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“Phonological control”

* Abstract phonological primitives (e.g., features or gestures)
correspond in some way to physical dimensions, whether
articulatory, auditory/acoustic, or a combination thereof

* Other dimensions—those not under phonological control—may
passively covary with controlled dimensions

* For example: f, during a vowel can be raised as a passive

consequence of actively closing the vocal folds for [?] (e.g., Hombert et
al., 1979)



This talk

* Which dimensions are under phonological control during
Japanese sibilant production?

* Japanese has two sibilants which are similar to English sibilants

e Japanese: anterior [s] vs. posterior [¢]; English: anterior [s] vs.
nosterior [[]

* Precise phonetic difference between Japanese [¢] and English
[] is somewhat unclear

* There are also by-language differences in phonological
patterning and acquisition error patterns




English [s] and [[] differ in parasagittal tongue
shape: Ultrasound data

Stone & Lundberg (1996) Whalen et al. (2011)

Deeper and narrower groove for [s] than [f]
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English sibilants: Electropalatography (EPG)
[s]

More alveolar contact [J]
for [s] (right) than [[]
(left)

Also more post-
alveolar contact for
[s] than [[]
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Japanese sibilants: EPG data

Like English, more
alveolar contact for
[s] than [¢]

Unlike English, less
post-alveolar contact
for [s] than [¢]

By-language
difference in
parasagittal control?

1/7/22

100 | 100

100 | 100 | 100

100 | 100 | 100

100 100

..

O

.

100 | 100 | 69

Matsui (2017)

96th Annual Meeting of the LSA



Differences in phonological patterning

* The English sibilant contrast is less susceptible to influence from
surrounding vowels:

* English sibilants contrast before all vowels (but neutralized
betore certain clusters, e.g. [strit] ~ [[trit])

* The Japanese sibilant contrast is more limited

 Complementary distribution in native words (Yamato lexical stratum):
[¢] occurs before [i], and [s] occurs before all other vowels (/si/ = [¢i])

* In Sino-Japanese and recent loans, [s] and [¢] contrast before non-front
vowels ([¢a, ¢u, ¢o]), but rarely before [i]

* Perhaps this is due to a difference in phonological control



Differences in acquisition error patterns

Li et al. (2009):
* English-learning children tend to replace /[/ with [s]
* Japanese-learning children tend to replace /s/ with [¢]

Perhaps English-learning and Japanese-learning children learn
different dimensions of phonological control



Hypothesis

* These phonetic, phonological, and acquisition facts follow from a
by-language difference in phonological control:

* English sibilant production involves active parasagittal control
* [s] = deep, narrow groove
* [[] = wider groove or doming

 Japanese sibilant production does not

* [s] ~ [¢] contrast is maintained by midsagittal constriction
location



This study

Investigate parasagittal control during Japanese sibilant production
using 3D Electromagnetic Articulography (EMA)

Participants: Three adult native Japanese speakers
* SO1: Male, 30s, Tokyo
e SO2: Male, 30s, Osaka

* S03: Female, 30s, Tokyo



Materials & Procedure

24 real Japanese words beginning with either [s] or [¢] followed by
either [u] or [i]

Carrier phrase: okee ___ to itte ‘okay say __ again’
Stimuli were presented on screen in Japanese orthography
Each item was presented in random order within a block (15 blocks)

Total number of tokens included in analysis = 942



Data collection

NDI Wave EMA system
sampling at 100 Hz

Lingual sensors:

Tongue dorsum (TD)

Tongue blade (TB)

Tongue tip (TT)

Parasagittal tongue left (PTL)
Parasagittal tongue right (PTR)
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Primary parasagittal measure

B
Angle under the tongue (y) in degrees 8
calculated using the law of cosines /,\
(Howson et al., 2015) A ~
PTR PTL

y = arccos((LB? + RBZ2—LR?) /(2 * LB * RB)) * (180 / m)

LB is the Euclidean distance between TB and PTL; RB is the Euclidean distance
between TB and PTR; and LR is the Euclidean distance between PTL and PTR



Qualitative results

(1) [¢] tends to be more
domed than [s]

(2) [¢] tends to have a
higher TB than [s]

(3) [¢] tends to have a
lower TT than [s]
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Hypotheses from gqualitative patterns

* [¢] is articulated primarily with the TB (TB under phonological control)
* [s] is articulated primarily with the TT (TT under phonological control)

 Domed shape of [¢] is a passive consequence of raising the TB

* Prediction: Negative relationship between TB height and angle
under the tongue (y), regardless of segment



Quantitative analysis

* Acoustic data was force alighed using WebMAUS (kisler et al., 2017)

* Gamma (doming) and TB height were calculated at the temporal
midpoint of each sibilant token

* Examine average TB height and gamma by segment, as well as
relationship between TB height and gamma

e Linear mixed effects models
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Angle under the tongue (gamma) by segment
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angle under the tongue (degrees)
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angle under the tongue (degrees)
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Interim summary

* [¢] has higher TB than [s]

* [¢] is more domed than [s]

* For both segments, higher TB = more doming

* Can the by-segment difference in doming be entirely explained
by the by-segment difference in TB height?

* Or is segment type independently predictive of doming?



Linear mixed effects models

* To test this, we fit nested linear mixed effects models to gamma
* Both gamma and TB height were z-scored

* Segment identity was sum-coded: [s] =1, [¢] =-1



Model structure

Baseline =

+ TB_height =

+ segment =

+ interaction =

gamma ~
(TB_height + segment | subject) + (TB_height | item)

gamma ~ TB_height +
(TB_height + segment | subject) + (TB_height | item)

gamma ~ TB_height + segment +
(TB_height + segment | subject) + (TB_height | item)

gamma ~ TB_height * segment +
(TB_height + segment | subject) + (TB_height | item)



Model comparison

npar |AIC BIC deviance |[Chi-Sq |df |p value
baseline 11 548.57 (600.84 526.57
+ TB_height 12 535.66 |592.69 |511.66 |14.907 |1 |<.001
+ segment 13 535.81 |597.59 509.81 |1.849 |1 |0.174
+ interaction 14 535.85 |602.38 507.85 1.962 |1 1(0.161
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Summary of best-fitting model: fixed effects

Estimate Std. Error df t value

(Intercept) 0.254 0.056 2.494 |4.567

TB_height -1.282 0.072 2.171 |-17.764




By-subject random effects

Estimates
Subject (Intercept) |JTB _height Jsegment=s
S01 0.110 -1.082 0.051
S02 0.146 -1.132 0.145
S03 0.329 -1.386 -0.016

All subjects show strong consistent effects of TB height

S01 and S02 show a small effect of segment type in the expected
direction, but SO3 shows a small effect in the opposite direction
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Summary of model results

* Most variance in gamma is explained by TB height

* Effect of segment type on gamma not significant across subjects



Discussion

* Results consistent with the hypothesis that Japanese sibilants are
produced without active parasagittal control

e Rather, parasagittal tongue shape during Japanese sibilant
production may be a passive consequence of TB height control

* Consistent with cross-linguistic variation in dimensions of
phonological control, even for very similar sounds



Next step: English EMA data

* English is predicted to show a different relationship between
segment identity, TB height, and parasagittal tongue shape

* |f English sibilants involve active parasagittal control, we would
expect a stronger, more consistent effect of segment identity on
parasagittal tongue shape



Preview: [z] grooving in “Wednesday’
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Implications

* |s parasagittal control related to phonotactics?

e e.g., deeper grooving sustains sibilant in English consonant
clusters?

* Does English tense/lax distinction involve parasagittal control?
(Stone & Lundberg, 1996)

* Does relative lack of parasagittal control in Japanese underlie
difficulty of Japanese speakers learning English rhotic ~ lateral
contrast, which likely involves parasagittal control? (vingetal, 2021)



Other next steps

* More Japanese data (different speakers, different EMA sensor
arrangements)

* How robust is this pattern in Japanese?

* Biomechanical modeling in Artisynth (stavness etal, 2014)

* What underlies the relationship between TB height and
parasagittal tongue shape?

* Investigate the nonlinearity: why the qualitatively different
pattern at lower TB heights?



Thank youl!

* To the experiment participants

20

* To the Yale Phonologroup

* To AMP 2021 participants

-------------
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