and not t+1 as in univariate cases. mTh combination of variables with same lag order for the transition variable. Either a single value (indicating which variable to take) or a combination thVar external transition variable nboot Number of bootstrap replications plot Whether a plot showing the results of the grid search should be printed trim trimming parameter indicating the minimal percentage of observations in each regime test Type of usual and alternative hypothesis. See details model Whether the threshold variable is taken in level (TAR) or difference (MTAR) hpc Possibility to run the bootstrap on parallel core. See details in TVECM. HStest trace should additional infos be printed? (logical)	series	name of the series
a single value (indicating which variable to take) or a combination thVar external transition variable Number of bootstrap replications plot Whether a plot showing the results of the grid search should be printed trim trimming parameter indicating the minimal percentage of observations in each regime test Type of usual and alternative hypothesis. See details model Whether the threshold variable is taken in level (TAR) or difference (MTAR) hpc Possibility to run the bootstrap on parallel core. See details in TVECM. HStest trace should additional infos be printed? (logical)	thDelay	PLEASE NOTE that the notation is currently different to univariate models in
nboot Number of bootstrap replications plot Whether a plot showing the results of the grid search should be printed trim trimming parameter indicating the minimal percentage of observations in each regime test Type of usual and alternative hypothesis. See details model Whether the threshold variable is taken in level (TAR) or difference (MTAR) hpc Possibility to run the bootstrap on parallel core. See details in TVECM. HStest trace should additional infos be printed? (logical)	mTh	· · · · · · · · · · · · · · · · · · ·
plot Whether a plot showing the results of the grid search should be printed trim trimming parameter indicating the minimal percentage of observations in each regime test Type of usual and alternative hypothesis. See details model Whether the threshold variable is taken in level (TAR) or difference (MTAR) hpc Possibility to run the bootstrap on parallel core. See details in TVECM. HStest trace should additional infos be printed? (logical)	thVar	external transition variable
trim trimming parameter indicating the minimal percentage of observations in each regime test Type of usual and alternative hypothesis. See details model Whether the threshold variable is taken in level (TAR) or difference (MTAR) hpc Possibility to run the bootstrap on parallel core. See details in TVECM. HStest trace should additional infos be printed? (logical)	nboot	Number of bootstrap replications
regime test Type of usual and alternative hypothesis. See details model Whether the threshold variable is taken in level (TAR) or difference (MTAR) hpc Possibility to run the bootstrap on parallel core. See details in TVECM. HStest trace should additional infos be printed? (logical)	plot	Whether a plot showing the results of the grid search should be printed
model Whether the threshold variable is taken in level (TAR) or difference (MTAR) hpc Possibility to run the bootstrap on parallel core. See details in TVECM. HStest trace should additional infos be printed? (logical)	trim	
hpc Possibility to run the bootstrap on parallel core. See details in TVECM. HStest trace should additional infos be printed? (logical)	test	Type of usual and alternative hypothesis. See details
trace should additional infos be printed? (logical)	model	Whether the threshold variable is taken in level (TAR) or difference (MTAR)
	hpc	Possibility to run the bootstrap on parallel core. See details in TVECM. HStest
check Possibility to check the function by no sampling: the test value should be the	trace	should additional infos be printed? (logical)
same as in the original data	check	

TVAR.LRtest 67

Details

This test is just the multivariate extension proposed by Lo and Zivot of the linearity test of Hansen (1999). As in univariate case, estimation of the first threshold parameter is made with CLS, for the second threshold a conditional search with one iteration is made. Instead of a Ftest comparing the SSR for the univariate case, a Likelihood Ratio (LR) test comparing the covariance matrix of each model is computed.

$$LR_{ij} = T(\ln(\det \hat{\Sigma}_i) - \ln(\det \hat{\Sigma}_j))$$

where $\hat{\Sigma}_i$ is the estimated covariance matrix of the model with i regimes (and so i-1 thresholds).

Three test are avalaible. The both first can be seen as linearity test, whereas the third can be seen as a specification test: once the 1vs2 or/and 1vs3 rejected the linearity and henceforth accepted the presence of a threshold, is a model with one or two thresholds preferable?

Test 1vs2: Linear VAR versus 1 threshold TVAR

Test 1vs3: Linear VAR versus 2 threshold2 TVAR

Test 2vs3: 1 threshold TAR versus 2 threshold2 TAR

The both first are computed together and avalaible with test="1vs". The third test is avalaible with test="2vs3".

The homoskedastik bootstrap distribution is based on resampling the residuals from H0 model, estimating the threshold parameter and then computing the Ftest, so it involves many computations and is pretty slow.

Value

A list containing:

- -The values of each LR test
- -The bootstrap Pvalues and critical values for the test selected

Author(s)

Matthieu Stigler

References

Hansen (1999) Testing for linearity, Journal of Economic Surveys, Volume 13, Number 5, December 1999, pp. 551-576(26) avalaible at: http://www.ssc.wisc.edu/~bhansen/papers/cv.htm

Lo and Zivot (2001) "Threshold Cointegration and Nonlinear Adjustment to the Law of One Price," Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 533-76, September.

See Also

setarTest for the univariate version. OlsTVAR for estimation of the model.

TVAR.sim

Examples

```
data(zeroyld)
data<-zeroyld

TVAR.LRtest(data, lag=2, mTh=1,thDelay=1:2, nboot=3, plot=FALSE, trim=0.1, test="1vs")</pre>
```

TVAR.sim

Simulation of a multivariate Threshold Autoregressive model (TVAR)

Description

Simulate a multivariate Threshold VAR (TVAR)

Usage

```
TVAR.sim(B, Thresh, nthresh = 1, n = 200, lag = 1,
  include = c("const", "trend", "none", "both"),
  thDelay = 1, thVar = NULL, mTh = 1, starting = NULL,
  innov = rmnorm(n, mean = 0, varcov = varcov),
  varcov = diag(1, nrow(B)), show.parMat = FALSE,
  round = FALSE, seed, ...)
```

Arguments

Matrix of coefficients to simulate
The threshold value(s). Vector of length nthresh
number of threshold (see details)
Number of observations to create when type="simul"
Number of lags to include in each regime
Type of deterministic regressors to include. NOT WORKING PROPERLY CURRENTLY if not const
'time delay' for the threshold variable (as multiple of embedding time delay d) PLEASE NOTE that the notation is currently different to univariate models in tsDyn. The left side variable is taken at time t, and not t+1 as in univariate cases.
external transition variable
combination of variables with same lag order for the transition variable. Either a single value (indicating which variable to take) or a combination
Starting values (matrix of dimension lag x k). If not given, set to zero.
Innovations used for simulation. Should be matrix of dim $n \times k$. By default multivariate normal.
Variance-covariance matrix for the innovations. By default identity matrix.
Logical. Should the parameter matrix be shown? Useful to understand how to give right input
Rounds the series created to have the same digits (hopefully) as original series.
Optional. Seed for the random number generation.

Further arguments passed to the underlying (un-exported) TVAR.gen function

TVAR.sim 69

Details

This function offers the possibility to generate series following a TVAR.

By giving a matrix of coefficients, on can only simulate a VAR (nthresh=0) or TVAR (nthresh=1 or 2). One can have a specification with constant (default), trend, both or none (see arg include). Order in parameters is include/lags (VECM) and include/lags/include/lags for TVECM, hence, a matrix for a TVECM with 3 regimes, a const and a 2 lags would have 2 lines and 2*(1+4) columns. The innovations can be given by the user (a matrix of dim nxk, here n does not include the starting values!), by default it uses a multivariate normal distribution, with covariance matrix specified by varcov. The starting values (of dim lags x k) can be given. The user should take care for their choice, since it is not sure that the simulated values will cross the threshold even once.

The matrix 'B' has to be in the form: constant, trend, lags, then repeated if many regimes. In case of uncertainty, using who.parMat=TRUE will print the matrix as interpreted by the function, helping the user to feed the right input.

Value

A matrix with the simulated/bootstraped series.

Author(s)

Matthieu Stigler

See Also

TVAR to estimate a TVAR, VAR.sim to simulate/bootstrap a VAR, TVECM.sim to simulate/bootstrap a TVECM.

70 TVECM

TVECM

Threshold Vector Error Correction model (VECM)

Description

Estimate a Threshold Vector Error Correction model (VECM)

Usage

```
TVECM(data, lag = 1, nthresh = 1, trim = 0.05,
   ngridBeta = 50, ngridTh = 50, plot = TRUE,
   th1 = list(exact = NULL, int = c("from", "to"), around = "val"),
   th2 = list(exact = NULL, int = c("from", "to"), around = "val"),
   beta = list(exact = NULL, int = c("from", "to"), around = c("val", "by")),
   restr = c("none", "equal", "signOp"),
   common = c("All", "only_ECT"),
   include = c("const", "trend", "none", "both"),
   dummyToBothRegimes = TRUE, beta0 = 0,
   methodMapply = FALSE, trace = TRUE)
```

Arguments

beta0

data	time series
lag	Number of lags to include in each regime
nthresh	number of threshold (see details)
trim	trimming parameter indicating the minimal percentage of observations in each regime
ngridBeta	number of elements to search for the cointegrating value
ngridTh	number of elements to search for the threshold value
plot	Whether the grid with the SSR of each threshold should be ploted.
th1	different possibilities to pre-specify an exact value, an interval or a central point for the search of the threshold (or first threshold if nthresh=2)
th2	different possibilities to pre-specify an exact value or a central point for the search of the second threshold (used only if nthresh=2)
beta	different possibilities to pre-specify an exact value, an interval or a central point for the search of the cointegrating value
restr	Currently not avalaible
common	Whether the regime-specific dynamics are only for the ECT or for the ECT and the lags
include	Type of deterministic regressors to include
dummyToBothReg:	
	Whether the dummy in the one threshold model is applied to each regime or not.

Additional regressors to include in the cointegrating relation

TVECM 71

methodMapply only for programming. Is to make the choice between a for loop or mapply

implementation

trace should additional infos be printed? (logical)

Details

For fixed threshold and cointegrating vector, the model is linear, so estimation of the regression parameters can be done directly by CLS (Conditional Least Squares). The search of the threshold and cointegrating parameters values which minimize the residual sum of squares (SSR) is made on a grid of potential values. For specification of the grids, see below.

The function can estimate one as well as two thresholds:

nthresh=1: estimation of one threshold model (two regimes) upon a grid of *ngridTh* values (default to ALL) possible thresholds and delays values.

nthresh=2: estimation of two thresholds model (three regimes). Conditional on the threshold found in model where nthresh=1, the second threshold is searched. When both are found, a second grid search is made with 30 values around each threshold.

The model can be either with a threshold effect on all variables ("All") or only on the error correction term (ECT) (argument "only ECT"). In the second case, the value for the middle threshold is taken a null, as in Balke and Fomby (1997).

The grid for the threshold parameters can be set in different ways, through the argument th1, th2 and beta:

exact: Pre-specified value.

int: Specify an interval (of length *ngridTh*) in which to search.

around: Specify to take *ngridTh* points around the value given.

The default is to do an interval search. Interval bounds for the threshold interval are simply the *trim* and 1-*trim* percents of the sorted error correction term. For the cointegrating parameter, bounds of the interval are obtained from the (OLS) confidence interval of the linear cointegration case. It is often found however that this interval is too tight. It is hence recommended to inspect the plot of the grid search.

Value

Fitted model data

Author(s)

Matthieu Stigler

References

Hansen, B. and Seo, B. (2002), Testing for two-regime threshold cointegration in vector error-correction models, Journal of Econometrics, 110, pages 293 - 318

Seo, M. H. (2009) Estimation of non linear error-correction models, Working paper

72 TVECM.HStest

See Also

VECM for the linear VECM, TVAR for the threshold VAR, TVECM.SeoTest to test for TVECM, TVECM.sim to simulate/bootstrap a TVECM.

Examples

```
data(zeroyld)
data<-zeroyld

##Estimate a TVECM (we use here minimal grid, it should be usually much bigger!)

tv<-TVECM(data, nthresh=2,lag=1, ngridBeta=20, ngridTh=30, plot=TRUE,trim=0.05, common="All")

print(tv)
summary(tv)

#Obtain diverse infos:
AIC(tv)
BIC(tv)
res.tv<-residuals(tv)

#export the equations as Latex:
toLatex(tv)</pre>
```

TVECM.HStest

Test of linear cointegration vs threshold cointegration

Description

Tests the null of linear cointegration against threshold cointegration following Hansen and Seo (2002). Fixed regressor and residual bootstrap are available.

Usage

```
TVECM.HStest(data, lag=1, ngridTh=300, trim=0.05,
nboot=100, fixed.beta=NULL, intercept=TRUE,
boot.type=c("FixedReg", "ResBoot"),
hpc=c("none", "foreach"))
```

Arguments

1		
data	Time	series

lag Number of lags to include in each regime ngridTh Number of threshold points to estimate

trim Trimming parameter indicating the minimal percentage of observations in each

regime

TVECM.HStest 73

nboot Number of bootstrap replications

fixed.beta Numeric. User pre-specified cointegrating value. When NULL (default), the

value is estimated from the linear VECM.

intercept Logical. Whether an intercept has to be included in the VECM

boot.type Character. Type of bootstrap simulation (only if nboot>0)
hpc Possibility to run the bootstrap on parallel core. See details

Details

This test follows the implementation done by Hansen and Seo (2002). The cointegrating value is estimated from the linear VECM. Then, conditional on this value, the LM test is run for a range of different threshold values. The maximum of those LM test values is reported.

Two bootstrap are available: a fixed regressor, as well as a usual residual bootstrap (using the function TVECM.sim).

Available methods are print(), summary() and plot().

With the argument hpc, the burdensome bootstrap replication can be run on parallel cores, thus alleviating the time of computation. The user needs simply to choose a package (among doMC, doMPI, doSNOW or doRedis) and register the backend. See the vignette for more details.

Value

A list cointaining diverse values:

stat The sup-LM statistic.

values The whole LM values.

PvalBoot The bootstrap p-value

CriticalValBoot

The bootstrap critical values

allBoots The boot sup-LM values

args Some user given args (nboot, boot.type)

Reproducibility

Comparison with original paper is made difficult as values of the test are not shown in the paper, only their critical values, which depend on random bootstrap.

Comparison is done with the GAUSS code available on the page of Bruce Hansen. Running tar_ci, we have the same sup-LM value when lags=1 and lags=2, a higher value with lag=3. When the test is run with pre-specified beta values, we have different results, sometimes higher but also smaller sup-LM value.

Author(s)

Matthieu Stigler

74 TVECM.SeoTest

References

Hansen, B. and Seo, B. (2002), Testing for two-regime threshold cointegration in vector error-correction models, Journal of Econometrics, 110, pages 293 - 318

See Also

```
zeroyld: data used in the original paper of Hansen and Seo.

TVECM. SeoTest: a similar test, but with null hypothesis of no-cointegration.

TVECM for estimating a TVECM, TVECM. sim for simulating/bootstrap a TVECM,
```

Examples

```
#Use original data from paper:
data(zeroyld)
dataPaper<-zeroyld
# Test: nboot, number of bootstrap replications, should be high
## Not run:
test1<-TVECM.HStest(dataPaper, lag=1, intercept=TRUE, nboot=1000)</pre>
## End(Not run)
#we use here for the example a much smaller number of bootstrap:
test1<-TVECM.HStest(dataPaper, lag=1, intercept=TRUE, nboot=10)</pre>
test1
summary(test1)
plot(test1)
#can have only specific plots:
plot(test1, which="LM values")
plot(test1, which="Density")
## Run the function in parallel:
## Not run:
#we show here the use with package doMC
library(doMC)
registerDoMC(2) #Number of cores
test1<-TVECM.HStest(dataPaper, lag=1, intercept=TRUE, nboot=1000, hpc="foreach")
## End(Not run)
```

TVECM.SeoTest

No cointegration vs threshold cointegration test

Description

Test the null of no cointegration against threshold cointegration with bootstrap distribution of Seo (2006)

TVECM.SeoTest 75

Usage

```
TVECM.SeoTest(data, lag, beta, trim = 0.1, nboot,
  plot = FALSE, hpc = c("none", "foreach"),
  check = FALSE)
```

Arguments

data	time series
lag	Number of lags to include in each regime
beta	Pre-specified cointegarting value
trim	trimming parameter indicating the minimal percentage of observations in each regime
nboot	Number of bootstrap replications
plot	Whether a grid with the SSR of each threshold should be printed
hpc	Possibility to run the bootstrap on parallel core. See details in TVECM. HStest
check	Possibility to check the function by no sampling: the test value should be the same as in the original data

Details

For this test, the cointegrating value has to be specified by the user.

The model used is one where the threshold effect concerns only the cointegrating vector, and only in the outer regimes.

Due to the presence of parameters unidentified under the null hypothesis, the test employed is a Sup-Wald test, that means that for each combination of the thresholds, a Wald Test is computed and the supremum of all tests is taken. For each bootstrap replication, this approach is taken, so that the test is really slow.

Value

A list cointaining diverse informations:

Estimated threshold parameters and usual slope parameters.

Value of the test.

Critical and Pvalue from bootstrap distribution.

Author(s)

Matthieu Stigler

References

Seo, Myunghwan, 2006. "Bootstrap testing for the null of no cointegration in a threshold vector error correction model," Journal of Econometrics, vol. 127(1), pages 129-150, September.

76 UsUnemp

See Also

TVECM for estimating a TVECM, TVECM. sim for simulating/bootstrap a TVECM,

Examples

```
# As the function takes long long time to be executed, we show in in don't run environement
## Not run:
data(zeroyld)

#can be useful to check whether the bootstrap is working:
#without sampling, results of boot should be same as original
#this is indeed not always the case duye to floating point algorithm
TVECM.SeoTest(zeroyld,lag=2, beta=1, trim=0.1,nboot=2, plot=FALSE,check=TRUE)

#then run the function:
TVECM.SeoTest(zeroyld,lag=2, beta=1, trim=0.1,nboot=100, plot=FALSE,check=FALSE)

## End(Not run)
```

UsUnemp

US unemployment series used in Caner and Hansen (2001)

Description

This data, used as example in *Caner and Hansen (2001)*, contains the monthly US adult male unemployment from 1956 to 1999.

Usage

```
data(UsUnemp)
```

Format

A monthly time series of class ts starting in January 1956 and ending in August 1999.

Source

Caner and Hansen, Threshold autoregression with a unit root Econometrica, 2001, 69, 1555-1596 available at: http://www.ssc.wisc.edu/~bhansen/papers/cv.htm

VARrep 77

VARrep

VAR representation

Description

Show the VAR representation of a VECM

Usage

```
VARrep(object, ...)
## S3 method for class 'VECM'
VARrep(object, ...)
## S3 method for class 'VAR'
VARrep(object, ...)
```

Arguments

```
object An object of class 'VECM' created by VECM, or of class 'VAR' created by lineVar
... Currently not used
```

Value

A matrix containing the parameters of the VECM under their VAR representation.

Author(s)

Matthieu Stigler

References

Hamilton (1994) Time Series Analysis, Princeton University Press

Examples

```
data(barry)
# VECM model:
mod_vecm <- VECM(barry, lag=2, estim="ML")
VARrep(mod_vecm)
# VAR model:
mod_var <- lineVar(barry, lag=2, I="diff")
VARrep(mod_var)</pre>
```

78 VECM

Estimation of Vector error correction model (VECM)

Description

Estimate either a VECM by Engle-Granger or Johansen (MLE) method.

Usage

```
VECM(data, lag, r = 1,
  include = c("const", "trend", "none", "both"),
  beta = NULL, estim = c("20LS", "ML"),
  LRinclude = c("none", "const", "trend", "both"),
  exogen = NULL)
```

Arguments

data	multivariate time series (first row being first=oldest value)
lag	Number of lags (in the VECM representation, see Details)
r	Number of cointegrating relationships
include	Type of deterministic regressors to include
beta	Possibility to impose a cointegrating value. By default is null, so values will be estimated
LRinclude	Type of deterministic regressors to include in the long-term relationship. Can also be a matrix with exogeneous regressors (2OLS only).
estim	Type of estimator: 20LS for the two-step approach or ML for Johansen MLE $$
exogen	Inclusion of exogenous variables (first row being first=oldest value). Is either of same size than data (then automatically cut) or than end-sample.

Details

This function is just a wrapper for the lineVar, with model="VECM".

More comprehensive functions for VECM are in package **vars**. A few differences appear in the VECM estimation:

Engle-Granger estimator The Engle-Granger estimator is available

Presentation Results are printed in a different ways, using a matrix form

lateX export The matrix of coefficients can be exported to latex, with or without standard-values and significance stars

Prediction The predict method contains a newdata argument allowing to compute rolling forecasts.

VECM 79

Two estimators are available: the Engle-Granger two step approach (20LS) or the Johansen (ML). For the 2OLS, deterministics regressors (or external variables if LRinclude is of class numeric) can be added for the estimation of the cointegrating value and for the ECT. This is only working when the beta value is not pre-specified.

The arg beta is the cointegrating value, the cointegrating vector will be taken as: (1, -beta).

Note that the lag specification corresponds to the lags in the VECM representation, not in the VAR (as is done in package vars or software GRETL). Basically, a VAR with 2 lags corresponds here to a VECM with 1 lag. Lag 0 in the VECM is not allowed.

Value

An object of class VECM (and higher classes VAR and nlVar) with methods:

```
Usual methods Print, summary, plot, residuals, fitted, vcov
```

Fit criteria AIC, BIC, MAPE, mse, logLik (latter only for models estimated with MLE)

Prediction Predict and predict_rolling

VAR/VECM methods Impulse response function (irf) and forecast error variance decomposition (fevd)

LaTeX toLatex

Author(s)

Matthieu Stigler

See Also

lineVar TVAR and TVECM for the correspoding threshold models. linear for the univariate AR model.

Examples

80 VECM.sim

```
##export to Latex
toLatex(vecm.eg)
toLatex(summary(vecm.eg))
options("show.signif.stars"=FALSE)
toLatex(summary(vecm.eg), parenthese="Pvalue")
options("show.signif.stars"=TRUE)
```

VECM.sim

Simulation and bootstrap of bivariate VECM/TVECM

Description

Estimate or bootstraps a multivariate Threshold VAR

Usage

```
VECM.sim(data, B, VECMobject, beta, n = 200, lag = 1,
  type = c("simul", "boot", "check"),
  include = c("const", "trend", "none", "both"),
  starting = NULL,
  innov = rmnorm(n, mean = 0, varcov = varcov),
  varcov = diag(1, k), show.parMat = FALSE)

TVECM.sim(data, B, TVECMobject, nthresh = 1, Thresh,
  beta, n = 200, lag = 1,
  type = c("simul", "boot", "check"),
  include = c("const", "trend", "none", "both"),
  starting = NULL,
  innov = rmnorm(n, mean = 0, varcov = varcov),
  varcov = diag(1, k), show.parMat = FALSE)
```

Arguments

data	matrix of parameter to simulate		
В	Matrix of coefficients to simulate		
TVECMobject, VEC	TVECMobject,VECMobject		
	Object computed by function TVECM or linear VECM		
nthresh	number of threshold (see details)		
Thresh	The threshold value(s). Vector of length nthresh		
beta	The cointegrating value		
n	Number of observations to create when type="simul"		
lag	Number of lags to include in each regime		

VECM.sim 81

type Whether a bootstrap or simulation is to employ. See details

include Type of deterministic regressors to include. NOT WORKING PROPERLY

CURRENTLY if not const

starting Starting values when a simulation with given parameter matrix is made

innov Innovations used for simulation. Should be matrix of dim nxk. By default mul-

tivariate normal.

varcov Variance-covariance matrix for the innovations. By default multivariate normal

is used

show.parMat Logical. Should the parameter matrix be shown? Useful to understand how to

give right input

Details

This function offers the possibility to generate series following a VECM/TVECM from two approaches: bootstrap or simulation. VECM. sim is just a wrapper for TVECM. sim.

When the argument matrix is given, on can only simulate a VECM (nthresh=0) or TVECM (nthresh=1 or 2). One can have a specification with constant ("const"), "trend", "both" or "none" (see argument include). Order for the parameters is ECT/include/lags for VECM and ECT1/include1/lags1/ECT2/include2/lags2 for TVECM. To be sure that once is using it correctly, setting show.parMat = TRUE will show the matrix of parameters together with their values and names.

The argument beta is the contegrating value on the right side of the long-run relationship, and hence the function use the vector (1,-beta). The innov argument specifies the innovations. It should be given as a matrix of dim nxk, (here n does not include the starting values!), by default it uses a multivariate normal distribution, with covariance matrix specified by varcov.

The starting values (of dim lags x k) can be given through argument starting. The user should take care for their choice, since it is not sure that the simulated values will cross the threshold even once. Notice that only one cointegrating value is allowed. User interested in simulating a VECM with more cointegrating values should do use the VAR representation and use TVAR.sim.

The second possibility is to bootstrap series. This is done on a object generated by TVECM (or VECM). A simple residual bootstrap is done, or one can simulate a series with the same parameter matrix and with normal distributed residuals (with variance pre-specified), corresponding to Monte-carlo simulations.

One can alternatively give only the series, and then the function will call internally TVECM.

Value

A matrix with the simulated/bootstraped series.

Author(s)

Matthieu Stigler

See Also

TVECM to estimate a TVECM, VAR. sim to simulate/bootstrap a VAR.

82 VECM_symbolic

Examples

```
###reproduce example in Enders (2004, 2 edition) p. 350,
# (similar example in Enders (2010, 3 edition) 301-302).
if(require(mnormt)){
#see that the full "VAR" coefficient matrix is:
 A <- matrix(c(-0.2, 0.2, 0.2, -0.2), byrow=TRUE, ncol=2)
# but this is not the input of VECM.sim. You should decompose into the a and b matrix:
  a<-matrix(c(-0.2, 0.2), ncol=1)
  b < -matrix(c(1,-1), nrow=1)
# so that:
  a%*%b
# The a matrix is the input under argument B, while the b matrix is under argument beta:
# (the other zeros in B are for the not-specified lags)
  innov<-rmnorm(100, varcov=diag(2))</pre>
  startVal <- matrix(0, nrow=2, ncol=1)</pre>
  Bvecm <- rbind(c(-0.2, 0,0), c(0.2, 0,0))
  \verb|vecm1| <- VECM.sim(B=Bvecm, beta=1,n=100, lag=1,include="none", innov=innov, starting=startVal|| | |vecm1|| | |vecm2|| | |vecm3|| | |vecm4|| | |vecm4|
  ECT <- vecm1[,1]-vecm1[,2]</pre>
#add an intercept as in panel B
  Bvecm2 <- rbind(c(-0.2, 0.1,0,0), c(0.2,0.4, 0,0))
  vecm2 <- VECM.sim(B=Bvecm2, n=100,beta=1, lag=1,include="const", innov=innov, starting=startVal)</pre>
  par(mfrow=c(2,1))
  plot(vecm1[,1], type="l", main="Panel a: no drift or intercept", ylab="", xlab="")
  lines(vecm1[,2], lty=2)
  plot(vecm2[,1], type="l", main="Panel b: drift terms (0.1)", ylab="", xlab="")
  lines(vecm2[,2], lty=2)
##Bootstrap a TVAR with 1 threshold (two regimes)
data(zeroyld)
dat<-zeroyld
TVECMobject<-TVECM(dat, nthresh=1, lag=1, ngridBeta=20, ngridTh=20, plot=FALSE)
TVECM.sim(TVECMobject=TVECMobject,type="boot")
##Check the bootstrap
TVECM.sim.check <- TVECM.sim(TVECMobject=TVECMobject,type="check")
all(TVECM.sim.check==dat)
```

VECM_symbolic

Virtua VECM model

Description

Pedagogical tool to create a symbolic VECM model, i.e. just for representation purpose.

zeroyld 83

Usage

```
VECM_symbolic(alpha, beta, lags, inc,
  include = c("none", "const", "trend", "both"))
```

Arguments

alpha	Matrix of alpha speed adjustment coefficients.
beta	Matrix of alpha, cointegrating coefficients.
lags	Matrix containg the lags coefficients.
inc	Matrix containg the include (see following arg) coefficients.
include	Character indicating the type of deterministic term included, if any.

Value

An object of class 'VECM', without however any data.

Examples

```
a<-matrix(c(-0.4, 0.1), ncol=1)
b<-matrix(c(1, -2), ncol=2)

# VECM_symb(alpha=a, beta=t(b))
d<- VECM_symbolic(alpha=a, beta=t(b))
VARrep(d)
d<- VECM_symbolic(alpha=a, beta=t(b), lags=matrix(0, ncol=2, nrow=2))
VARrep(d)
LagMat <- matrix(c(0.1, 0.3, 0.1, 0.2), ncol=2, nrow=2)
incMat <- matrix(c(0.5, 0.1), ncol=1)
d3<- VECM_symbolic(alpha=a, beta=t(b), lags=LagMat, inc=incMat, include="const")
VARrep(d3)</pre>
```

zeroyld

zeroyld time series

Description

U.S. Term Structure Data, 1947-1991. Dataset used by Hansen and Seo (2002). The data contains the 12 month short rate and 120 month long rate.

Format

A data frame with 482 observations on 2 variables.

```
[,1] short.run numeric Short term, 12 month [,2] long.run numeric Long term, 120 month
```

84 zeroyld

Source

Hansen, B. and Seo, B. (2002), Testing for two-regime threshold cointegration in vector error-correction models, Journal of Econometrics, 110, pages 293 - 318

The data can be downloaded from: http://www.ssc.wisc.edu/~bhansen/progs/joe_02r.zip.

The authors themselves took the data from the wepage of Huston McCulloch: $\label{locality} \text{http://www.econ.} \\ \text{ohio-state.edu/jhm/ts/mcckwon/mccull.htm}$

See Also

TVECM. HStest: Hansen and Seo test. TVECM for estimating a TVECM.

Index

*Topic VAR	lineVar, 25
VARrep, 77	llar, 27
*Topic VECM	logLik.nlVar, 29
rank.select, 45	logLik.VECM, 30
VARrep, 77	LSTAR, 32
VECM_symbolic, 82	MAPE, 36
*Topic bootstrap	mse, 36
TVAR.boot, 65	nlar methods, 37
TVAR.sim, 68	NNET, 38
*Topic cointegration	plot methods, 40
rank.select, 45	rank.select,45
VARrep, 77	rank.test,46
VECM_symbolic, 82	regime, 49
*Topic datasets	resVar, 50
barry, 10	selectHyperParms, 51
IIPUs, 18	selectSETAR, 52
UsUnemp, 76	SETAR, 55
zeroyld, 83	setar.sim,57
*Topic predict	setarTest, 58
predict_rolling, 43	sigmoid, 60
*Topic regression	STAR, 61
fevd, 15	toLatex.setar, 62
fitted, 16	tsDyn-package, 3
irf, 19	TVAR, 63
predict, 41	TVAR L Dtart (6
*Topic ts	TVAR.LRtest, 66
aar, 4	TVAR.sim, 68 TVECM, 70
accuracy_stat, 5	TVECM. HStest, 72
addRegime, 6	TVECM. SeoTest, 74
autopairs, 7	VARrep, 77
autotriples, 8	VECM, 78
autotriples.rgl, 9	VECM.sim, 80
availableModels, 10	VECM_symbolic, 82
delta, 12	
delta.lin, 13	AAR (aar), 4
getTh, 17	aar, 4
isLinear, 21	accuracy, 5
lags.select, 23	accuracy_stat, 5
LINEAR, 24	addRegime, 6, 62

86 INDEX

AIC.nlar(nlar methods), 37	logLik.VECM, 23, 30, 45
arima. $\sin, 58$	LSTAR, 32
as.data.frame, 28	lstar, <i>41</i> , <i>42</i>
as.data.frame.llar(llar),27	lstar (LSTAR), 32
autopairs, 4, 7	
autotriples, 4 , 8 , 9	MakeThSpec, 34, 53, 54
autotriples.rgl, 4, 9	makeThSpec (MakeThSpec), 34
availableModels, 4, 10, 38	MAPE, 36, 79
	MAPE.nlar(nlar methods), 37
barry, 10	mse, 36, 79
BBCTest, 11, <i>14</i> , <i>23</i>	mse.nlar(nlar methods), 37
bds.test, <i>13</i>	
	nlar, 24, 51, 53, 62
ca. jo, 46, 48	nlar methods, 37
coef.nlar(nlar methods), 37	nlar-methods, <i>41</i>
	nlar-methods (nlar methods), 37
d2sigmoid (sigmoid), 60	NNET, 38
delta, 4, 12	nnet, <i>39</i>
delta.lin, 4, 13	nnetTs (NNET), 38
delta.lin.test, <i>13</i>	-1 -11 - 45
dsigmoid (sigmoid), 60	OlsTVAR, 67
	OlsTVAR (TVAR), 63
extendBoot, 14	optim, 32, 33, 39, 61
fevd, 15, 15, 79	par, <i>37</i> , <i>40</i>
fitted, 16	plogis, 32
fitted.nlar (nlar methods), 37	plot, <i>16</i> , <i>21</i>
format, 62	plot methods, 40
format.pval, 47	plot-methods (plot methods), 40
	plot.aar(aar),4
gam, 4	plot.llar(llar), <mark>27</mark>
getTh, 17	plot.1star, <i>33</i>
	plot.lstar(plot methods), 40
hnorm, 7, 8	plot.nlar(nlar methods),37
	plot.setar, 56
IIPUs, 18	plot.setar(plot methods), 40
irf, 19, 20, 79	predict, 41
isLinear, 21	predict.nlar, 37, 44
	predict_rolling, 42, 43, 79
KapShinTest, 22	print.aar(aar),4
	print.linear(LINEAR), 24
lags.select, 23	print.llar(llar),27
LINEAR, 24	print.nlar(nlar methods), 37
linear, 26, 79	print.rank.select(rank.select), 45
linear (LINEAR), 24	print.rank.test(rank.test),46
lineVar, 16, 21, 25, 29, 42, 43, 45, 64, 65,	print.summary.linear(LINEAR), 24
77–79	print.varirf(irf), 19
llar, 4, 27	printCoefmat, 37
logLik, <i>79</i>	p
logLik.nlVar, 29	rank.select, 23, 45, 48

INDEX 87

month toot 16 16	TVFCM oim 65 60 72 74 76 91
rank.test, 46, 46	TVECM. sim, 65, 69, 72–74, 76, 81
regime, 49 residuals.nlar (nlar methods), 37	TVECM.sim(VECM.sim), 80
resVar, 50	ugarchroll, 44
rgl, 9	UsUnemp, 76
1 51, 7	F)
selectHyperParms, 51	VAR.boot (TVAR.boot), 65
selectLSTAR, 54	VAR.sim, 65, 69, 81
selectLSTAR (selectHyperParms), 51	VAR.sim (TVAR.sim), 68
selectNNET, 54	VARrep, 77
selectNNET (selectHyperParms), 51	VARselect, 23
selectSETAR, <i>34</i> , <i>35</i> , 52	VECM, 16, 21, 26, 30, 42, 43, 45–48, 72, 77, 78,
selectSetar (selectSETAR), 52	80, 81
selectsetar (selectSETAR), 52	VECM. sim, 80
SETAR, 55, 58, 60	VECM_symbolic, 82
setar, 41, 42, 62	zeroyld, 74, 83
setar (SETAR), 55	Zei Oylu, 74, 63
setar.sim,57	
setarTest, 12, 14, 23, 58, 67	
setartest (setarTest), 58	
sigmoid, 60	
sm, 8	
sm.autoregression, 8	
sm.density, 7	
sm. regression, 7, 8	
sm.ts.pdf, 7	
STAR, 61	
star, 7	
star (STAR), 61 summary.aar (aar), 4	
summary.linear (LINEAR), 24	
summary.nlar (nlar methods), 37	
summary.rank.select(rank.select), 45	
summary.rank.test (rank.test), 46	
summary.setar (SETAR), 55	
terasvirta.test, 13	
toLatex.nlar(nlar methods), 37	
toLatex.setar, 62	
tsDyn(tsDyn-package), 3	
tsDyn-package, 3	
TVAR, 26, 63, 65, 69, 72, 79	
TVAR.boot, 65	
TVAR.LRtest, 60, 64, 66	
TVAR.sim, 64, 68, 81	
TVECM, 26, 70, 74, 76, 79–81, 84	
TVECM. HStest, 59, 66, 72, 75, 84	
TVECM.HStest (TVECM.HStest), 72	
TVECM. SeoTest, 72, 74, 74	