The first author, then a junior student, decided not to pursue her academic career at least, not immediately after her graduation, so we are not writing up a proceedings paper.

Can Japanese speakers compensate for coarticulation due to [1] and [r]?

FAJL 8 @ Mie University Chika Takahashi & Shigeto Kawahara (Keio University) 2016/2/18

Contact: kawahara@icl.keio.ac.jp

Context effect in speech perception

- * Speech production of a segment is influenced by surrounding segments (a.k.a. coarticulation).
- * Speech perception of a segment is likewise influenced by surrounding segments.
- * Classic work by Ladefoged & Boardbend (1957), which shows that the perception of vowel height is affected by the precursor sentence.

Context effect as normalization

* Context effect is a way to deal with context-dependent variability (due to coarticulation).

* Mann (1980): Given a [d]-[g] continuum, English listeners hear more of the continuum as [g] after [l] than after [r].

Compensation for coarticulation

- Listeners assume that after [1], the speaker's tongue position is fronted, make up this assumed fronting, and are more likely to judge the continuum as [g].
- * This theory is called "compensation for coarticulation" (Fowler 2006, P&P).

Mann (1986)

 Japanese listeners are famously unable to hear the difference between English [1] and [r] (Goto 1971, et seq.).

* Mann (1986) argues that Japanese speakers cannot hear this difference, but they nevertheless compensate for coarticulation due to [1] and [r].

Mann (1986)

General auditory contrast?

- * But why? Japanese listeners are aware of the different articulatory gestures of [1] and [r] anyway?
- Mann (1986) attributes this result to a universal perceptual mechanism.
- * An alternative explanation of contrast effect is general auditory contrast (Kluender & Lotto 1998)

Low after high High after low

General auditory contrast

- * In this theory, listeners do not need to know how [1] and [r] are articulated.
- * Context effect arise as the result of auditory contrast.
- * This theory is further supported by the observation that non-speech precursors can cause context effect (Lotto and Kluender 1998).

Lotto and Kluender's (1998) results

Pure Tone Precursor

Though see Viswanathan et al. (2009, 2012) for a reply.

The Current Experiment

Questions about Mann (1986)

- * Po all Japanese speakers show contrast effect due to [1] and [r]?
 - * The general auditory contrast theory predicts that they should.
- * Does the magnitude of contrast effect correlate with the ability to distinguish [1] and [r]?
 - The compensation for coarticulation theory (perhaps) predicts a positive correlation.
- * Is context effect universal (cf. Beddor et al. 2002; Kang et al. in press; Yu et al. 2013)?
- * In Mann (1986), context=natural speech; target=synthetic speech. There could have been some unnaturalness.

The current experiment

- * The current experiment tested the ability to distinguish [1] and [r], and the effect of context effect due to [1]-[r] at the same time, from the same participants.
- * The current experiment also used a synthetic [1]-[r] continuum (Kingston et al. 2014 et al.)
 - * The auditory contrast theory predicts that the higher the F3 is, the more [g] response we should get.
- * Would we observe a simple linear increasing effect of the [1]-[r] continuum on the [d]-[g] judgment?

Stimulus structure

[1]-[r] continuum before [d]

[d]-[g] continuum after [l]

Method: Stimuli

- The two surrounding vowels are always identical, [a] with F3 of 2500 Hz.
- A liquid continuum {r-l} was created by varying F3: for the [r]-endpoint, it fell to 2000 Hz, and for the [l]-endpoints, it rose to 2800 Hz.
- The continuum was created with 6 step increments.

- The liquid portion was followed by a 95 ms gap with low-frequency periodic energy to mimic closure voicing of [d] and [g].
- The [d]-[g] continuum was created by varying F3: in the [da] endpoint, F3 began at 2690 Hz, while in the [ga] endpoint, it began at 2104 Hz, again with 6 step increments.

- In the listening phase, listeners heard one stimulus and were asked to judge whether the second syllable was [da] or [ga].
- The order of the stimuli was randomized within each block.
- All listeners went through 8 blocks.

 In the second phase of the experiment, the listeners were presented with the [ar] and [al] endpoint stimuli in isolation, and were asked to identify these sounds (20 trials). P-prime was calculated for each listener as a measure of their ability to perceive the difference between [r] and [l].

• 30 native speakers of Japanese participated in this study.

Analyzing the identification patterns

* Various logistic models were fit, and the model with the best AIC was chosen.

* logit(Y)=
$$\beta_0$$
 + β_1 DG + β_2 RL + β_3 DG*RL + e

stimuli	l (True)	r (False)
response		
l (True)	hit	false alarm
r (False)	miss	correct rejection

d-prime = z(hit)-z(FA)

Measure of the ability to distinguish /r/ and /l/. Higher dprime values indicate higher sensitivity to the contrast.

Prediction 1

Those who are sensitive to the [1]-[r] distinction would show strong context effect.

Prediction 2

Those who are not sensitive to the [r]-[] distinction would show weak context effect.

Average identification functions

The average of response rate of /g/ for continuum sound after /l/ and /r/

No context effects for Japanese listeners?

β<.001

Interspeaker differences

Correlation with d'and magnitude of context effect

Those with low d-prime values can differ in how they are affected by context effect.

> Magnitude of context effect

r = -0.4, p <.01

Those with high d-prime values show "anti-compensation for compensation" effect

All the data together

It is not the case that the most [r]-like liquid induces the most [d] responses.

- This is not expected from the auditory contrast theory, perhaps hard to explain in the compensation
 - for coarticulation theory

Result summary

* There are three groups of Japanese listeners:

- 1. who show expected context effect.
- 2. who show unexpected context effect (i.e. assimilator).
- 3. who are insensitive.
- Those who can distinguish [r] and [l] tend to belong to Group
 2.
- * The relationship between the liquid's F3 and the perceived F3 of the following stop is not (negatively) linear.

What do the current results say about the theories of speech perception?

- * These results are predicted by neither the compensation for coarticulation theory or general auditory contrast.
- * We could only partially replicate Mann (1986).
- * After all, where does "assimilation effect" come from?
- * "Mis-parsing" explanation pursued in Kingston's lab at UMass; e.g. low frequency of [r]'s F3 is "mis-parsed" as information belonging to the stop, inducing [g]responses.
- * But why does mis-parsing happen and when?

Why assimilation?

* Those who know English well may be sensitive to lexical statistics.

* The IPhOP calculator (Vaden et al 2009):

rd	0.00380	ld	0.00244	raw
rg	0.00068	lg	0.00011	frequency
rd	0.848	ld	0.957	conditional
rg	0.152	lg	0.043	probability

* Bias toward [d] is slightly stronger after [r] than after [1].

* No explicit instructions that the stimuli were English words.

Discussion and remaining questions

- * Not all Japanese speakers show context effect due to [] and [r].
- * The results are not compatible with either compensation for coarticulation or general auditory contrast.
- * What's the mechanism behind "assimilation"?

My teacher told me to...

Acknowledgments

- * John Kingston for our collaboration (past and present)
- * JSPS grants to the second author: #26770147 and #26284059.
- Members of the Keio phonetics/phonology study group.
- * Participants at Tokyo Circle of Participants (1/30/2016).