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Abstract 

Many previous studies have argued that phonology may leave some phonetic dimensions unspecified 

in surface representations either because of deletion or lexical underspecification. Lacking a 

phonologically specified phonetic target, the phonetic signal in these cases can only be structured by 

surrounding segments or, more specifically, by phonetic interpolation between segments flanking the 

targetless element. However, natural variability in the phonetic signal presents a challenge for 

identifying instances of phonetic interpolation. Our approach to this challenge is to explicitly model 

phonetic variability providing a computational link between phonological hypotheses and phonetic 

data. To this end, we setup stochastic generators of competing phonological hypotheses and use them 

to compute, on a token-by-token basis, the likelihood that a phonetic signal is the consequence of 

phonetic interpolation, defined as a smooth interpolation between flanking segments, or, alternatively, 

that it is structured by a phonological target. The empirical material used to demonstrate the approach 

comes from Electromagnetic Articulography (EMA) recordings of high vowel devoicing in Japanese. 

We use Discrete Cosine Transform (DCT) to express tongue dorsum movement trajectories as a small 

number of frequency components (cosines differing in frequency and amplitude) that correspond to 

linguistically meaningful signal modulations, i.e., articulatory gestures. Our stochastic generators 

operate over this frequency space, generating the micro-prosody of tongue dorsum movements with 

realistic variation according to the presence or absence of a lingual articulatory gesture for the devoiced 

vowel. Finally, a Bayesian classifier trained on simulations of the targetless trajectory assigns posterior 

probabilities to the data. Results indicate that /u/ is optionally produced without a vowel height target 

in Tokyo Japanese and that the frequency of targetlessness varies across phonological environments.  

 

1.0 Introduction 

1.1 Phonetic interpolation as evidence for phonological underspecification 

Early generative phonology assumed that every segment is specified for every distinctive 

feature and receives “a phonetic command” for all the phonetic dimensions represented by distinctive 

features (e.g., Chomsky & Halle, 1968:403-419). However, this assumption has given way to various 

proposals regarding underspecification (Archangeli, 1988; Keating, 1988). Building on the 

phonological theory of feature underspecification, Keating (1988) observed that some segments lack a 

particular “phonetic target” in some dimension. One example that is used to argue for the theory of 

phonetic underspecification is English /h/, which on spectrograms can look like an interpolation from 

the preceding segment to the following segment. Another example is the comparison of nasality in 

French, where nasalization is contrastive in vowels, and English, where nasalization is not contrastive 

in vowels (Cohn, 1993). On the basis of nasal airflow data, Cohn (1993) argues that, in English, vowel 

nasalization before a tautosyllabic nasal consonant involves a phonetic interpolation from [-nasal] to 

[+nasal], with the vowel itself being underspecified for [nasal]. Other research has argued that various 

types of vocalic transitions between consonants are not phonologically specified as vowels but, rather, 

are best described as periods of open vocal tract that do not involve a vowel target. Cases such as this 

include the transitional vocoids surfacing between sonorants and stops in Dutch, e.g., [mɪlək] ‘milk’, 

and other languages (Hall, 2006), the vocoid that surfaces between final consonant clusters in Moroccan 

Arabic (Dell & Elmedlaoui, 2002; Gafos, 2002), and the production of phonotactically illicit consonant 

clusters by non-native speakers (Davidson, 2006b).  

Intonation is another area in which the idea of phonetic underspecification—or in more neutral 

terms, apparent phonetic “targetlessness”—has played a central role in theory development. 

Pierrehumbert (1980) argues that modeling intonational contours of English can be best achieved by 



only sparsely specifying H(igh) and L(ow) targets, rather than specifying all syllables in an utterance 

for tone. Pierrehumbert and Beckman (1988) demonstrate that apparent H-tone spreading in Japanese 

unaccented words, proposed by Haraguchi (1977), is better characterized with phonetic 

underspecification. The phonetic data shows a roughly linear decline from a H-tone to the next L-tone 

(see section 6.4 below for more on this pattern). Building on these observations, sparse tonal 

specification has been extended to the tonal and intonational analysis of many languages (e.g., Beckman 

& Pierrehumbert, 1986; Myers, 1998), and now constitutes a fundamental assumption in the 

Autosegmental Metrical (AM) theory of intonation (Arvaniti & Ladd, 2015; Jun, 2014; c.f., Xu, Lee, 

Prom-on, & Liu, 2015).  

Generalizing across these cases, there is a large body of literature arguing that phonetic 

behavior is determined by somewhat sparse phonological specification. Determining which phonetic 

dimensions are under phonological control on the basis of the phonetic signal alone is challenging, as 

it involves discovering phonological control in the presence of influences on the phonetics from many 

other factors, speech rate, individual differences, etc. At times, interpretations of phonetic data have 

given rise to highly disparate characterizations of the same language by different researchers. For 

example, Tashlhyit Berber has been described variably as a language with a large number of epenthetic 

vowels (Coleman, 1999, 2001) and, alternatively, as having syllabic consonants and no epenthetic 

vowels (Dell & Elmedlaoui, 1985; Ridouane, 2008). This dichotomy hinges on whether transitions 

between consonants are treated as being under the phonological control of vowels or not and has been 

largely resolved through converging evidence from multiple data sources, including appropriate 

analysis of phonetics facts (Ridouane, 2008). Similar ambiguity is present in other languages. Hall 

(2006) argues that vocoids between stops and sonorants in Hocank (Winnebago), which are invisible to 

stress, are not true vowels but merely open transitions between consonants. For this language there is 

no phonetic data available. Other researchers have argued on theoretical grounds that the Hocank 

vocoids are epenthetic vowels (Davis & Baertsch, 2010), which makes stress placement rules opaque 

and has consequently spawned a range of theoretical proposals to account for stress-epenthesis 

interactions, including iterative application of metrical feet (Hale & Eagle, 1980), positional faithfulness 

(Alderete, 1995), and ordered application of the same epenthesis process in different environments (rule 

sandwiching) (Strycharczuk, 2009). Vowels that are invisible to stress in other languages have been 

shown to differ variably in phonetic quality and duration from vowels that influence stress placement, 

raising questions about the degree of surface opacity (Hall, 2013). The broader point is that theoretical 

debates can emerge from ambiguity about phonological specification, particularly when appropriate 

analysis of phonetic analyses are unavailable. The aim of this paper is to develop analytical tools to 

strengthen interpretation of phonological (non-)specification on the basis of phonetic data. 

In many of the phonological domains described above, phonetic interpolation has been a key 

argument for the phonological non-specification of some dimension, whether it be tone, a phonological 

feature, or segment. The general logic is as follows. Consider an ABC sequence, where the phonological 

specification of B is at issue and B is assumed to dictate the phonetic parameter, p. Whether observed 

in the domain of intonation (Pierrehumbert & Beckman, 1988: 37-38), vowels (Browman & Goldstein, 

1992) or consonants (Cohn, 1993; Keating, 1988) phonetic interpolation on dimension, p, between A 

and C has been motivated as an argument for the “targetlessness” of B.  

Rigorously assessing phonetic interpolation is not always straightforward, owing in part to the 

natural variability associated with phonetic data. Importantly, the specific patterning of phonetic 

variability can reveal the phonological form that structures the signal (e.g., Best, 2015; Shaw, Gafos, 

Hoole, & Zeroual, 2011). Explicitly modelling how different phonological forms structure natural 

variation in the phonetic signal provides a way to assess the likelihood that observed phonetic data can 

be attributed to the presence of a phonologically-specified target or, alternatively, to the absence of such 

specification. Returning to the case of ABC, appropriately leveraging phonetic data to assess 

phonological specification of B based on some phonetic parameter, p, requires distinguishing between 

complete targetlessness from phonetic reduction due to, for example, susceptibility to coarticulation 

with surrounding segments (c.f., Recasens & Espinosa, 2009) or high predictability in context (Cohen-

Priva, 2015; Seyfarth, 2014). Although rigorous assessment of phonetic interpolation is a challenging 



problem, it is one that can greatly enhance our understanding of phonetic underspecification, which 

continues to play a crucial role in many contemporary phonological analyses1. 

The main aim of this paper is to develop a general methodology for rigorous assessment of 

phonetic interpolation in phonetic signals. There are three main components to the approach. The first, 

Discrete Cosine Transform (DCT), we use to decompose high dimensional phonetic data into a low-

dimensional frequency space that can be mapped to phonological form. In this frequency space, we 

formulate competing phonological hypotheses, including the phonetic interpolation (“targetless”) 

hypothesis. For the purposes of this paper, we make the simplifying assumption that interpolation will 

take the form of a linear transition between flanking segments.2 Next, we deploy stochastic sampling 

techniques developed for syllable micro-prosody (e.g., Shaw and Gafos, 2015). We estimate 

distributions over signal components in frequency space and sample from these distributions to convert 

competing phonological hypothesis into the real world spatial-temporal dimensions of the data. This 

step factors into the analysis the range of natural variability found in the phonetic data, allowing us to 

generate realistically noisy phonetic signals from phonological hypotheses. Finally, we train a Bayesian 

classifier on the data simulated from competing phonological hypotheses and use it to compute, on a 

token-to-token basis, the probability of linear interpolation given the phonetic data. Taken together, the 

suite of computational tools allows rigorous assessment of the “targetlessness” claim on the basis of 

phonetic data.  

 

1.2 Japanese high vowel devoicing 

To illustrate our computational approach, we examine high vowel devoicing in Tokyo Japanese 

(Fujimoto, 2015; Kondo, 2005; Tsuchida, 1997). A classic description of this phenomenon is that "high 

vowels are devoiced between two voiceless consonants and after a voiceless consonant before a pause". 

High vowel devoicing is well-studied, particularly in Tokyo Japanese, with research covering 

phonological conditions (e.g., Kondo, 2005; Tsuchida, 1997), acoustic and perceptual characteristics of 

devoiced vowels (Beckman & Shoji, 1984; Faber & Vance, 2000; Nielsen, 2015), and articulatory 

studies of the vocal folds (Fujimoto, Murano, Niimi, & Kiritani, 2002; Hirose, 1971). See Fujimoto 

(2015) for a recent informative overview. When vowels are devoiced, it is difficult to ascertain whether 

they maintain their lingual articulatory specification. While we now have a good understanding of many 

aspects of high vowel devoicing in Tokyo Japanese, the status of the lingual gestures of devoiced vowels 

is still poorly understood. Here, we entertain four hypotheses, stated in (1). 

  

(1) Hypotheses about the status of lingual articulation in devoiced vowels 

H1: full lingual targets—the lingual articulation of devoiced vowels is the same as for 

voiced counterparts. 

H2: reduced lingual targets—the lingual articulation of devoiced vowels is phonetically 

reduced relative to voiced counterparts. 

H3: targetless—devoiced vowels have no lingual articulatory target. 

H4: optionally targetless—devoiced vowels are sometimes targetless 

 

Not all previous studies are directly framed to support one of these hypotheses, but some studies are 

relevant to one of these hypotheses. Kawakami (1971: 24-26) argues that vowels delete in some 

phonological environments (=H3) and devoice in others. Sometimes, vowels leave no trace except 

coarticulation on surrounding consonants, which has led some researchers to conclude that the vowels 

are entirely deleted (Beckman, 1982; Beckman & Shoji, 1984; Whang, 2014). If deletion is 

phonological, then the vowel should not exhibit a lingual gesture, predicting H3. Similarly, Kondo 

                                                      
1 Besides phonetic underspecification, phonological features may also be underspecified at the level of the mental 

lexicon (e.g., Lahiri & Reetz, 2002; Lahiri & Reetz, 2010). 
2 Although we use “linear interpolation” as an estimate of the actuation of targetless elements for the sake of 

simplicity, the DCT analysis presented below is capable of expressing other shapes of interpolation.  



(2001) argues that high vowel devoicing is actually deletion based on a phonological consideration. 

Devoicing in consecutive syllables is often prohibited, and Kondo (2001) argues that this prohibition 

stems from a constraint against complex onset or complex coda (i.e. *CCC). Even if vowel devoicing 

is phonological, some studies show that its application is optional or variable (Fujimoto, 2015; Nielsen, 

2015), suggesting H4.  

On the other hand, Tsuchida (1997) and Kawahara (2015) argue that bimoraic foot-based 

truncation (Poser, 1990) counts a voiceless vowel as one mora (e.g. [suto] from [sutoraiki] ‘strike’, 

*[stora]). If [u] was completely deleted losing its mora, the bimoraic truncation should result in *[stora], 

but in actuality devoiced vowels always count toward the templatic, bimoraic requirement. This sort of 

proposal implies that the lingual gesture of devoiced high vowels should be phonologically present, and 

predict either H1 or H2. In particular, H1 is what would be predicted by a "gestural overlap theory" of 

high vowel devoicing (Faber & Vance, 2000; Jun & Beckman, 1993; Jun, Beckman, & Lee, 1998). In 

this theory, high vowel devoicing occurs when laryngeal abduction gestures of surrounding consonants 

heavily overlap with the vowel. In this sense, high vowel devoicing processes in Japanese (and Korean) 

are "not…phonological rules, but as the result of extreme overlap and hiding of the vowel's glottal 

gesture by the consonant's gesture" (Jun and Beckman 1993: 4). This passive devoicing hypothesis 

would predict that lingual gestures remain intact (=H1). Even if devoiced high vowels are not 

phonologically deleted or otherwise targetless, it would not be too surprising if the lingual gestures of 

high vowels are reduced. Due to devoicing, the acoustic consequences of a reduced lingual gesture 

would not be particularly audible. Hence from the standpoint of an effort-distinctiveness tradeoff, we 

expect reduction of oral gestures in high devoiced vowels (=H2).  

The central aim of this paper is to develop a general methodology that allows us to distinguish 

between the hypotheses in (1) on the basis of phonetic data. Especially, distinguishing between H2 and 

H3 is a specific case of the general issue raised in section 1.1. How do we know that a phonetic signal 

lacks a phonological target (=H3), rather than being reduced (=H2)? Although the empirical material 

used to demonstrate our approach comes from Japanese high vowel devoicing, the question that we are 

addressing is more general: how do we assess phonetic interpolation in order to confirm (or reject) 

phonological specification? Some possible applications of our proposed toolkit to patterns other than 

Japanese vowel devoicing are discussed in section 6.4.  

A key tenet of our approach is to express abstract phonological hypotheses in the units of the 

phonetic data. Like snowflakes and fingerprints, no two phonetic signals are identical, even those that 

actuate identical phonological structures. This fact dictates that rigorous assessment of phonological 

hypotheses on the basis of phonetic data requires a probabilistic model of how phonological form maps 

to the phonetic signal. Following recent approaches to syllable Micro-prosody (Gafos, Charlow, Shaw, 

& Hoole, 2014; Shaw & Gafos, 2015), we seek to estimate distributions that relate low dimensional 

phonological hypotheses to high dimensional phonetic data. Accordingly, we construct stochastic 

phonetic models that are parameterized by our phonological hypothesis as well as by the level of 

variability naturally present in the phonetic data.  

The remainder of the paper is organized as follows. Section 2.0 describes the experimental 

methods. Section 3.0 and Section 4.0 motivate the computational approach. Section 5.0 provides an 

analysis of the EMA data addressing the hypotheses above. Section 6.0 provides some discussion of 

the results for Japanese as well as alternative approaches to assessing phonological specification on the 

basis of phonetic data. Section 7.0 briefly concludes.  

 

2.0 Electromagnetic Articulography Experiment 

The phonetic data used to illustrate our computational approach were drawn from a larger experiment 

(Authors accepted) using Electromagnetic Articulography (EMA) to track the movement of fleshpoints 

on the tongue during the production of voiced and voiceless vowels in Tokyo Japanese. The experiment 

used Electromagnetic Articulography (EMA) (e.g., Hoole & Zierdt, 2010; Perkell et al., 1992)  to track 

the articulatory kinematics of devoiced high vowels in Japanese. The full report of the experiment can 

be found in Authors (accepted). This paper instead focuses on the illustration of the computational 

toolkit. 



 

2.1 Speakers 

Six native speakers of Tokyo Japanese (3 male) participated. Participants were aged between 19 and 22 

years at the time of the study. They were all born in Tokyo, lived there at the time of their participation 

in the study, and had spent no more than 3 months outside of the Tokyo region.  

 

2.2 Materials  

The stimuli in the experiment consisted of words presented in the carrier phrase: ookee ______ to itte 

‘Ok, say ______’. The preceding word /okee/ ending with [e] was selected so that the tongue would be 

in a non-high position at the start of the target word. A rise in tongue position from [e] to [u] would 

therefore suggest the presence of vowel target for [u]. To illustrate the computational approach, we 

focus on the two dyads (=four words) in Table 1. In these words, the target vowel [u] occurs in either a 

devoicing environment (left column) or a voiced environment (right column). In both contexts, /u/ is 

unaccented. These words were randomized in a list of 16 other words, 10 of which did not contain high 

vowels in a devoicing context. All words were randomly displayed within the carrier phrase in normal 

Japanese script. Participants were instructed to speak as if they were making a request of a friend. Each 

participant produced a total of 10-15 repetitions of each target word. 

 

Devoiced vowels  Voiced vowel 

ʃutaisei 主体性 ‘willingness’ ʃudaika 主題歌 ‘theme song’ 

ɸusoku 不足 ‘shortage’ ɸuzoku 付属 ‘enclosed’ 

Table 1: (A subset of) stimulus items in the experiment used in Authors (accepted). These two dyads 

are used in this paper to illustrate our computational method. See Authors (accepted) for the analysis 

of other dyads, which contain non-initial devoiced high vowels. 

2.3 Equipment 

We used an NDI Wave EMA system sampling at 100 Hz to capture articulatory movement. NDI wave 

5DoF sensors were attached to three locations on the sagittal midline of the tongue, and on the lips, jaw 

(below the lower incisor), nasion and left/right mastoids. The tongue dorsum (TD) sensor is the focus 

of our analysis here, as we are interested in the articulation of (non-front) vowels (Browman & 

Goldstein, 1992; Johnson et al., 1993; Wood, 1979). It was the most posterior of the three sensors on 

the tongue, attached as far back as was comfortable for the participant. Acoustic data were recorded 

simultaneously at 22 KHz with a Schoeps MK 41S supercardioid microphone. 

 

2.4 Post-processing 

Following the main recording session, we also recorded the bite plane of each participant by having 

them hold a rigid object, with three 5DoF sensors attached to it, between their teeth. Head movements 

were corrected computationally after data collection with reference to three sensors on the head, the 

left/right mastoid and nasion sensors, and the three sensors on the bite plane. The head corrected data 

was rotated so that the origin of the spatial coordinates corresponds to the occlusal plane at the front 

teeth. 

 

2.5 Trajectories for analysis 

We first verified that /u/ was devoiced in devoicing environments by visual inspection of the 

spectrogram (see Authors accepted for further detail). Our analysis then focused on the continuous 

trajectory of tongue dorsum (TD) movement from the vowel preceding the target /u/ to the vowel 

following the target /u/, a span of V1CuCV3. The target V1CuCV3 span was left-delimited by the point 

of minimum velocity in V1 and right-delimited by the point of minimum velocity of V3. These 

landmarks were parsed using findgest, a labelling procedure in the Matlab-based software Mview 

(Tiede, 2005). All subsequent analyses were based on this interval. To illustrate the raw data, we also 

provide plots of some longer intervals so that movements of following consonants can also be 



visualized. All the analyses of EMA data and computational analyses were performed using Matlab; 

illustrative graphs are also generated using Matlab.  

 

2.6 Preview of raw data 

A full analysis of the data is provided in section 5.0. Here, we preview the raw data in order to make 

concrete the general difficulty involved in assessing phonological specification from continuous 

phonetic data. Figure 2 provides representative data from one speaker producing 11 repetitions of the 

minimal pair /ɸusoku/ ‘shortage’~/ɸuzoku/ ‘enclosement’. The movement trajectories span from the /e/ 

in /okee/ to the /k/ in /ɸusoku/ and in /ɸuzoku/. In line with descriptions of high vowel devoicing in 

contemporary Tokyo Japanese, this speaker produced voiced /u/ in /ɸuzoku/ and always devoiced /u/ 

in /ɸusoku/ (Authors accepted). Of interest for our case study is whether the lingual gesture of the 

devoiced vowel in /ɸusoku/ has an articulatory target. The top panel of Figure 2 shows the height of the 

tongue dorsum (TD) sensor (y-axis) over time (x-axis) with /ɸusoku/ (devoiced /u/) in red and /ɸuzoku/ 

(voiced /u/) in blue. The middle panels show movement of the tongue blade (TB) and the bottom panel 

shows the tongue tip (TT). For the portion of the figure corresponding to /u/, the TD is lower for 

devoiced /u/ (/ɸusoku/, red lines) than for voiced /u/ (/ɸuzoku/, blue lines). At the very least, this pattern 

indicates that the devoiced vowel is phonetically reduced in this speaker’s pronunciation. In the 

remainder of this paper, we describe a computational approach to evaluating the four hypotheses in (1) 

on the basis of continuous phonetic data, such as that shown in Figure 2.  

 

Figure 2: Lingual articulatory trajectories from a female speaker of Tokyo Japanese producing /ɸusoku/ 

(red lines) and /ɸuzoku/ (blue lines). The figure shows a 350 ms window spanning from the /e/ of the 

carrier phrase to the tongue dorsum (TD) rise for the /k/ near the end of the words. 
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3.0 Discrete Cosine Transform and Micro-prosodic Sampling 

This section introduces the first two of three computational tools: Discrete Cosine Transform (DCT) 

and Micro-prosodic sampling. The purpose of these tools is to estimate distributions that characterize 

the phonetic data so that we can simulate realistically variable trajectories actuating phonological 

hypothesis (including the targetless hypothesis). 

As a starting point, we assume that the speech articulators follow direct paths between 

articulatory goals (c.f., Browman & Goldstein, 1992; Keating, 1988). The idealized movement 

trajectory corresponding to the targetless vowel hypothesis (H3) would therefore be a linear trajectory 

from V1 to V3 (Browman & Goldstein, 1992; Choi, 1995; Lammert, Goldstein, Ramanarayanan, & 

Narayanan, 2014). In real articulatory data, flesh-point trajectories are never straight lines. There are 

well-studied cases in which tongue trajectories are curved because of biomechanical factors even when 

the idealized movement based on phonological form would dictate a linear trajectory (Mooshammer, 

Hoole, & Kühnert, 1995; Perrier, Payan, Zandipour, & Perkell, 2003). To account for the numerous 

perturbations, biomechanical and otherwise, of linear trajectories between articulatory goals in speech 

production, we take a stochastic, data-driven approach, modelling actual trajectories as noisy actuations 

of phonological goals (Shaw & Davidson, 2011; Shaw & Gafos, 2010; Shaw et al., 2009). 

Consider again the data in Figure 2. Since we are interested in the presence of a vowel, we 

focus on tongue dorsum (TD) movement, which is the primary articulator for (non-front) vowels 

(Browman & Goldstein, 1992; Johnson, Ladefoged, & Lindau, 1993). The trajectories begin with the 

vowel /e/ of the carrier phrase preceding the target words /ɸusoku/ (red lines) and /ɸuzoku/ (blue lines). 

The TD starts out high for the vowel /e/. The vowel /u/, if it is present, would follow the /e/. Some 

tokens show a slight rise in TD height at the start of the trajectory, which is expected if the tongue 

dorsum rises in height from /e/ to /u/; many tokens, however, particularly those of /ɸusoku/, show a 

monotonic decrease in height from /e/ to /o/, which is expected if there is no lingual target for /u/. The 

question we ask with the modelling is whether the observed trajectory from /e/ to /o/ is reliably different 

from a realistically variable linear trajectory between /e/ and /o/. If so, this would support the phonetic 

reduction hypothesis (H2); if not, the result would support the "targetless" hypothesis (H3), at least for 

some tokens (H4). 

 

3.1 Discrete Cosine Transform 

The TD trajectories in Figure 2 consist of 35 data points per trajectory, one data point for every 10 ms, 

due to the 100 Hz sampling rate used in the EMA recording. The data points are not statistically 

independent. Rather, the height of the TD at any point in time, , is closely related to the height of the 

TD at earlier, -1, or later time points, +1. Therefore, we use Discrete Cosine Transform (DCT), the 

first computational tool in our toolkit, to capture dependencies between data points. Doing so allows 

data compression and sparse representation, which both simplifies subsequent computation and 

facilitates generalization to new data.  

DCT represents the data as sums of cosines of different frequencies and amplitudes. In 

expressing spatial data in terms of harmonic components (i.e., frequency space), DCT is similar to Fast 

Fourier Transform (FFT) typically used to construct spectrograms from the acoustic signal. The main 

advantage of DCT, in particular for our purpose here, is that it represents the data with a small set of 

parameters, a general property of DCT (Jain, 1989: 151). In addition, as we will see below, each of the 

DCT coefficients may have a clear linguistic interpretation. Also important is that DCT has a known 

inverse function, which we use to simulate TD trajectories from DCT components. Each cosine 

component of a DCT has an amplitude coefficient that is fitted to the data. We interpret the amplitude 

of the cosines as the degree to which a corresponding gesture modulates the TD trajectory. DCT has 

been used in some previous phonetic studies, which have shown that phonetic signals, particularly 

changes in vowel formants over time, can be represented quite well with a small number of cosine 

components (Watson & Harrington, 1999; Williams & Escudero, 2014).  

We provide a mathematical expression of DCT transform in (2) and represent it visually with 

an example from the data in Figure 3. In the numerical expression, 𝑦(𝑘) is the amplitude of the kth 

cosine component. This is the output of the DCT. The other terms in the equation are as follows: L is 



the length of the trajectory (i.e., the number of data points); x(n) is the trajectory of the data being 

modelled; 𝑤(𝑘) =
1

√𝐿
 when k = 1 and 𝑤(𝑘) = √

2

𝐿
 otherwise. The first DCT coefficient, 𝑦(1), defines 

a straight line at a position above the average value of the data. This is because when 𝑤(𝑘) = 1, the 

term of the cosine function is zero. This means that the first coefficient is equal to 
∑ 𝑥(𝑛)𝐿

𝑛=1

√𝐿
, the sum of 

all data points in the trajectory divided by the square root of the number of data points (c.f., 
∑ 𝑥(𝑛)𝐿

𝑛=1

𝐿
, 

the average trajectory). Each subsequent DCT component defines a cosine of increasing frequency, as 

increases to k linearly increase the term of the cosine function.  

 

(2) Numerical expression of Discrete Cosine Transform 

 

 
 

Figure 3 illustrates the DCT components of a TD trajectory. The top panel shows the trajectory, the 

vertical movement of the TD (y-axis) over time (x-axis). The first DCT coefficient defines a straight 

line at 14 mm (above the level of the occlusal plane, which is at 0 mm on the vertical axis). In the 

discussion below, we refer to this line as the baseline TD height. Subsequent coefficients describe 

deviations from the line as cosine-shaped modulations of increasing frequency. These subsequent 

components, i.e., the second to the fourth DCT components, are centered on zero. The second DCT 

coefficient captures the downward trend of the TD trajectory, ranging from +2 mm to -2 mm. Thus, the 

second DCT coefficient captures the fact that, in this data, the TD starts high and then lowers over time 

and that the range of this lowering motion covers a 4 mm span. The third coefficient adds another 

modulation to the trajectory. Towards the middle of the trajectory there is a rise. The third DCT 

coefficient indicates that this rise constitutes a modulation of the baseline trajectory on the order of 2 

mm. The effect of the fourth DCT coefficient is more subtle, specifying modulations that are less than 

0.5 mm.  

  



Figure 3: An illustration of DCT components for a TD trajectory spanning the VCuCV portion of 

/e#ɸusoku/. The top panel shows the signal. The bottom four panels show individual DCT components 

contributing to the signal. 

 

To evaluate how many cosine components are needed to represent movement trajectories in the 

EMA data, we re-simulated the TD data shown in Figure 2 using different numbers of DCT coefficients 

and evaluated the degree of precision representing the trajectory as a function of the number of DCT 

coefficients. The number of DCT coefficients was varied from one to ten. The top, right panel of Figure 

4 shows how the correlation between the raw data and the simulated data increases with the number of 

DCT coefficients. The Pearson correlation is nearly zero with just one DCT coefficient. With just two 

DCT coefficients, the correlation rises to r = .858. Increasing the number of parameters to three 

increases the correlation up to r = .989. Subsequent increases in the number of DCT coefficients exact 

only more marginal improvement—the correlation with four DCT coefficients is r = .992; the 

correlation with six is r = .998. As illustrated here, one general advantage of the DCT analysis is that 

for each number of DCT coefficients, we are be able to generate the predicted trajectories, compare 

them with actual trajectories, and examine the goodness-of-fit. The top left corner of Figure 4 illustrates 

the goodness of fit token by token. The same set of eleven /ɸuzoku/ tokens from Figure 2 is re-displayed 
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in green. The blue lines show trajectories that were simulated from DCT coefficients. With three 

coefficients, the blue and the green trajectories overlap almost completely, illustrating nearly lossless 

compression of the trajectories.  

 

Figure 4: The top, left panels show the raw data (green lines) and simulated trajectories (blue lines)for 

11 tokens of the VCuCV portion of /e#ɸuzoku/. The trajectories span the VCuCV interval under 

analysis. Simulated treajectories (blue lines) were based on one (top), two (middle) and three (bottom) 

DCT coefficients. The top, right panel shows the Pearson correlation (r) between raw data and simulated 

data as a function of the number of DCT coefficients employed in data representation. The bottom, left 

panel shows a linear trajectory (green line) for the same data along with DCT components fit to the 

linear trajectory. The bottom, right panel shows the correlation between the linear trajectory and 

trajectories simulated based on different numbers of DCT coefficients. Comparison of the upper and 

lower panels reveals that, three DCT components provide an excellent fit to the TD trajectory in 

/e#ɸuzo/ while only two DCT coefficients are needed to represent the linear trajectory with a similar 

degree of precision. 

  

 
 

 

By using DCT, we can effectively reduce the dimensionality of the data without loss of 

precision. The results in Figure 4 indicate that three DCT coefficients are sufficient to retain a detailed 

phonetic representation of the TD signal, for the Japanese case under discussion. These DCT 

coefficients have plausible linguistic interpretations, on which we now elaborate. 

Figure 5 re-displays the /ɸusoku/~/ɸuzoku/ data from Figure 5 along with mean DCT 

components fit to the data. Here, four DCT coefficients are shown. The left column shows the voiced 

/u/ in /ɸuzoku/; the right column shows the devoiced /u/ in /ɸusoku/. The top panels show the raw data 

(green lines) together with the average trajectory (black line) and a linear trajectory between /e/ and /o/ 



vowel (red line). The average trajectory was computed by averaging DCT coefficients. It can be 

observed that the average trajectory (black line) is closer to the linear trajectory for /ɸusoku/ (right) 

than for /ɸusoku/ (left). More to the point, each of the DCT coefficients has a plausible linguistic 

interpretation, which helps to isolate the difference in trajectory between voiced and voiceless vowels. 

The first DCT coefficient represents baseline tongue height, as discussed above. The second DCT 

coefficient (3rd panel from the top) generally captures a fall in TD height from /e/ to /o/. This component 

is thus likely to represent the vowel-to-vowel transition, which is similar for both words. Vowel to 

vowel intervals have long provided building blocks for speech production models and have a privileged 

theoretical status in some phonological models (Carré & Chennoukh, 1995; Mrayati, Carré, & Guérin, 

1988; Ohman, 1966; Smith, 1995). The third DCT coefficient represents an increase in TD height for 

the vowel /u/. This rise is present for both /ɸusoku/ and /ɸuzoku/ but the magnitude of the rise is greater 

for the voiced vowel in /ɸuzoku/ than for the devoiced vowel in /ɸusoku/. Thus, the third DCT 

coefficient isolates the difference between these words observed in Figure 2. Finally, the fourth DCT 

coefficient adds a subtle (< .5 mm) modulation to the TD trajectory. The time course of this modulation 

is roughly consistent with coarticulatory effects of coronal consonants /s/ and /z/ on TD height but is so 

small that it is smaller than the average measurement error of the NDI system (Berry, 2011). We 

therefore proceed in modelling the data with three DCT coefficients. 

In determining the number of DCT components used for analysis, it is worth emphasizing here 

that the choice of using three DCT coefficients for this Japanese data was not determined a priori but 

arrived at through a combination of empirical and theoretical considerations. As we have illustrated 

above, (1) three DCT components provides a very precise representation of the data and (2) each 

component has a linguistic interpretation. In the general case, we advise that both of these criteria are 

deployed in determining the appropriate number of DCT components for a given data set.  



 

Figure 5: Average DCT components for /ɸuzoku/ (left) and /ɸusoku/ (right). The raw data is displayed 

in the top panel. Average DCT components are plotted below. Only the target VCuCV interval is shown. 

 
To summarize, the first computational step in our approach is to express TD trajectories over 

/VCuCV/ sequences as the sum of three DCT components. The first of these components expresses a 

baseline TD position (akin to the intercept in regression analysis) while the second and third DCT 

components capture linguistically meaningful modulation of vocal tract constrictions. We next use these 

compressed representations of phonetic detail to estimate distributions characterizing the phonetic 

expression of phonological form, including the targetless hypothesis, H3 in (1).  

 

3.2 Micro-prosodic sampling 

We refer to the next computational tool as “Micro-prosodic sampling” because it borrows from 

recent stochastic approaches to modelling prosodic structure in terms of gestural timing (Shaw et al., 

2011; Shaw & Gafos, 2010, 2015; Shaw et al., 2009). These studies estimate distributions over spatio-

temporally defined gestural landmarks (Gafos, 2002) and sample from the distributions under different 

conditions. The parameters of such stochastic generators can be varied to test specific hypotheses about 

the phonological structure of the data, including the presence or absence of gestures (Shaw & Davidson, 

2011) or the syllabic affiliation of the segments (Shaw & Gafos, 2010, 2015). We proceed here by 

defining Gaussian distributions over DCT coefficients instead of gestural landmarks.  

Gestural landmarks and DCT coefficients both offer a sparse representation of detailed phonetic 

data. For the current case, an advantage of using DCT coefficients is that it is not necessary to parse 

specific gestural landmarks from the signal. Parsing gestural landmarks often relies on heuristic use of 

movement velocity profiles (Gafos, Hoole, Roon, & Zeroual, 2010; Shaw et al., 2009). In the 

trajectories shown in Figure 2, however, it is not possible to identify clear velocity peaks corresponding 
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to the different vowel gestures. Rather, the TD moves smoothly with more or less constant velocity 

from one vowel to the next, a pattern also reported in other kinematic data sets (e.g., Browman & 

Goldstein, 1992; Ohman, 1966). In data such as these, selecting a single point in time that corresponds 

to the vowel is arbitrary (Mücke, Grice, & Cho, 2014). Our solution here is to model the entire 

trajectory, but in the compact and linguistically relevant form of DCT coefficients. 

To formulate the targetless hypothesis in terms of DCT coefficients, we first fit a straight line 

from V1 to V3 in V1CuCV3 sequences. If there is no independent TD height target for /u/, i.e., H3 in (1), 

then the tongue dorsum position should follow a straight path from V1 to V3. To formulate a stochastic 

version of this targetless trajectory, we coerced the linear interpolation between vowels into frequency 

space by fitting three DCT coefficients to the straight line from V1 to V3. The bottom half of Figure 4 

shows that the linear trajectory can also be captured with high precision with a small number of DCT 

coefficients. We then defined distributions over those DCT coefficients. The shape of the distributions 

was guided by analysis of the data. We chose Normal Gaussian distributions, since the DCT coefficients 

fit to our data did not significantly depart from Normality, according to Shapiro-Wilk tests. For the 

targetless hypothesis, the means of the distributions were the DCT coefficients fit to the linear 

interpolation between vowels. The standard deviation of the distributions was set to the standard 

deviation of DCT coefficients fit to the corresponding data. This ensures that we inject reasonable 

quantities of variation into the targetless trajectory. By expressing the interpolation line in the same 

stochastic three-parameter DCT space, we imbibe linear interpolation with variability along the same 

dimensions as variation in the data. Formalized as distributions over three DCT coefficients, 

corresponding to the middle three panels of Figure 5, the targetless hypothesis thus has the same degrees 

of freedom as the full vowel hypothesis, meaning that it varies in the same dimensions and to the same 

degree as the raw data that we model.  

The computational method described above expresses the targetless hypothesis in the phonetic 

dimensions of the data, specifically the height of the tongue dorsum over time, as phonological control 

of the vocal tract passes from one vowel to the next. Table 2 provides a specific example. The top two 

rows show the DCT distributions of the raw data. The mean value of each coefficient is shown with 

standard deviation given in parenthesis. The bottom two rows provide the parameters for the targetless 

hypothesis for the same data. The mean parameters come from a three parameter DCT of the straight 

line trajectory, left-delimited by the mean target of V1 and right-delimited by the mean target of V3. 

Note that the third coefficient, Co3, is zero, for the targetless hypothesis, indicating no rise from the 

trajectory defined by Co2 (see also Figure 5 for reference). The standard deviation of the targetless 

hypothesis is identical to the raw data because the level of variability in the targetless hypothesis is set 

to the level of variability in the data.  

 

 Distributions over DCT coefficients  

 Co1 Co2 Co3 

/ɸusoku/ 

(raw) 

56.5 (6.91) 7.09 (3.93) -1.80 (0.93) 

/ɸuzoku/ 

(raw) 

64.6 (5.03) 7.06 (2.42) -3.41 (2.15) 

 /ɸusoku/ 

(simulated) 

53.2 (6.91) 5.18 (3.93) -0.15 (0.93) 

/ɸuzoku/ 

(simulated) 

59.9 (5.03) 5.92 (2.42) -0.07 (2.15) 

Table 2 Mean and standard deviation (in parentheses) of DCT coefficients. 

Having defined distributions over DCT coefficients, we can sample from the DCT coefficients 

to simulate trajectories corresponding to the targetless trajectory. The sampled DCT coefficients can 

then be used to specify the TD trajectory by applying the inverse DCT function to the coefficients. The 

formula for simulating trajectories by applying inverse Discrete Cosine Transform (iDCT) is given in 

(3). As with the DCT expression in (2), L indicates the length of the trajectory; x(n) is the trajectory, 



this time on the left side of the equation; y(k) represents the kth DCT coefficient; and w is a constant. 

We simulated trajectories that were equal to the mean duration of the V1 to V3 signal with k = 3 DCT 

Coefficients. 

 

(3) Numerical expression of inverse Discrete Cosine Transform 

 

 
 

Figure 6 illustrates the simulations graphically. For reference, the top panels re-plot the data from Figure 

2 in green lines. However, in this figure only the portion of the trajectory beginning with the /e/ from 

the carrier phrase and ending with the /o/ is shown. The TD trajectories from /ɸuzoku/ are shown on 

the left; the trajectories from /ɸusoku/ are on the right. The ‘x’’s denote vowel targets, the mean height 

of V1, /e/, and V3, /o/. The red line connects the means of the vowels and defines the linear interpolation 

trajectory. Comparison of the left and right panels reveals that TD height in /ɸusoku/ tends to be closer 

to the line than does TD height in /ɸuzoku/, essentially the same observation we made in Figure 2 (but 

this time with reference to the linear interpolation trajectory). The bottom panels show simulated TD 

trajectories, sampled from the distributions of DCT coefficients given in Table 2. For reference, the red 

line denoting the linear interpolation trajectory is drawn in the lower panels as well. Note that, even 

though the mean of the DCT coefficients is based on the straight line, the stochastic simulations are 

non-linear. This is because the distributions over DCT coefficients define the same range of variability 

as is present in the TD trajectories, which are also not linear.  

 

Figure 6 : Top panels show actual TD data for /ɸuzoku/ (left) and /ɸusoku/ (right). The bottom panels 

show simulated trajectories from the targetless hypothesis (H3 in (1)). All figures show only the target 

/VCuCV/ interval. 



 
 

Focusing on the bottom panels of Figure 6, observe the “accidental” vowels. That is, some of 

the trajectories belonging to the targetless hypothesis have an increase in height in the middle of the 

trajectory. If observed in isolation, these tokens could be misinterpreted as arising from active high 

vowel constrictions. The presence of “accidental” vowels underscores an important point about 

evaluating phonological hypothesis on the basis of phonetic data and the role of stochastic modelling. 

It is crucial to consider the level of variability in the data. In the case at hand, we find that amongst 

tokens sampled from the linear interpolation trajectory, there are some that show a rise in tongue dorsum 

height at approximately the point in time that we would expect the vocal tract to be under control of a 

vowel gesture; however, such “accidental vowels” simply come from the noise in the data, which should 

not be confused with phonologically-specified targets. The presence of accidental vowels in the 

simulations indicates that the level of normal variation that characterizes fluent production of a native 

language is on the order of magnitude of the presence/absence of a vowel in one or two out of a dozen 

or so tokens.  

At this point, it is now possible to statistically adjudicate between three of our four hypotheses 

in (1). In asking whether the vowel is targetless in the upper right panel of Figure 6, we are essentially 

asking whether the rise of the TD in the middle of the trajectory is greater than can be expected by 

chance. We have defined chance for /ɸusoku/ as our targetless trajectory in the bottom right corner of 

Figure 6. Using sparse representation of the data, as in Table 1, we can statistically compare /ɸusoku/ 

to /ɸuzoku/ to examine whether the TD trajectory in the devoiced vowel is significantly different from 

the TD trajectory in the voiced vowel. This constitutes a direct statistical test of H1, the hypothesis that 

devoiced vowels are the same as the voiced counterparts. A significant difference would falsify H1, 

leaving us with H2 and H3, i.e., that the lingual gesture in devoiced vowels is either reduced (H2) or 
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deleted (H3). Further, we can compare the TD trajectory in /ɸusoku/ to the simulated targetless 

trajectory to test whether the data are significantly different from linear interpolation. This constitutes 

a statistical test of H3. A significant difference would leave us with H2, as the only viable alternative. 

However, this method does not allow us to test H4, the variable targetlessness hypothesis. The reason 

is that in evaluating statistical significance in this way, we are testing whether the tokens as a group are 

different, which involves the implicit assumption of phonological homogeneity across tokens of a word 

(see Bayles, Kaplan, & Kaplan, 2016 for a recent, relevant discussion). The next computational tool we 

introduce alleviates this assumption. We note, however, that if it can be ensured that a phonological 

process is not optional, then DCT together with Micro-prosodic sampling should suffice to provide a 

rigorous assessment of smooth interpolation. 

 

4.0 Bayesian Classification 

A number of phonological processes are optional. Capturing the variability requires a probabilistic 

phonological model (Anttila, 1997; Boersma & Hayes, 2001; Coetzee & Kawahara, 2013). In these 

models, phonetic reduction and variable deletion (or even variable targetlessness, as in our case) are 

completely different scenarios. The latter requires stochastic interpretations of constraint rankings (or 

rules); the former requires continuous phonological representations of some sort (e.g., Smolensky, 

Goldrick, & Mathis, 2014). We therefore incorporate a third component to our computational toolkit, a 

naïve Bayesian classifier, which will allow us to analyze the data token-by-token without committing 

to the assumption that the surface phonological form of a word is uniform and invariant.  
The Bayesian classifier assigns the probability of category membership. Importantly, it does so 

for each test token separately. For the case at hand, we use the DCT representation (with three 

coefficients) as input to the classifier. The output is the probability of whether the articulatory target in 

that token comes from the “target present” category or the “targetless” category. The DCT coefficients 

that describe the data are statistically independent, which makes them appropriate dimensions for the 

naïve Bayesian classifier. The formula is provided in (4). The output of the formula, 

i.e. 𝑝(𝑇|𝐶𝑜1, … , 𝐶𝑜𝑛), is the posterior probability of targetlessness, which designates the probability of 

a targetless articulation, given the four DCT coefficients. The alternative to a targetless articulation is 

that there is a full vowel target present. The posterior probability of a vowel target is calculated from a 

prior probability of targetlessness and the probability of the DCT values given the category. The prior 

probability of targetlessness is the term 𝑝(𝑇). The probability of the DCT values given the category is 

the term ∏ 𝑝(𝐶𝑜𝑖|𝑇)𝑛
𝑖=1 . This is calculated on the basis of the training data and is normalized by a third 

term, the probability of the DCT coefficients in the whole data set: ∏ 𝑝(𝐶𝑜𝑖)𝑛
𝑖=1 .3 

 

(4) Formula for Naïve Bayesian Classifier 

 

 

 where Coi is i-th DCT coefficient (and n = 3 for the case at hand) 

 

 In this particular case, we are concerned with assessing the four hypotheses in (1) on the basis 

of the phonetic signal. To give each hypothesis equal weight, we assign equal prior probabilities to the 

                                                      
3 The denominator guarantees that the posterior is a well-formed probability, i.e., falls between 0 and 1, but since 

the denominator does not depend on T, it does not influence separation between categories and, for this reason, is 

sometimes left out to simplify the equation.  



categories target present, H1 in (1), and target absent, H3 in (1) hypotheses. Thus, 𝑝(𝑇) is set to .5.4 

The other hypotheses, vowel reduction (H2) and variable targetlessness (H4), can also be evaluated on 

the basis of posterior probability patterns, as we illustrate below (Figure 8).  

We trained the Bayesian classifier on two sets of three DCT coefficients. The “target present” 

data came from DCT coefficients fit to tokens of /ɸuzoku/. The “target absent” data came from DCT 

coefficients fit to the linear interpolation trajectory from /e/ to /o/ (as in Figure 6, bottom). Since we 

have set the prior probability to even odds of targetlessness, it is the probability of each DCT coefficient 

given the presence/absence of a TD height target (the term ∏ 𝑝(𝐶𝑜𝑖|𝑇)𝑛
𝑖=1 ) that dictates posterior 

probabilities. To visualize this factor, Figure 7 compares Probability Density Functions (PDF)’s across 

hypotheses, target present vs. target absent, for each DCT coefficient. The black lines show PDFs over 

the baseline (target present) hypothesis, based on [ɸuzoku] tokens; the red lines show the “target absent” 

hypothesis, based on noisy simulation of linear interpolation. As can be seen from Figure 7, the PDF of 

the 2nd DCT coefficient is heavily overlapped. The main differences between the presence and absence 

of a vowel are found in the PDF of the 1st and the 3rd DCT coefficients. This is expected since the first 

DCT coefficient is related to the average TD height across the trajectory and the 3rd coefficient dictates 

the magnitude of the TD rise between /e/ and /o/ vowels (see Figure 5). Thus, the parameters of the 

Bayesian classifier for /ɸusoku/ give quantitative probabilistic form to the observations we have already 

made about the data.   

 

Figure 7: The probability distribution functions (PDFs) for DCT coefficients given the targetless 

hypothesis and the alternative target present hypothesis based on the data in Figure 9. 

 
Four possible patterns, displayed as histograms over posterior probabilities of targetlessness, 

are illustrated in Figure 8. These hypothetical results correspond to the four hypotheses laid out in (1). 

The histogram in the top left panel was obtained by submitting /ɸuzoku/ tokens (from 6 speakers) to 

                                                      
4 Just as the DCT analysis is flexible enough to allow us to use any number of DCT coefficients, P(T) is also 

flexible; it need not be set to 0.5 (equal probabilities of each hypothesis), if we have reason to set it otherwise (e.g. 

if we have a theory that prefers a presence of a vowel target in general, then P(T) can be set to be lower than 0.5). 

This is flexibility that is inherent in the Bayesian framework.  



the Bayesian classifier. As expected, most of these tokens have greater than .95 probability of containing 

a vowel, although there are a few tokens with lower probabilities. This pattern corresponds to H1, that 

the lingual gestures for voiced vowels are the same as for voiceless vowels. The histogram in the bottom 

left was obtained by submitting the same number of simulated “vowel absent” trajectories to the 

classifier. Again, as expected, most tokens have a .95 or greater probability of targetlessness, although 

there are a few tokens with lower probabilities and one “accidental vowel” which has a low-ish (.25) 

probability of targetlessness. This pattern corresponds to H3, that the lingual gestures of devoiced 

vowels are targetless. The third pattern, illustrated in the top right panel shows posterior probabilities 

for reduced vowels, H2. These were generated by stochastic sampling of DCT coefficients that were 

averaged between “target present” (H1) and “target absent” (H3) values. Thus, quite literally, the 

reduced vowel cases are intermediate trajectories between the fully articulated vowel and the targetless 

vowel. The fourth pattern, representing H4, is the variable deletion (targetlessness) pattern. We created 

this pattern by sampling at random from distributions characterizing the target present data and the 

target absent data. 

 

Figure 8: Four hypothetical posterior probability patterns. The vertical axis of each histogram shows 

posterior probabilities generated by the Bayesian classifier summarized in Figure 7. See the Appendix 

for different instantiations of H3 which assume different degrees of variability.  
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5.0 Results 

5.1 Analysis based on DCT and Micro-prosodic sampling  

Figure 9 shows the TD height trajectory in /ɸusoku/ and /ɸuzoku/ from all six speakers. The 

data used to illustrate the modelling approach in section 3 comes from S01. Red lines show change in 

tongue dorsum height over time for /ɸusoku/; blue lines show /ɸuzoku/. The tongue height trajectories 

begin with the /e/ of the carrier phrase and continue for 350 ms. The dip in the trajectories corresponds 

to lowering of the TD for the vowel /o/. This is followed by a rise of the TD for /k/ at the ends of the 

trajectories. We note that there is variation across speakers in the degree to which red and blue lines 

overlap. They are very closely overlapped for S05 and S06 but less so for other speakers. As described 



in the methods, only the portion of the trajectory spanning from /e/ to /o/ was included in subsequent 

analysis.  

 

Figure 9: Change in tongue dorsum (TD) height (y-axis) over time (x-axis) for /ɸusoku/ (red lines) and 

/ɸuzoku/ (blue lines). The figure shows a fixed window of 350 ms, beginning with the /e/ of the carrier 

phrase. 

  
 

Following the method introduced in section 3, we fit DCT coefficients (section 3.1) to each TD 

height trajectory and defined a targetless trajectory (section 3.2). We then compared DCT components 

by MANOVA. For each speaker, we evaluated the effect of voicing on TD trajectory as well as 

differences between the actual trajectories and the targetless trajectory. Results are summarized in Table 

3. Since the targetless trajectory is stochastically sampled, statistical comparisons vary depending on 

the particular sample evaluated. To ensure stable and replicable MANOVA results, below we report the 

average across 10 independent simulations of the targetless trajectory. Since we conducted these 

analyses for each speaker and each pair of items separately, we adjust the alpha level to correct for 

multiple comparisons. The Boneferroni corrected alpha is  = 0.00138 (.05/36), where 36 is the total 

number of comparisons: 6 speakers ⨉ 2 item pairs ⨉ 3 comparisons per item pair.  

In Table 3, significant differences are indicated by asterisk. Of the six participants, four 

produced reliable differences between the vowels in /ɸusoku/ and /ɸuzoku/. For all six participants, the 

voiced vowel in /ɸuzoku/ was significantly different from the targetless trajectory. Of the four speakers 

who produced /ɸusoku/ and /ɸuzoku/ differently, only one speaker, S04, produced the devoiced vowel 

in /ɸusoku/ consistent with the targetless trajectory. For the other three, /ɸusoku/ was significantly 

different from the targetless trajectory. Thus, only one of the six speakers, S04, produced the devoiced 

vowel with a tongue dorsum height trajectory that could not be distinguished from the targetless 

trajectory.  
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Speakers Comparison df F p lambda 

ɸusoku ~ ɸuzoku 21 22.9 0.0001* 0.2798 

ɸuzoku ~null 21 30.2 0.0000* 0.1912 

ɸusoku ~null 21 18.2 0.0012* 0.3641 

ɸusoku ~ ɸuzoku 25 20.8 0.0004* 0.3891 

ɸuzoku ~null 25 45.6 0.0000* 0.1289 

ɸusoku ~null 25 25.1 0.0002* 0.3270 

ɸusoku ~ ɸuzoku 23 26.8 0.0000* 0.2624 

ɸuzoku ~null 23 47.5 0.0000* 0.0948 

ɸusoku ~null 23 27.8 0.0002* 0.2602 

ɸusoku ~ ɸuzoku 23 23.3 0.0001* 0.3114 

ɸuzoku ~null 23 28.4 0.0000* 0.2459 

ɸusoku ~null 23 5.8 0.3138 0.7559 

ɸusoku ~ ɸuzoku 27 0.2 0.9953 0.9917 

ɸuzoku ~null 27 51.1 0.0000* 0.1204 

ɸusoku ~null 27 54.5 0.0000* 0.1047 

ɸusoku ~ ɸuzoku 29 0.2 0.9971 0.9940 

ɸuzoku ~null 29 32.9 0.0000* 0.2854 

ɸusoku ~null 29 25.2 0.0002* 0.3832 

Table 3: MANOVA results for /ɸusoku/ and /ɸuzoku/ for each speaker. 

 

Figure 10 shows the trajectory of tongue dorsum height for another pair of words, /ʃutaisei/ and 

/ʃudaika/. The red lines show the word containing the devoiced vowel, /ʃutaisei/; the blue lines show 

the comparison word, /ʃudaika/, which contains a voiced /u/. For all six speakers, the TD trajectory is 

somewhat lower for the devoiced vowel (red lines) than for the voiced vowel (blue lines). Moreover, 

for several speakers the red lines take an almost linear trajectory between flanking vowels /e/ and /a/. 

To assess the statistical significance of these trends we again followed the methods outlined in section 

3. We fitted DCT components to each trajectory, simulated a targetless trajectory and compared these 

via MANOVA. The results are summarized in Table 4. 



Figure 10: Change in TD height (y-axis) over time (x-axis) for /ʃutaisei/ (red lines) and /ʃudaika/ (blue 

lines). The figure shows a fixed window of 350 ms, beginning with the /e/ of the carrier phrase. 

 
As shown in Table 4, all six speakers produced /ʃutaisei/ and /ʃudaika/ with significantly 

different tongue height trajectories. Moreover, of the six speakers, only one, S05, produced /ʃutaisei/ so 

that it was significantly different from the targetless trajectory. For completeness, we also note that one 

speaker, S02, who did not produce a difference between /ʃutaisei/ and the targetless trajectory also did 

not produce a difference between /ʃudaika/ and the targetless trajectory that was significant after 

Boneferroni correction (p = 0.009 where  = 0.001). 
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Speaker Comparison df F p lambda 

ʃutaisei ~ ʃudaika 21 22.0 0.0002* 0.2949 

ʃudaika ~null 21 47.9 0.0000* 0.0703 

ʃutaisei ~null 21 3.5 0.5050 0.8250 

ʃutaisei ~ ʃudaika 25 20.3 0.0004* 0.3980 

ʃudaika ~null 25 16.9 0.0097 0.4739 

ʃutaisei ~null 25 8.2 0.1826 0.6994 

ʃutaisei ~ ʃudaika 23 17.9 0.0013* 0.4078 

ʃudaika ~null 23 42.1 0.0000* 0.1232 

ʃutaisei ~null 23 16.9 0.0054 0.4357 

ʃutaisei ~ ʃudaika 23 52.3 0.0000* 0.0732 

ʃudaika ~null 23 27.2 0.0000* 0.2598 

ʃutaisei ~null 23 11.1 0.0378 0.5770 

ʃutaisei ~ ʃudaika 27 22.8 0.0001* 0.3861 

ʃudaika ~null 27 21.0 0.0012* 0.4218 

ʃutaisei ~null 27 41.5 0.0000* 0.1796 

ʃutaisei ~ ʃudaika 29 49.3 0.0000* 0.1504 

ʃudaika ~null 29 17.8 0.0013* 0.5041 

ʃutaisei ~null 29 12.0 0.0176 0.6312 

Table 4: MANOVA results for /ʃutaisei/ and /ʃudaika/ for each speaker. 

To summarize, most speakers showed significant differences in tongue height trajectories 

between voiced and voiceless vowels. This result allows us to rule out the possibility that devoiced 

vowels are produced with the same lingual articulatory gestures as voiced vowels, H1 in (1). With 

respect to targetlessness, the statistical evaluation indicates that /u/ may sometimes be targetless.5 One 

speaker, S04, produced /ɸusoku/ and five speakers produced /ʃutaisei/ without a clear height target. 

Thus, a conclusion based upon this analysis is that devoiced vowels are often reduced and sometimes 

even produced without a target. Moreover, we could divide speakers, based on this analysis into three 

groups. For /ɸusoku/, there are speakers who produce /u/ without a height target (S04), those who 

reduce /u/ (S01, S02, S03) and those who produce full vowels (S05, S06). For /ʃutaisei/, there are two 

groups: those who reduce (S05) and those who produce a targetless /u/ (S01, S02, S03, S04, S06). We 

caution, however, that analysis by MANOVA treats as a homogenous group all tokens of /ɸusoku/ and 

/ʃutaisei/ for a given speaker. If there is within-speaker optionality, then this assumption is not justified. 

We therefore conclude with an approach that allows us to evaluate targetlessness on a token by token 

basis. This approach will evaluate H4 in (1), optional targetlessness, and offer an additional angle on 

the other hypotheses, H1-H3. 

  

5.2 Bayesian classification 

We submitted each token of /ɸusoku/ shown in Figure 9 and each token of /ʃutaisei/ in Figure 

10 to a Bayesian classifier as described in section 4. Recall that, as illustrated in Figure 8, all four 

hypotheses in (1) can be expressed as patterns of posterior probabilities, the output of the Bayesian 

classifier. For easy comparison to Figure 8, we have summarized the posterior probabilities as 

histograms. 

Figure 11 provides a histogram of posterior probabilities for /ɸusoku/. The left panel aggregates 

across speakers. The right panel provides a breakdown by speaker. The pattern is remarkably clear. 

There are two modes in the probabilities. One of them is around 0.05 probability of targetlessness; the 

other is around .95 probability of targetlessness. In fact, there are very few tokens at all that have 

intermediate probabilities, i.e., a token which we could call phonetically reduced. Across the six 

                                                      
5 As an anonymous reviewer pointed out, this reasoning runs the risk of concluding the lack of difference based 

on null results in statistical hypothesis testing. The Bayesian classification analysis reported below overcomes this 

problem.  



speakers, rather, it seems like /u/ in /ɸusoku/ is optionally targetless. The breakdown of individual 

speakers in the right panel helps us to make sense of the MANOVA results. Recall that speakers S01, 

S02, S03, showed significant differences between /ɸusoku/ and /ɸuzoku/ as well as between /ɸusoku/ 

and the targetless trajectory. From the right panel of Figure 10, it is clear why. These speakers optionally 

produce the vowel without a height target. Speaker S04 does so most often. The main difference 

between speakers S01 through S04, therefore, is not a difference between phonetic reduction and 

phonological targetlessness but rather in the frequency with which the vowel is targetless. The other 

speakers, S05 and S06, produced no tokens that were classified as targetless. S05 had just one reduced 

token, with a targetless probability of 0.60; S06’s most reduced token had a targetless probability of 

just 0.30. 

Figure 12 provides histograms of posterior probability for /ʃutaisei/. The left panel shows the 

aggregate across speakers and the right panel shows the breakdown by speakers. Again, the pattern in 

the posterior probabilities is bimodal, with one peak (the larger peak) at a high probability of 

targetlessness and the other at a very low probability of targetlessness. Just like /ɸusoku/, in /ʃutaisei/ 

the vowel /u/ is produced with an optional vowel target. Noticeably absent are tokens that are 

intermediate between the full vowel and the linear interpolation trajectory. When we bore down to 

subject level data (left panel), we see just one speaker, S02, prone to gradient reduction. Outside of S02, 

the other speakers produce only a small number (three) of tokens in the ambiguous, .3 to .7 probability 

range. Consistent with the MANOVA results, the individual speaker results indicate that five speakers 

(including S02) tend to produce the /u/ in /ʃutaisei/ without a vowel height target while one speaker, 

S05, reliably produced the word with a vowel height target. 

 

Figure 11: Posterior probabilities of targetlessness for 77 tokens of /ɸusoku/ from 6 speakers (the TD 

trajectories shown in Figure 9). The left panel aggregates across speakers; the right panel shows 

probabilities by speaker. 
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Figure 12: Posterior probabilities of targetlessness for 77 tokens of /ʃutaisei/ from 6 speakers (the TD 

trajectories shown in Figure 10).  

 
 

The Bayesian classification provides converging evidence for some of the conclusions based 

on MANOVAs but also provides additional insight. Both analyses indicate that targetlessness is more 

common in /ʃutaisei/ than in /ɸusoku/. This is true for the aggregate data as well as for each speaker 

individually. Table 5 highlights this point, providing average targetless probabilities by speaker for each 

word. Although targetlessness varies across speakers, all of them show a higher probability of 

targetlessness in /ʃutaisei/ than in /ɸusoku/. This goes as well for S05, who has a low probability of 

targetlessness in both words. Although the MANOVA analysis also indicated that targetlessness was 

more common in /ʃutaisei/ than in /ɸusoku/, Bayesian classification reveals that this holds across all 

speakers individually as well. Thus, while the overall probability of targetlessness seems to be a matter 

of personal preference, relative probabilities of targetlessness are shared across speakers. 

 

 Targetless probability 

Speaker /ʃutaisei/ /ɸusoku/ 

S01 0.9195 0.5756 

S02     0.6646     0.5312 

S03     0.7213     0.7185 

S04     0.9869     0.8680 

S05     0.0273     0.0152 

S06     0.6595     0.1281 

Table 5: average probability of targetlessness by speaker and by word 

 

Another new insight gained from Bayesian classification is the status of phonetic reduction, i.e., 

H2 in (1). When comparing DCT components via MANOVA, we found that four out of six speakers 

showed significant differences between voiced (/ɸuzoku/) and voiceless (/ɸusoku/) contexts. Of these 

four speakers, three of them also showed a significant difference between /ɸusoku/ and the targetless 

trajectory. Since the productions of /ɸusoku/ are different, as a group, from /ɸuzoku/ and also, as a 

group, from linear interpolation, we might be tempted to conclude that the vowels are reduced (but not 

targetless). The Bayesian classification reveals that this conclusion is unwarranted. Rather, a group of 

/ɸusoku/ tokens from a single speaker may be different from both the full vowel trajectory in /ɸuzoku/ 

and the targetless trajectory because it contains a mix of full vowel and targetless tokens. The Bayesian 

classification revealed that this is indeed the case for /ɸusoku/. Production of a lingual target in devoiced 

vowels in Tokyo Japanese is optional but phonetic reduction is rare. Tokens are either produced with a 

full vowel, similar to the voiced context, or with no lingual vowel target at all, as in the linear 

interpolation assumed for underspecified segments.  

S01 

S02 

S03 

S04 

S05 

S06 

All speakers 



 

6.0 Discussion 

6.1 Summary 

We have illustrated three computational tools which, put together, allow rigorous assessment 

of phonetic interpolation. The general strategy is to express competing phonological hypotheses 

(including the phonetic interpolation hypothesis) in the dimensions of the data, including realistic levels 

of variability, and then to classify the phonetic data according to phonological structure. DCT 

compresses the phonetic data into a small number of phonologically relevant parameters that preserve 

phonetic detail. As a proxy for phonetic interpolation, we defined a linear trajectory between flanking 

vowels in this DCT frequency space. Stochastic sampling from distributions over DCT coefficients 

enabled simulation of competing phonological hypotheses (target present vs. target absent) with the 

level of phonetic variability observed in the data, a step we refer to as Micro-prosodic sampling. Finally, 

we trained a Bayesian classifier to assign probabilities of targetlessness to new data. We have illustrated 

the method with tongue dorsum movements produced by speakers of Tokyo Japanese as a case study. 

Based on existing literature, we motivated four possible hypotheses about lingual articulatory targets 

and demonstrated step by step how our computational approach can adjudicate between them.  

 

6.2 What we have learned about high vowel devoicing 

Results for Tokyo Japanese indicate that the lingual articulatory gesture of devoiced vowels is 

rarely reduced, despite the fact that, given the devoicing, it can have only negligible auditory 

consequences. There are, however, two distinct phonetic outcomes for devoiced vowels. They can be 

produced with or without a vowel height target. This result supports H4 in (1), the hypothesis that 

devoiced vowels are optionally targetless.  

 Another interesting aspect of the results is that the probability of vowel targetlessness varied 

systematically across this pair of words. For all speakers, the probability of producing a vowel without 

a height target was higher for /ʃutaisei/ than for /ɸusoku/. Considering C1 (/ʃ/ vs. /ɸ/) only, the result is 

somewhat surprising, but it could be due to resulting consonant cluster phonotactics. Deletion of /u/ in 

/ʃutaisei/ would give rise to a fricative-stop cluster, [ʃt], which may be a better surface form than the 

fricative-fricative cluster [ɸs] resulting from /u/ deletion in /ɸusoku/. If we assume that a syllable 

boundary remains between these surface consonants, a preference for fricative-stop clusters over 

fricative-fricative clusters is consistent with syllable contact laws (Murray & Vennemann, 1983; 

Vennemann, 1988). Since there is a greater decrease in sonority between the offset of one syllable and 

the onset of the next, [ʃ.t] is less marked relative to [ɸ.s] (Gouskova, 2004). It is not clear exactly what 

other facts of Japanese, if any, motivate this fine-grained grammatical preference, although similar 

types of patterns have been observed in the production and perception of unfamiliar consonant clusters 

(Berent, Lennertz, Smolensky, & Vaknin-Nusbaum, 2009; Berent, Steriade, Lennertz, & Vaknin, 2007; 

Davidson, Shaw, & Adams, 2007; Davidson & Shaw, 2012; Shaw & Davidson, 2011). Consistency 

across speakers in the relative targetlessness of /ʃutaisei/ and /ɸusoku/ resembles other well-studied 

cases of phonological variation, such as t/d deletion, in which grammatical influences remain constant 

even as overall deletion rates vary across speakers (Coetzee & Kawahara, 2013; Guy, 1997). Some 

additional discussion of possible factors influencing deletion is taken up in Authors (accepted), where 

the analysis developed here is extended to more words and presented alongside converging phonetic 

evidence for variable deletion of lingual articulatory targets. 

Strictly speaking, the analysis reported here supports the optional absence of a vowel height 

target in /u/, but we are not able to say with similar empirical robustness that the vowel is entirely absent, 

at least not from this analysis alone. Japanese /u/ is typically described as having a labial specification 

as well, which involves lip compression (Vance, 2008). Although we attached sensors to the vermillion 

borders of the upper and lower lips and computed lip aperture (LA) as a function of time, this sensor 

configuration was unable to pick up lip compression even in voiced /u/ variants. Figure 13 shows 

representative data from S01 for both dyads. The left side of the figure shows the /ɸusoku/~/ɸuzoku/ 

dyad; the right side shows /ʃutaisei/~/ʃudaika/. The panels show (from top to bottom) TD, TT, LA (lip 

aperture) and jaw height on the vertical axes and time on the horizontal axis. For both dyads, the LA 



trajectory is consistent across the tokens with a voiced vowel (blue lines) and the devoiced counterparts 

(red lines). Both dyads show a gradual narrowing of the lips from /e/ in the carrier phrase to the onset 

of C2, a coronal consonant in both cases. This timecourse of LA narrowing corresponds with a gradual 

raising of the jaw to support coronal constrictions for C2. In this data, we cannot identify a clear LA 

target for /u/, even in voiced environments. The lack of difference between voiced and voiceless 

environments in LA trajectories in not readily interpretable, as it is possible that the sensors on the 

vermillion borders of the lips were simply not able to pick up the lip compressions target. At this point, 

we are not able to rule out entirely that there is a residual labial specification for /u/, even when the 

vowel height target is absent, but we direct interested readers to Authors (accepted) who present some 

converging evidence for vowel absence based on analysis of the flanking consonants. They find that 

temporal reorganization of C1 and C2 occurs just in those tokens that lack a vowel height target.  

 

Figure 11: Articulatory trajectories for /ɸusoku/~/ɸuzoku/ (left) and /ʃutaisei/~/ʃudaika/ dyads from one 

speaker. The trajectories begin with /e/, the vowel of the carrier phrase and continue for 350 ms. The 

member of the dyad with a voiced /u/ is shown in blue lines; the member with the voiceless vowel is 

shown in red. Lip aperture (LA), shown in the third panel (from the top) gradually narrows from /e/ to 

the coronal target for C2, observable as a rise in tongue tip height. This gradual narrowing of LA 

corresponds as well with a gradual raising of the jaw, which also peaks at C2. The continuity of the LA 

narrowing does not allow identification of LA targets for /u/ or even /ɸ/. 

 

/ɸusoku/~/ɸuzoku/ 

 

 
 

 

/ʃutaisei/~/ʃudaika/ 

 

 
 

 

6.3 Comparison with other approaches 

Our approach differs from other quantitative attempts to assess phonological hypotheses, 

including targetlessness, on the basis of phonetic data. To highlight the uniqueness points, we briefly 

summarize past approaches, which can be divided into four categories: (i) heuristic use of phonetics (ii) 

statistical comparison of two samples of phonetic data (iii) predicting one part of the phonetic signal 

from another (iv) hypothesis testing by simulation. 

The first approach, heuristic use of phonetics, involves drawing some conclusion about 

phonological form on the bases of visual inspection of the phonetic signal. Phonetic heuristics have 

played an important role in foundational work in laboratory phonology, including in the context of 

arguing for phonetic underspecification (Cohn, 1993; Keating, 1988). Phonetic heuristics can be 

extremely useful in augmenting transcriptions or auditory impressions of phonological form, 

particularly from field workers who are non-native speakers of the target language. However, phonetic 



heuristic may also break down. They are sometimes too sensitive and sometimes not sensitive enough. 

Consider, for example, a common phonetic heuristic for a vowel between stop consonants: “a period of 

voicing...with formant structure containing a visible second formant that ended with abrupt lowering of 

intensity at the onset of the second stop (Davidson, 2010).” Application of this heuristic to Tashlhiyt 

Berber, for example, greatly overestimates the frequency of vowels in the language (Ridouane, 2008). 

A Berber word like /t-bdg/ “it is wet” contains no vowels in the phonological representation but is 

normally pronounced with three periods of voicing that would meet the above-stated phonetic heuristic 

(Fougeron & Ridouane, 2011). In this case, the phonetic heuristic is too sensitive. On the other hand, 

English words such as support, which contain two phonological vowels, are sometimes produced with 

just one phonetic segment meeting the above heuristic for a vowel (Davidson, 2006b). In this case, the 

phonetic heuristic is not sensitive enough. Heuristics breakdown because they do not capture the full 

range of phonetic signals consistent with phonological form.  

An alternative to visual inspection of the phonetic signal is to statistically compare one or more 

phonetic dimensions in two groups of words hypothesized to differ in phonological structure. A wide 

range of statistical tools have been deployed to this end (Davidson, 2006a; Lee, Byrd, & Krivokapić, 

2006; Wieling et al., 2016). For example, Smoothing Spline ANOVAs can be used to compare 

populations of splines (Gu, 2013), such as tongue shapes or the tongue height trajectories analyzed here, 

and have been applied to a range of phonetic signals (Davidson, 2006a). Similarly, Functional Data 

Analysis (FDA) fits a series of splines to time aligned signals, and has been shown to differentiate 

temporal differences associated with prosodic context (Lee et al., 2006). Another approach is 

Generalized Additive Models (GAMs) which have been recently been developed to support random 

effects. This makes it possible to model data contributed by large numbers of subjects without 

normalization. GAMs have recently been applied to EMA data, detecting dialect variation on the basis 

of movement trajectories from large samples of speakers (Wieling et al., 2016). These techniques can 

all be used to assess significant differences between populations of trajectories, such as those produced 

in different prosodic contexts or by speakers of different regional accents. However, a significant 

difference between two populations of signals does not necessarily indicate the nature of the 

phonological difference. As our case study demonstrates, the same word can be produced with different 

phonological specifications. Populations of signals can therefore be different not because they actuate 

different phonological structures but because they actuate different mixtures of phonological structures 

(also Shaw & Davidson, 2011). Alternatively, populations of signals can differ due to phonetic factors. 

For example, Shaw et al. (2016) demonstrate that tongue height in Mandarin Chinese vowel production 

varies across tones. Despite the common claim that tones and vowels are phonologically independent 

(Yip, 2002), there are dependencies between laryngeal and supralaryngeal articulation that result in 

small but statistically significant sub-categorical differences in lingual articulation for the same vowel 

produced with different tones. Thus, statistical differences between surface measurements offer no 

guarantee of a categorical phonological difference between samples. As with heuristic use of phonetics, 

statistical comparison of continuous dimensions can be over-sensitive, picking up differences that do 

not correspond to phonological structure.  

A third approach is to use one part of the phonetic signal to predict another. Specifically in the 

area of targetlessness, Pierrehumbert and Beckman (1988: 37-38) rely on this approach to argue for 

sparse tonal specifications in Japanese unaccented words. They argue that in unaccented words, only 

the first two syllables are specified as LH, and there is a general decline toward the L tone in the next 

Accentual Phrase. They show that the longer the duration between H and L, the shallower the slope. 

Their illustrative figure is reproduced here as Figure 13. In this case, the duration between H and L 

tones is used to predict the slope of the f0 fall. The relationship between these phonetic variables 

constitutes an argument for the tonal targetlessness of intervening syllables.  

 



 
Figure 13: An illustrative figure from Pierrehumbert and Beckman (1988), which was used to argue for 

tonal underspecification. There is a correlation between the distance of the H tone and the L tone on the 

one hand, and the slopes between the two tones. 

 

This specific correlation, since it requires manipulating the duration of the hypothesized 

“targetless” material, does not easily generalize to other cases of targetless, e.g., nasal specification of 

English vowels, etc, but conceptually similar approaches have been applied to other arguments for 

targetlessness. Browman and Goldstein (1992) used a multiple regression framework to assess whether 

English schwa contains an articulatory target. They reasoned that schwa could be claimed to be 

targetless in sequences such as /pV1pəpV2p/ if the spatial position of the articulators could be reliably 

predicted by the flanking vowels in a two parameter (one coefficient for each flanking vowel) linear 

regression model (also Lammert et al., 2014). They argued that schwa in such words has a target of its 

own, since regression models with an intercept term, representing the mean height of the signal, tended 

to outperform models informed only by flanking vowel positions. This same approach has been 

generalized to assess vowel specification on the basis of formant trajectories (Choi, 1995). Choi (1995) 

demonstrates that the F2 of Marshallese vowels can be predicted by flanking consonants and, therefore, 

argues that they are unspecified for backness.  

In modelling contextual effects on English schwa, Browman and Goldstein (1992) also deploy 

what we would describe as a fourth type of approach. They simulated phonetic data from various 

phonological hypotheses, including targetlessness, and compare the simulated data to the experimental 

data. They find a qualitative match between simulated data and experimental data when English schwa 

is specified in the model with a neutral vowel target and overlapped in time with the following vowel, 



a result that converges nicely with the regression analysis described above, and makes different 

predictions than the targetless specification (particularly in high vowel environments). Browman and 

Goldstein (1992) explore several possible phonological configurations by specifying gestural scores by 

hand and examining the phonetic consequences. More recent simulations derive gestural scores from 

coupled oscillators (Goldstein, Nam, Saltzman, & Chitoran, 2009; Nam, 2007; Saltzman, Nam, 

Krivokapic, & Goldstein, 2008) or posit coordination topologies isomorphic with syllable structure 

while fitting lower level parameters to the data (Gafos, Charlow, Shaw, & Hoole, 2014; Shaw & Gafos, 

2010, 2015). The computational toolkit we have introduced belongs to this fourth type of approach, 

which assesses competing phonological hypotheses computationally, by simulating those hypotheses 

in the physical dimensions of phonetic data. This can of course be combined with other methods 

described above. For example, in their investigation of the effects of prosodic structure on articulation,  

Parrell, Lee, & Byrd (2013) proceed by first simulating trajectories from the TaDA articulatory 

synthesizer under different prosodic conditions (Nam, Goldstein, Saltzman, & Byrd, 2004; Saltzman, 

Nam, Krivokapic, & Goldstein, 2008). They tested their FDA-based measure of prosodically-dictated 

temporal modulation on the simulated data to verify that it picked up the a priori known prosodic 

differences before extending the measure to investigate prosodic effects in naturally produced speech. 

Like our approach, this method relies on phonologically-informed simulation to guide statistical 

analysis of the data in terms of phonological structure. 

In comparison with other models instantiating the fourth class of approaches described above, 

our toolkit is, in some ways, more bottom-up, requiring fewer theoretical commitments and also fewer 

researcher degrees of freedom. 6  First, the parameters in the model, i.e., the values of the DCT 

coefficients, are determined by the data, according to the algorithm in (2). Second, our approach does 

not privilege particular points in time as having greater phonological relevance than others (Mücke et 

al., 2014). In many of the studies described above, specific moments in time are selected for analysis. 

For example, Browman and Goldstein (1992) and Shaw et al. (2016) select, by automatic algorithm, a 

specific point in time to represent the spatial position of a vowel. Regardless of the algorithm, whether 

based on displacement of articulators, formant values, peak velocity, the temporal midpoint of voicing, 

etc., “target” selection introduces a researcher degree of freedom into the analysis. Our toolkit alleviates 

the necessity of picking points in time associated with the target phonological structure. This aspect of 

our approach is particularly useful for addressing the presence/absence of a target, as it is problematic 

to choose a point in time corresponding to a target that might not be there. Thus, our approach makes 

the presence/absence of targets a largely empirical question which can be addressed with phonetic data. 

The one assumption that we have adopted is that targetlessness corresponds to linear interpolation in 

the phonetics. Beyond this, since the parameters capturing phonetic signal modulation are fit to the data 

quantitatively, the bottom-up approach remains compatible with most higher level theories of 

phonological representation, including dynamically defined gestural units, as in Articulatory Phonology 

(e.g., Browman & Goldstein, 1990). Perhaps most importantly, the number of parameters in our 

statistical representation of the signal is small, and each has a phonological interpretation. This property 

contrasts with GAMs, FDA and other powerful algorithms to fitting non-linear data and it, in particular, 

facilitates interpretation of phonetic differences on the basis of phonological structure. 

 

6.4 Broader application of the toolkit 

Although the computational toolkit we have assembled to assess linear interpolation takes 

continuous phonetic data as input, the results for devoiced vowels in Japanese are remarkably 

categorical. Most tokens are either produced without a vowel target or with a full vowel target. The 

toolkit itself does not dictate such categorical outcomes (see Figure 8 and the Appendix). With respect 

to high vowel devoicing in Japanese, the categorical nature of the variation, as revealed by application 

of our approach, and its interaction with other grammatical factors suggests a distinctly phonological 

character to the phenomenon. We are optimistic about the prospects of applying our computational 

                                                      
6 “Researcher degrees of freedom” refers to flexibility in methods of data collection, reporting and analysis that 

affect statistical assessment of a hypothesis (see, e.g., Simmons et al. 2011). 



toolkit to a wider variety of phenomenon and curious about the extent to which other cases of “phonetic 

reduction” are actually manifestations of optional phonological processes. We strongly hope that the 

proposed toolkit will be used broadly in reassessing alleged cases of reduction to test whether they 

should be modelled reduction or as optional processes of phonological deletion/targetlessness.  

As discussed in the introduction, our toolkit is designed to address the general issue of phonetic 

underspecification, including, e.g., formant transition patterns of English /h/ (Keating 1988), and 

nasalization of vowels before a tautosyllabic nasal consonant in English (Cohn 1993). Our toolkit can 

be used to re-examine claims that have been made about phonetic underspecification. One domain 

within which the current toolkit may be particularly applicable is intonation. As mentioned in the 

introduction, the issue of underspecification (targetlessness) is particularly important in the domain of 

intonation, because the dominant analytical framework of intonation, the Autosegmental/Metrical 

model of intonation, generally assumes sparse tonal specification (see, e.g., Xu et al. (2015) vs. Arvaniti 

and Ladd (2015) for a recent exchange of opinions on this matter). Since intonation comes with much 

natural variability including individual variation, just like the articulatory data reported here, application 

of these tools to the tonal underspecification hypothesis may prove to be highly informative.7 For 

example, the tradeoff between signal length and f0 slope identified by Pierrehumbert and Beckman 

(1988) and shown in Figure 13 is a natural consequence of DCT, since the amplitude of DCT 

components are inversely related to the length of the signal (see (2) where y(k) is amplitude and L is 

signal length). Moreover, there are some “bumps” on the “linear” f0 trajectories, which could be due 

either to non-linguistic perturbations of the signal or phonological specifications, precisely the type of 

distinction that can be addressed in our framework.  

In closing this section on the broader applicability of our approach, we would like to summarize 

aspects of our analysis that we expect will vary depending on the specific dataset being analyzed. We 

chose four DCT coefficients to model tongue dorsum trajectories over VCuCV sequences, but the 

number of DCT coefficients deployed in a given analysis will depend on the complexity of the data. 

For example, DCT fits to formant transitions in diphthongs have typically used just two DCT 

components (Elvin, Williams, & Escudero, 2016); longer sequences influenced by multiple overlapping 

gestures will likely require more. In the general case, we advise selecting DCT components based on 

two criteria: the precision with which they fit the data and the clarity of their linguistic interpretation. 

The maximum hypothesized number of phonologically dictated modulations in the signal under 

analysis may serve as an appropriate guideline. Second, we reported simulations of the targetless (linear 

interpolation) trajectory based on variance around DCT coefficients equivalent to the level of variability 

observed in voiced vowels. It is conceivable that a devoiced (or reduced) vowel could have greater 

variability than a full vowel, and we have explored this possibility as well (see Appendix). The broader 

point is that our approach is flexible. Micro-prosodic sampling as a methodological approach does not 

dictate the level of variability used in the simulations and it may at times be advisable to consider scaling 

these parameters. For example, injecting only the level of variability found in full vowels into our linear 

interpolation simulations still generated the occasional “accident” vowel from a targetless trajectory, 

but by gradually increasing variability, it would be possible to identify how variability influences the 

probability of accidental vowels. Finally, in the Bayesian classification stage of our analysis, we did 

not make use of the prior, but this option is available, and may be useful in cases in which there are 

independent reasons to suspect that one form or another has greater likelihood than other, as in, for 

example, non-native speech production (Davidson, 2010). For the case of Japanese high vowel 

                                                      
7 Relatedly, we note that the Fujisaki model of intonation (Fujisaki, 1983) is somewhat akin to our DCT analysis 

in that it has two components: the “phrasal control mechanism” determines the overall intonational contour (as 

our 2nd DCT coefficient) and “the accent control mechanism” realizes local f0 movement due to pitch accent (as 

our 3rd and 4th coefficients). There is independent observation that tones may differ in terms of how large the 

domain of their influence is; for example, a tone that is attached to a phrasal node may influence a sequence of 

syllables, whereas a tone that is associated with a particular syllable may have a more localized effect 

(Pierrehumbert & Beckman, 1988: 72-75). The former type of tones would be expressed in terms of lower DCT 

coefficients. In this sense, we already have a fairly good understanding of the linguistic interpretations of resulting 

DCT coefficients. 



devoicing, we did not have such evidence, so we simply posited that they are equally likely. In short, 

the computational tools that we have introduced here have the flexibility to be deployed in wide range 

of cases in which the phonetic specification of a target is at issue. 

 

7.0 Conclusion 

We have developed an approach to assessing the presence vs. absence of phonological 

specification in phonetic data bringing together a set of computational tools to assess the presence vs. 

absence of a phonological element on the basis of phonetic data. From end to end, the set of tools, 

consisting of Discrete Cosine Transform, Micro-prosodic sampling, and Bayesian Classification, does 

so without requiring explicit labelling of particular phonetic landmarks. In this sense, the toolkit can be 

productively deployed as a phonological feature detector. We demonstrated the approach with analysis 

of EMA recordings of voiced and devoiced vowels in Tokyo Japanese, contributing to a debate about 

whether devoiced vowels are specified for lingual articulatory targets. Analyzed within the 

computational framework described here, these data elucidated some previously unknown aspects of 

the pattern, including its highly categorical nature and phonological conditions under which devoiced 

vowels also lack lingual articulatory targets.  

Largely data-driven, adaptable to a range of phonetic signals, and compatible with a broad 

spectrum of representational frameworks in phonology, we anticipate that the computational toolkit can 

be widely deployed to link hypotheses about the specification (or non-specification) of phonological 

elements, including features, gestures, and tones, to phonetic data. 

 

Appendix: a variant of H3, reduced vowels with high levels of variability 

 

In this appendix, we considered a version of H2 in which the vowel target is not only reduced but has 

greater variability (than a regular vowel). We thank an anonymous reviewer for encouraging us to 

consider this possibility. What would be the predictions of the classifier for a situation in which the 

devoiced vowel was both reduced and highly variable? We investigated this possibility through 

simulation, gradually increasing variability of the reduced vowel and observing how the change in 

variability influences the distribution of posterior probabilities from the classifier. The results are shown 

in Figure 14. The first panel of Figure 14 shows the result reported in Figure 8 (H2). There is a mono-

modal distribution centered on a .5 probability of targlessness. Each subsequent panel shows a 

distribution over posterior probabilities resulting from increased variance in the reduced vowel. The 

second panel (from the left) shows results when the reduced vowel is twice as variable as a full vowel, 

the third panel triples the variance, the fourth quadruples the variance, and so on. We observe that as 

variance increases the posterior probabilities at the extreme ends of the scale, 0 and 1, also increase. 

This is because high variance makes extreme values more likely. At very high levels of variability, a 

tri-model distribution emerges, with a peak in the distribution around 0, .5, and 1.  

 

  

Level of variability of 

the reduced vowel is 

equal to the voiced 

vowel (Figure 8: H2) 

reduced vowel is two 

times more variable 
than full vowel 

reduced vowel is 

three times more 

variable than full 

vowel 

reduced vowel is four 

times more variable 
than full vowel 

reduced vowel is five 

times more variable 
than full vowel 

SDreduced = SDfull SDreduced = 2*SDfull SDreduced = 3*SDfull SDreduced = 4*SDfull SDreduced = 5*SDfull 

     
Figure 14: Increasing the inherent variability of reduced vowels for H2. 
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