Japanese-Korean 24 satellite workshop

1

October 13, 2016 jongho@snu.ac.kr

Syllable count effects in Korean n-insertion

Jongho Jun (Seoul National University)

Introduction

- I'm interested in the question of whether speakers learn all the tendencies which can be observed in existing words of their native language.
- To answer this question, I investigated variable ninsertion in Korean.

Overview

- I first conducted a survey on speakers of two dialects of Korean, Seoul and Kyungsang with existing Korean words.
- I found several tendencies including **syllable count** effects.
- I then conducted a wug test on Korean speakers of the same dialects.

Overview

- Results show that most of the tendencies observed from the existing words are mirrored in Korean speakers' responses in novel word experiments, suggesting that they are aware of these tendencies.
- However, syllable count effects were not extended in novel Korean words, indicating that Korean speakers failed to learn these effects.
- I argue that syllable count in Korean n-insertion is not phonologically natural unlike word length which have been considered a natural factor in some previous studies, notably Becker et al.'s (2011).

Overview

• This talk is an extension of my previous work on Seoul Korean n-insertion.

Jun, Jongho (2015) Korean n-insertion: a mismatch between data and learning. In *Phonology* 32: 417-58.

- Today, in addition to Seoul Korean data, I discuss comparable data from Kyungsang Korean.
- I will analyze the data from the two dialects of Korean, using an expanded set of factors, some of which were not considered in my previous work.

Roadmap

- I. Basic patterns of Korean n-insertion
- II. Existing words
- III. Novel words
- IV. Syllable count effect

Basic patterns of Korean n-insertion

•
$$\emptyset \rightarrow n / C_1]_{M1 - M2}[i/j]_{(M_{1,2} = \text{morpheme}; C_1 = M_1 - \text{final consonant})}$$

- /n/ is *optionally* inserted at the juncture of two morphemes when M₁ends with a consonant, C₁, and M₂ begins with a high front vocoid /i j/.
- M₁ and M₂ may form an affixed word, compound or syntactic phrase.

Examples

prefix-stem: /təs-jaŋmal/ compound: /com-jak/ phrase: /mək-in # jəs/

English phrase

[tənnjaŋmal] 'anklet socks' [comnjak] 'mothball' [məkinnjət] 'taffy that (someone) ate'

[k^hæn**n**ju ...] 'Can you ...?'

Focus

- Compounds
- Pre-/j/ insertion
 - Pre-/i/ n-insertion is unproductive (Hwang 2008; Jun 2015).

Automatic phonological processes and n-insertion

- When C₁ is an obstruent:
 - Obstruent nasalization: an obstruent becomes a nasal before a nasal.

/kiəp-jesan/ [ki.əm.nje.san] 'corporation budget'

lateralization

• When the C₁ is a liquid:

 $/al-jak/ \rightarrow [al.njak] \rightarrow [al.ljak] 'tablet'$

n-insertion

Phonetic realization of inserted /n/

The epenthetic consonant /n/ is phonetically realized as a palatalized coronal sonorant, [n] or, after a lateral, [ʎ], due to allophonic palatalization.

/com-jak/	[com p (j)ak]	'mothball'
/al-jak/	[aʎ. <mark>ʎ</mark> (j)ak]	'tablet'

• This palatalization is not reflected in the transcriptions in the rest of this talk.

Variation

- It has been argued in the literature that n-insertion occurs only when M₂ is a stem or root which can be an **independent** word.
- This is not true.
- n-insertion with M₂ suffixes
 /pisaŋ-joŋ/ [pisaŋnjoŋ] 'for emergency' (/-joŋ/ 'for use')
 /kiləm-jo/ [kiləmnjo] 'Of course' (/-jo/ sentence ender)

> Some **dependent** M_2 elements may trigger n-insertion.

Variation

• n-insertion is optional.

/com-jak/ [comnjak] ~ [comjak] 'mothball'

• The probability of n-insertion may vary across speakers and words.

> The present study examines what factors determine the rate of this optional n-insertion.

Factors investigated

$$\varnothing \rightarrow n / C_1]_{M1 - M2} [j V_2]$$

- C_1 type: sonorant (other than /ŋ/), obstruent, ŋ
- V_2 height: non-high, high
- M₂ morpheme type: independent, dependent
- M₁, M₂ origin: native-Korean, Sino-Korean, loanword
- M_1 , M_2 length: monosyllabic, polysyllabic
- Word frequency

Roadmap

I. Basic patterns of Korean n-insertion

II. Existing words

- III. Novel words
- IV. Syllable count effect

Survey on existing words

- Test words: 303 polymorphemic Korean words
 - ✓ Words with orthographic sequences of a syllable-final consonant followed by /j/.
 - Words with frequency of at least 1 in the Sejong corpus (http://www.sejong.or.kr/) and, at the same time, listed as standard Korean words in the Standard Korean dictionary (Kwuklip kwuke yenkwuwen 1999).

Participants

- ✓ 22 Seoul Korean speakers
- 23 Northern Kyungsang Korean speakers

Survey on existing words

• Survey form

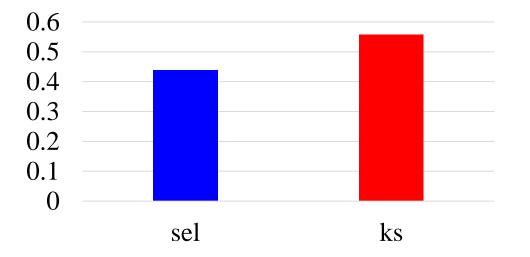
- Both inserted and non-inserted forms of each test word were presented in standard Korean orthography. (N.B. Basic syllable divisions can be seen in the written words.)
- The participants were asked to choose what they think is their pronunciation, among three (or two) choices.

Existing words: Response choices

	e.g.	com+jak	t ^h aŋ+jak
(i) inserted		com. <mark>n</mark> jak	t ^h aŋ. n jak
(ii) non-inserted (resyllabified)		co.mjak	
(iii) non-inserted (aligned)		com.jak	t ^h aŋ.jak

• When C₁ is the velar nasal, only two options (i) and (iii) were given since there is no way to represent the second option in the standard Korean orthography, and it is generally assumed that [ŋ] in onset position is prohibited in Korean phonology.

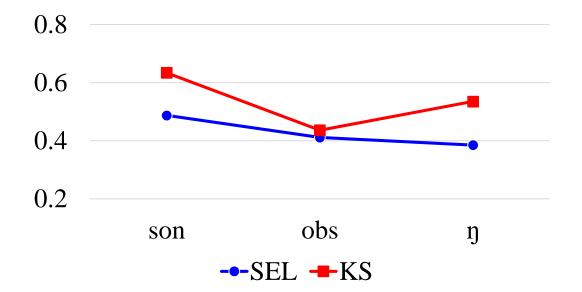
Results of the survey on existing words


- Results show much variation across speakers and words.
- Insertion rates are calculated according to the factors mentioned above.

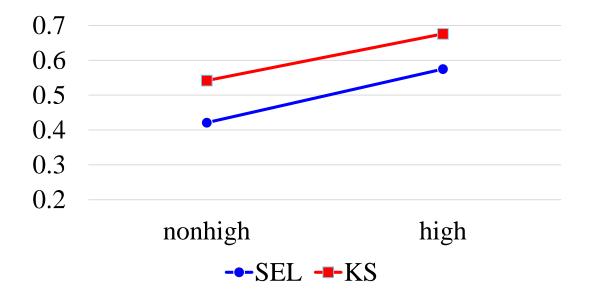
of inserted responses

• Insertion rate = $\frac{1}{\#}$ of both inserted and noninserted responses

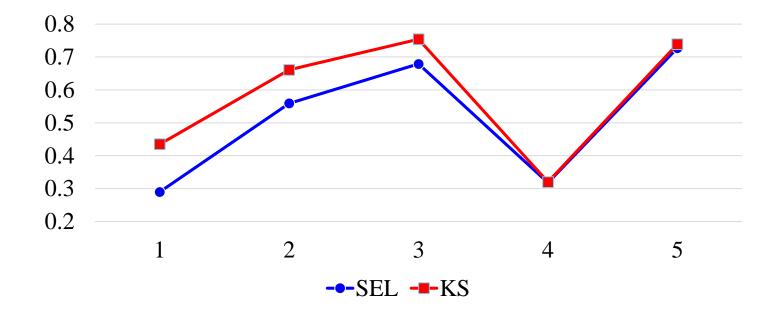
Overall insertion rate (existing words)


Seoul (sel)	Kyungsang (ks)
0.438	0.557

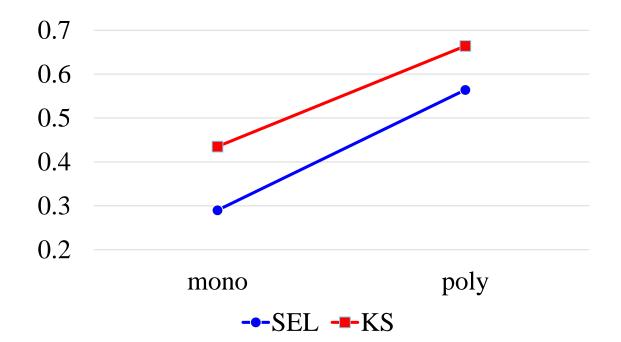
Insertion rate by C₁ type (existing words)


	son	obs	ŋ
SEL	0.487	0.411	0.385
KS	0.634	0.436	0.535
# word	138	72	93

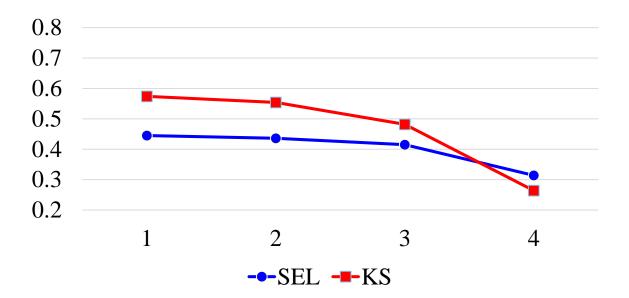
(son = sonorants other than $/\eta$ /, obs = obstruents)


Insertion rate by **height** (existing words)

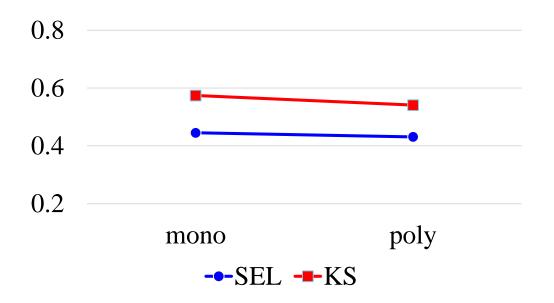
	nonhigh	high
SEL	0.421	0.575
KS	0.542	0.676
# word	269	34


Insertion rate by M_1 syllable count (existing words)

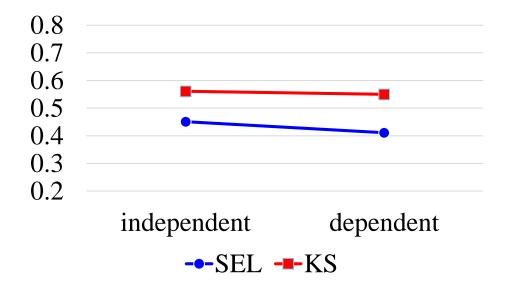
	1σ	2σ	3σ	4σ	5σ
SEL	0.29	0.559	0.679	0.318	0.727
KS	0.435	0.661	0.754	0.32	0.739
# word	140	154	7	1	1


Insertion rate by M_1 syllable count (existing words)

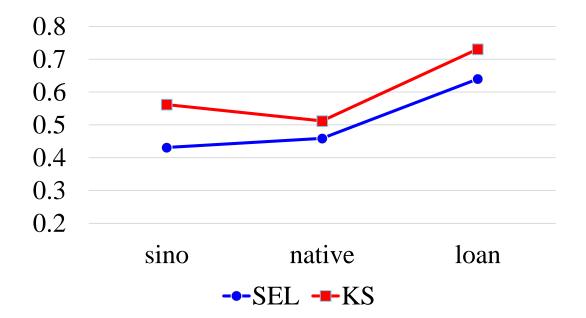
	mono σ	poly σ
SEL	0.29	0.564
KS	0.435	0.664
# word	140	163


Insertion rate by M₂ syllable count (existing words)

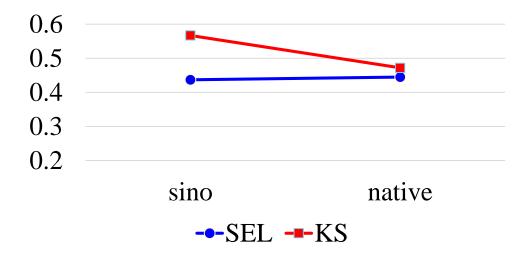
	1σ	2σ	3σ	4σ
SEL	0.445	0.436	0.415	0.314
KS	0.574	0.554	0.482	0.264
# word	148	136	16	3


Insertion rate by M_2 syllable count (existing words)

	mono σ	poly σ
SEL	0.445	0.431
KS	0.574	0.541
# word	148	155


Insertion rate by M_2 morpheme type (existing words)

	independent	dependent
SEL	0.451	0.411
KS	0.561	0.55
# word	204	99


Insertion rate by M_1 origin (existing words)

	sino	native	loan
SEL	0.431	0.459	0.64
KS	0.562	0.512	0.731
# word	253	46	4

Insertion rate by M_2 origin (existing words)

	sino	native
SEL	0.437	0.445
KS	0.567	0.472
# word	270	33

A mixed effect logistic regression model

- The results of the present survey were fitted with the lmer function from the lme4 package (Bates et al. 2011) in R (R Development Core Team 2014).
- Dependent variable is binary, i.e., n-inserted or not.
- Each subject and each test word were included as random intercepts.

Fixed factors (A mixed effect logistic regression model)

- Dialect (Seoul, Kyungsang)
- C_1 type (son, obs, η)
- Height (nonhigh, high)
- M₂ morpheme type (independent, dependent)
- M₁, M₂ syllable count (mono, poly)
- M₁, M₂ origin (native, sino, loan)
- Token frequency in Sejong corpus (log(sejong.freq + 1))
- C₁ type (backward difference coding: obs < ŋ < son), all other categorical variables (binary, sum coding)

Fixed effects: A logistic regression model (existing words)

	Estimate	Pr(> z)
(Intercept)	712	.001 **
Dialect (kyungsang)	.226	.171
C1type (ŋ-obs)	.717	<.001***
C1type (son-ŋ)	.538	<.001***
Height (high)	.360	<.001***
M2 stem (dep)	-1.181	<.001***
M1 syllable count (mono)	432	<.001***
M1 origin (other)	.166	.150
M2.origin (native)	701	<.001***
Dialect (Kyungsang):C1type(ŋ-obs)	.278	<.001***
Dialect (Kyungsang):C1type(son-ŋ)	.096	.058 .
M1 syllable count (mono):C1type(ŋ-obs)	.855	<.001***
M1 syllable count (mono):C1type(son-ŋ)	405	.009**
plus some other interactions		

• Negative numbers under estimate indicate a factor discourages n-insertion.

Main effects (existing words)

	estimate	$\Pr(> z)$	
(Intercept)	712	.001 **	
Dialect (kyungsang)	.226	.171	\rightarrow more likely insertion for Kyungsang
C ₁ type (ŋ-obs)	.717	<.001***	\rightarrow more likely insertion after /ŋ/ than obs
C_1 type (son- η)	.538	<.001***	\rightarrow more likely after son than /ŋ/
Height (high)	.360	<.001***	\rightarrow more likely when /j/ precedes high V
M ₂ type (dep)	-1.181	<.001***	\rightarrow less likely before dependent M ₂
M ₁ syllable count (mono)	432	<.001***	\rightarrow less likely after mono σ M ₁
M ₁ origin (other)	.166	.150	_
M ₂ origin (native)	701	<.001***	\rightarrow less likely before native M ₂

Summary: n-insertion in existing Korean words

n-insertion is less likely ...

- after obstruent C_1 consonant. (Obstruency effect)
- after /ŋ/. (Velar nasal effect)
- after monosyllabic M₁. (**M₁ syllable count** effect)
- before a glide /j/ followed by a nonhigh vowel. (Height effect)
- before dependent M_2 (M_2 morpheme type effect)
- before native M_2 (M_2 origin effect)
- Dialect, M₁ origin, and word frequency were not statistically significant factors.

- For the purpose of finding out which of these effects can be extended to novel words, I conducted wug tests.
- Specifically, I investigated the following effects:
 - ✓ obstruency
 - ✓ velar nasal
 - ✓ height
 - \checkmark M₁ syllable count
 - plus
 - \checkmark syllabicity (which will not be discussed here)

Roadmap

- I. Basic patterns of Korean n-insertion
- II. Existing words
- **III.** Novel words
- IV. Syllable count effect

Wug test: experimental token

- loan word M₁ + wug stem M₂
- M_1 ends with one of seven consonants /m n ŋ l p s k/.

M_1					
test		a a <i>m</i> t u a 1			
m	0 n 0-σ	di-σ	control		
/thap/	'top'	/hiphap/ 'hiphop'	/hɛpʰi/ 'happy'		
/has/	'hot'	/siwis/ 'sweet'	/jellou/ 'yellow'		
/k ^h ik/	'kick'	/pɨllæk/ 'black'	/pɨllu/ 'blue'		
/s'əm/	'some'	/sɨllim/ 'slim'	/silpə/ 'silver'		
/t ^h en/	'ten'	/k ^h illin/ 'clean'	/lɛtɨ/ 'red'		
/k ^h iŋ/	'king'	/wək ^h iŋ/ 'working'			
/t ^h ol/	'tall'	/sɨmol/ 'small'			

Wug test: Experimental token

• loan word $M_1 + wug stem M_2$

$\mathbf{M_2}$	
test	control
/jucenol/	/acepa/
/jacenal/ /icipa/	/ekenol/

Wug test: Experimental token

• # of test items: 84 (2 syllable count x 7 coda x 2 repeating block).

	Example tokens	
	\mathbf{M}_{1}	M_2
	t ^h ap	jucenol
test (84)	pillæk	jacenol
	hiphap	jucenal
	hɛpʰi	jucenol
control (84)	t ^h ap	acepa
	pillæk	ekenol

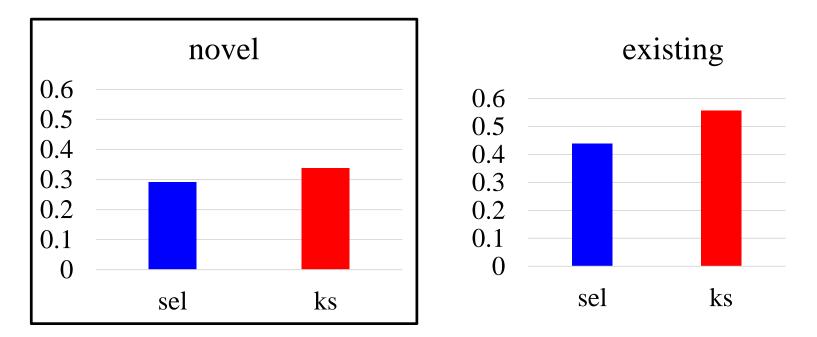
Wug test: participants

- 37 Seoul Korean speakers
- 32 Northern Kyungsang Korean speakers
- > None of them participated in the existing word survey.

Wug test: procedure

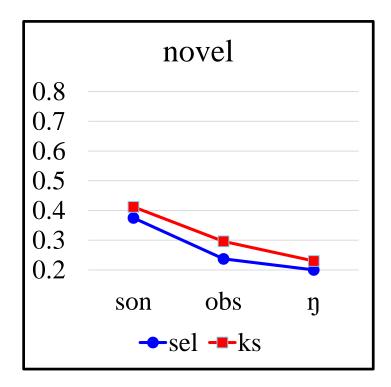
- The experimenter told the participants that the given words are made-up compound nouns for new chemical products.
- They were instructed to choose their pronunciation of each of the given compounds, from the following three (or two) options written in Korean orthography.

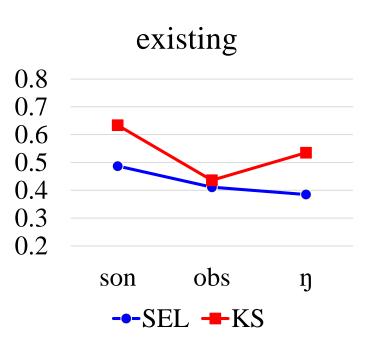
(i) inserted form:	s'əm. <mark>n</mark> ju.ce.nol	k ^h iŋ. <mark>n</mark> ju.ce.nol
(ii) non-inserted (resyllabified)	s'ə.mju.ce.nol	
(iii) non-inserted (aligned)	s'əm.ju.ce.nol	k ^h iŋ.ju.ce.nol


e.g. s'əm+jucenol k^hiŋ+jucenol

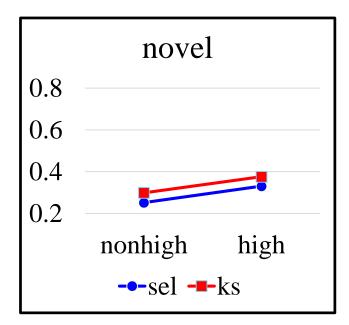
Wug test: Results

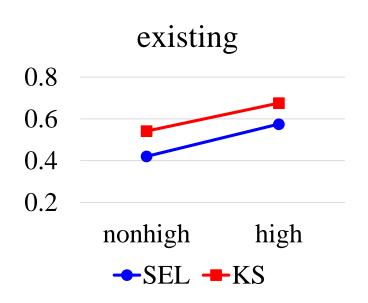
- Two Seoul Korean speakers inserted more frequently in control tokens than target tokens.
- Their responses were excluded from analysis.


Overall insertion rates (novel words)

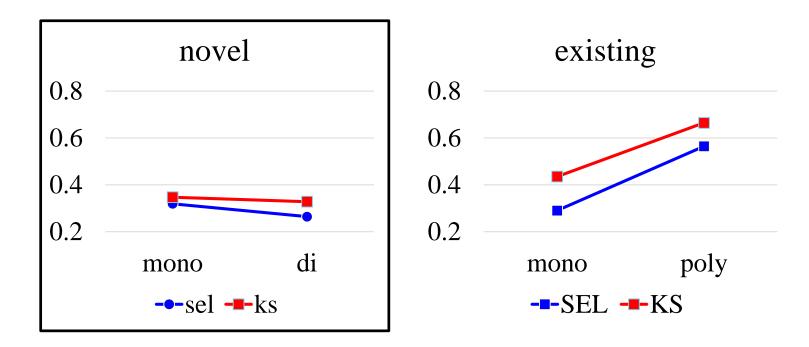

Seoul	Kyungsang
.291	.337

Insertion rate by C_1 type (novel words)


	son	obs	ŋ
SEL	0.375	0.237	0.2
KS	0.412	0.296	0.23



Insertion rate by **height** (novel words)


	nonhigh	high
SEL	0.252	0.331
KS	0.299	0.376

Insertion rate by M_1 syllable count (novel words)

	mono-σ	di- o
SEL	0.319	0.264
KS	0.347	0.328

A mixed effect logistic regression model

- The results of the present survey were fitted with the lmer function from the lme4 package (Bates et al. 2011) in R (R Development Core Team 2014).
- Dependent variable is binary, i.e., n-inserted or not.
- Each subject and each test word were included as random intercepts.

Fixed factors (A mixed effect logistic regression model)

- Dialect (Seoul, Kyungsang)
- C_1 type (son, obs, η)
- Height (nonhigh, high)
- M₁ syllable count (monosyllabic, disyllabic)
- C₁ type (backward difference coding: obs < ŋ < son), all others (binary, sum coding)</p>

Fixed effects: A logistic regression model (novel words)

	estimate	$\Pr(> z)$	
(Intercept)	-1.371	<.001***	
C ₁ type (ŋ-obs)	.422	.101	\rightarrow No significant difference between /ŋ/ and obs
C_1 type (son-ŋ)	.811	<.001***	\rightarrow more likely after son than /ŋ/
Height (high)	.268	.001**	\rightarrow more likely when /j/ precedes high V

- Obstruency, velar nasal and height effects were significant.
- There were no dialectal and M₁ syllable count effects.
- A model with M₁ syllable count as a fixed factor is not significantly different from the above model according to model comparison.

Mixed effect model with M_1 syllable count as fixed factor

	Estimate	Pr(> z)
(Intercept)	-1.372	<.001***
C ₁ type (ŋ-obs)	.422	.101
C ₁ type (son-ŋ)	.812	<.001***
Height (high)	.268	.001**
Syllable count (mono)	.134	0.088

• There is no M_1 syllable count effect.

Trends in Korean n-insertion: existing vs. novel words

• (O = confirmed; X = not confirmed)

Effect	Existing	Novel
dialect	X	Х
obstruency	0	0
velar nasal	0	0
height	0	0
M₁ syllable count	Ο	X

Roadmap

- I. Basic patterns of Korean n-insertion
- II. Existing words
- III. Novel words
- **IV. Syllable count effect**

- The results of the present study suggest that Korean speakers know most of the trends in the distribution of existing Korean words.
- They use this knowledge when they apply n-insertion to novel words.
- However, the results of the present study also suggest that Korean speakers do not know all statistically prominent patterns in existing words.

- When M₁ is polysyllabic (cf. monosyllabic), insertion rate is higher in existing Korean words.
- But such higher rate of insertion in words with polysyllabic
 M₁ was not mirrored in novel Korean words.
- This means that Korean speakers are not aware of the syllable count effect in existing words.

- Why did Korean speakers fail to learn the trend about the length of M_1 ?
- An answer from my previous study (Jun 2015):

The length of M_1 is not a phonologically natural factor which can condition the application of n-insertion or affect the probability that n-insertion applies.

• Then, failure to learn the syllable count effect can be understood under the hypothesis that only phonologically natural patterns can be learned at least with ease (Becker et al. 2011; Hayes et al. 2009; Hayes & White 2013).

- Is it always the case that syllable count (or word length) effect is accidental and not learnable?
- Is syllable count generally considered a phonologically unnatural factor?

- Relevant previous studies show mixed results.
- Were word length effects found in existing words productively extended in novel words?
 - ✓ No: Ito's (2014) study on Korean compound tensing.
 - ✓ Yes: Becker et al.'s (2011) study on laryngeal alternation in Turkish lexicon and references therein.

Syllable count effect: Ito (2014)

• Korean compound tensing

\mathbf{W}_1	\mathbf{W}_2	phonetic form
/hɛ/	/pic ^h /	[hɛp'it]
'sun'	'light'	'sun light'
/kaɨl/	/pi/	[kailp'i]
'autumn'	'rain'	'autumn rain'
/pom/	/pi/	[pomp'i]
'spring'	'rain'	'spring rain'
/pok/	/cuməni/	[pokc'uməni]
'luck'	'pocket'	'lucky bag'

• Syllable count effect found in existing Korean compounds: tensing rate is lower for longer words.

Syllable count effect: Ito (2014)

• The syllable count effect was not mirrored in the novel Korean words.

...a factor that **cannot** be straightforwardly explained as a **universal preference (a syllable-count effect)** is not productively generalized in the novel words. (Ito 2014: 355, emphasis added)

Syllable count effect: Becker et al. (2011)

• Laryngeal alternations in Turkish are observed at the right edges of nouns.

	bare stem	possessive
alternating	gy tʃ ʰ	gy dʒ- y
nonalternating	at f h	a <mark>tʃʰ-</mark> i

- Several phonological properties including the noun's size correlate with stem-final alternations.
- While above **60% of polysyllables alternate**, most **monosyllables do not**.

Syllable count effect: Becker et al. (2011)

- Becker et al. (2011) reports that word length plays a role in explaining the rate of laryngeal alternation in Turkish lexicon, arguing that word length is a phonologically natural factor.
- This word length effect was mirrored in novel words, and thus Turkish speakers know this word length effect.

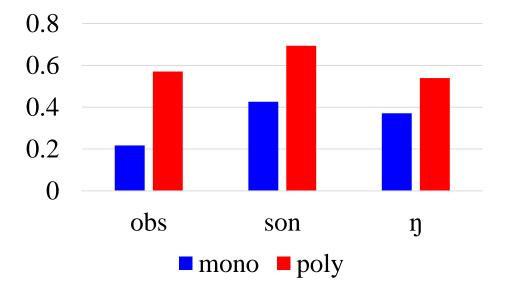
- Then, the question is why word length can condition laryngeal alternation rate in Turkish but it cannot n-insertion (and compound tensing) in Korean.
- Is word length phonologically natural or unnatural?

Syllable count effect: Turkish laryngeal alternation

- Notice that Becker et al. do not argue that word length per se is a phonologically natural factor. They interpret the word length effect as word-initial syllable faithfulness.
- The reason why final stops in monosyllabic words are less likely to alternate in Turkish is because they are in the initial syllables which can be protected by **positional faithfulness for initial syllables** (in Optimality-Theoretic terms).

- Let us now consider whether syllable count effect in Korean n-insertion is also positional faithfulness effect.
- Notice that /n/ is inserted at the beginning of M₂. Thus even when M₁ is shortest, n-insertion occurs in the second syllable, and thus initial syllable faithfulness should not be at work, regardless of whether M₁ is monosyllabic or polysyllabic.

i. mono-
$$\sigma M_1$$
 /com-jak/ [com.njak] 'mothball'
ii. poly- σM_1 /p^hiim-jak/ [p^hi.im.njak] 'birth control pill'


- But, if M₁ ends with an obstruent, n-insertion would cause its nasalization. Then, initial syllable faithfulness may prevent monosyllabic M₁-final obstruents from undergoing nasalization, resisting n-insertion.
- In contrast, C_1 obstruents of polysyllabic M_1 cannot be protected by initial syllable faithfulness.
- $C_1 = obs$ i. mono- σM_1 /hɛk-jəlljo/ [hɛŋ.njəl.ljo] 'nuclear fuel' $\sigma \sigma_2 \sigma$ ii. poly- σM_1 /sotok-jak/ [so.toŋ.njak] 'disinfectant'

- When C_1 = sonorant, initial syllable faithfulness cannot be activated, regardless of whether M_1 is mono- σ or poly- σ .
- **C**₁ = sonorant

i. mono- σM_1 /com-jak/ [com.njak] 'mothball' ii. poly- σM_1 /p^hiim-jak/ [p^hi.im.njak] 'birth control pill'

> Accordingly, higher rate of n-insertion in words with polysyllabic M_1 is expected only when C_1 = obstruent.

• Insertion rate by C₁ type and M₁ syllable count (existing words)

Insertion rates are higher in polysyllabic M₁ across different C₁ types.

• Insertion rate by C_1 type and M_1 syllable count (existing words)

	obs	son	ŋ
mono-σ	.217	.426	.371
poly-o	.571	.694	.539
difference	354	268	168

- Since the syllable count effect in Korean n-insertion is not confined to words with obstruent-final M₁, it cannot be attributed to the initial syllable faithfulness.
- This may explain why syllable count effect was extended to novel words in Turkish but wasn't in Korean.

Conclusion

- Most of the tendencies in existing Korean words were mirrored in novel words, suggesting that Korean speakers know these tendencies.
- However, syllable count effects were not mirrored in the results of the experiments with novel words, suggesting that Korean speakers failed to generalize the tendency involving syllable count to novel words.

Conclusion

- The syllable count effect in Korean n-insertion can hardly be attributed to initial syllable faithfulness.
- Thus, unlike word length in Turkish laryngeal alternation explored by Becker et al. (2011), the syllable count in Korean n-insertion may not be a natural factor.
- Accordingly, the syllable count effect in Korean n-insertion can be considered accidental and Korean speakers' failure to learn it can be understood under the hypothesis that only phonologically natural patterns can be learned at least with ease.

References

- Bates, Douglas; Martin Maechler & Ben Bolker (2011). lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-39. http://CRAN.R-project.org/package=lme4.
- Becker, Michael; Nihan Ketrez & Andrew Nevins (2011). The surfeit of the stimulus: analytic biases filter lexical statistics in Turkish laryngeal alternations. In *Language* 87.1: 84-125.
- Hayes, Bruce & James White (2013). Phonological naturalness and phonotactic learning. In *Linguistic Inquiry* 44.1: 45-75.
- Hayes, Bruce; Kie Zuraw; Péter Siptár & Zsuzsa Londe (2009). Natural and Unnatural Constraints in Hungarian Vowel Harmony. In *Language* 85: 822-863.
- Hwang, Sangji (2008) *Korean speakers' knowledge of /n/-insertion: P-map approach*. MA thesis, Seoul National University.
- Ito, Chiyuki (2014) Compound tensification and laryngeal co-occurrence restrictions in Yanbian Korean. In *Phonology* 31.3: 349-98.
- Jun, Jongho (2015) Korean n-insertion: a mismatch between data and learning. In *Phonology* 32.3: 417-58.
- Kwuklip kwuke yenkwuwen [National Institute of the Korean Language] (ed.) (1999). *Standard Korean dictionary*. [*Pyocwun kwuke taysacen*.] Seoul: Doosan Dong-A.
- R Development Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.