
A note on Oseledec’s theorem
N. Minami

Consider a one-dimensional random Anderson model:

(hωψ)(n) = ψ(n− 1) + ψ(n+ 1) + Vω(n)ψ(n)

and the transfer matrix associated to the equation hωψ = Eψ:

Un(ω) = Sn(ω)Sn−1(ω) · · ·S1(ω) ,

Sn(ω) =

[
E − Vω(n) −1

1 0

]
.

Henceforth, we shall fix an energy value E and omit it from our notation. Here {Vω(n)}n

is a sequence of independent, identically distributed (i.i.d.) random variables (or more
generally an ergodic sequence of r.v.’s). Let us suppose for simpliciyt that {Vω(n)}n is
bounded, namely that there is a constant W such that |Vω(n)| ≤W for all ω and n.

Since detUn(ω) = 1, we have ‖Un(ω)‖ ≥ 1. Hence by sub-additive ergodic theorem,
there is a non-random constant γ ≥ 0 such that

lim
n→∞

1

n
log ‖Un(ω)‖ = γ (1)

holds with probability one. We assume γ > 0, which is actually the case of i.i.d. random
potential with a non-degenerate distribution.

From now on, we shall fix an ω for which (1) is true, and omit it from our notation.
Let us decompose Un = Un(ω) in the form

Un = LnDnKn ,

where Ln and Kn are 2 × 2 real orthogonal matrices and Dn is a diagonal matrix with
positive diagonal entries dn and d−1

n satisfying

lim
n→∞

1

n
log dn = γ .

Let us now prove that the sequence of matrices

[UT
n Un]1/2n = KT

nD
1/n
n Kn

converges to a limit

Λ := KT

(
eγ 0
0 e−γ

)
K

with an orthogonal matrix K, and that if v is the eigenvector of Λ corresponding to the
eigenvalue e−γ , then

lim
n→∞

1

n
log ‖Unv‖ = −γ .

Here for a matrix A, AT denotes its transposition.
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Lemma 1. Let KnK
T
n+k = (un,k

ij ). Then for any M ≥ 1 and any δ ∈ (0, γ), one can
choose an N so large that

max{|un,k
12 |, |un,k

21 |} ≤ e−(2γ−δ)n

holds for any n ≥ N and k = 1, · · · ,M .
Proof. From our assumption, there is a constant A ≥ 1 such that ‖Sj‖ ≤ A for any

j = 1, 2, · · ·. We can then choose an N such that as far as n ≥ N , we have

AM ≤ enδ/4 and
∣∣∣ 1
n

log dn − γ
∣∣∣ ≤ δ

4
.

The equality
Un+k = Sn+k · · ·Sn+1Un =: Tn,kUn

can be written as
Tn,kLnDnKn = Ln+kDn+kKn+k .

From this, we obtain
Kn+kK

T
n = D−1

n+k(L
T
n+kTn,kLn)Dn (2)

and
KnK

T
n+k = D−1

n (LT
nT

−1
n,kLn+k)Dn+k . (3)

If we let
C := LT

n+kTn,kLn = (cij) , and C̃ := LT
nT

−1
n,kLn+k = (c̃ij) ,

then all cij and c̃ij are bounded in absolute value by Ak ≤ AM ≤ enδ/4, for n ≥ N and
k = 1, · · · ,M .

Now from (3), we get
un,k

12 = C̃12d
−1
n d−1

n+k ,

and hence for n ≥ N and k = 1, · · · ,M ,

|un,k
12 | ≤ enδ/4e−n(γ−δ/4)e−(n+k)(γ−δ/4)

= e−(2γ−δ/2)ne
n
4
δ+ k

4
δ−kγ ≤ e−(2γ−δ)n .

Similarly we get
un,k

21 = C12d
−1
n d−1

n+k

from (2), and |un,k
21 | can be estimated in the same way as above.

Lemma 2. There is a constant B such that for any δ ∈ (0, γ), one can choose N so
large that for any n ≥ N and any k ≥ 1, one has

max{|un,k
12 |, |un,k

21 |} ≤ Be−(2γ−δ)n .

Proof. In Lemma 1, let M > (log 2)/γ so that 2e−(2γ−δ)M < 1 for any δ ∈ (0, γ). For
a given k ≥ 1, let p ≥ 0 and 0 ≤ q < M be defined by k = pM + q. Then since

KnK
T
n+pM+q = (KnK

T
n+M )(Kn+MK

T
n+2M) · · · (Kn+pMK

T
n+pM+q) ,
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we can write

un,pM+q
12 =

2∑
j1,···,jp=1

un,M
1j1

un+M,M
j1j2

· · ·un+pM,q
jp,2 .

Now if (j1, j2, · · · , jp) is such that jk = 1 and jk+1 = · · · = jp = 2 for some 0 ≤ k ≤ p, then

since we have |un,k
ij | ≤ 1 in general and since we can choose an N according to Lemma 1

so that
|un+kM,M

12 | ≤ e−(2γ−δ)(n+kM) , and |un+pM,q
12 | ≤ e−(2γ−δ)(n+pM)

holds for n ≥ N , we get the estimate

|un,M
1j1

un+M,M
j1j2

· · ·un+pM,q
jp,2 | ≤ e−(2γ−δ)(n+kM) .

Noting that the number of the sequences (j1, · · · , jp) satisfying the condition stated above
is 2k−1 for 1 ≤ k ≤ p, we can estimate

|un,pM+q
12 |

≤ e−(2γ−δ)n + e−(2γ−δ)(n+M) + · · · + 2p−2e−(2γ−δ)(n+(p−1)M) + 2p−1e−(2γ−δ)(n+pM)

= e−(2γ−δ)n
{

1 + e−(2γ−δ)M + 2e−(2γ−δ)2M + · · · + 2p−1e−(2γ−δ)pM
}

< e−(2γ−δ)n
{

1 + e−(2γ−δ)M
∞∑

j=0

(
2e−(2γ−δ)M

)j}

< e−(2γ−δ)n
{

1 +
e−(2γ−δ)M

1 − 2e−(2γ−δ)M

}
< e−(2γ−δ)n

{
1 +

1

1 − 2e−γM

}
.

Clearly un,pM+q
21 is bounded in the same way, and the assertion of the lemma holds with

B = 1 + 1/(1 − 2e−γM) .

Let us turn to the proof of the assertion stated earlier. The space O of orthogonal
2 × 2 matrices is closed and bounded (i.e. compact). Hence from the sequence {Kn}, we
can extract a subsequence {Knj

}j which converges to a limit K ∈ O. Suppose {Kn′
i
}i is

another subsequence converging to a K̃ ∈ O. By Lemma 2, the (1, 2) and (2, 1) entry of
Knj

KT
n′

i
is bounded by Be−(2γ−δ)nj , as far as N ≤ nj < n′

i. If we let n′
i → ∞ first, and then

nj → ∞, we see that KK̃T is equal to the identity matrix. Hence K = K̃. From these
considerations, we conclude that the sequence {Kn} itself converges to a limit K ∈ O,
and that if we let KnK

T = (un
ij), then |un

ij| ≈ e−2nγ for (i, j) = (1, 2), (2, 1). Hence as

n → ∞, UT
n Un = KT

nD
1/n
n Kn converges to a matrix Λ = KTDK, with a diagonal matrix

D having eγ and e−γ as diagonal entries. Let v be the eigenvector of Λ corresponding to
the eigenvalue e−γ. v is given by v = KTe2, with e2 = [0, 1]T . Now we can compute as
follows:

‖Unv‖2 = 〈Unv, Unv〉 = 〈LnDnKnK
T
n e2, LnDnKnK

T
n e2〉

= 〈e2, KK
T
nD

2
nKnK

Te2〉 = d2
n(un

12)
2 + d−2

n (un
22)

2 .

Since dn ≈ enγ , un
12 ≈ e−2nγ , and un

22 → 1 as n → ∞, this gives ‖Unv‖2 ≈ e−2nγ as
claimed.
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Remark 1. Starting from a vector v, the direction of Unv should change frequently
as n changes. It seems that the information on the direction of Unv is contained in Ln,
which did not played any role in the discussion above.

Remark 2. Recall that after the application of sub-additive ergodic theorem, we could
fix an ω throughout. In other words, Oseledec’s theorem is, in a sense, a deterministic
(non-stochastic) result.

Remark 3. The above argument is due to
D. Ruelle: Ergodic theory of differentiable dynamical systems,

Publications mathémathiques de l’I.H.E.S., vol. 50 (1979), 27-58.
Ruelle’s proof of Lemma 2 is incomprehensible to me. The present note is based on

the following lecture note, with minor modifications:
F. Ledrappier: Quelques propriétés des exposants caractéritiques,

École d’Été de Probabilité de Saint-Flour XII-1982, Lecture Notes in Mathematics 1097.
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