Assessing phonological control of parasagittal tongue shape in Japanese sibilants

Michael C. Stern^a, Jason A. Shaw^a, Shigeto Kawahara^b

^aYale University ^bKeio University

"Phonological control"

- Abstract phonological primitives (e.g., features or gestures) correspond in some way to physical dimensions, whether articulatory, auditory/acoustic, or a combination thereof
- Other dimensions—those not under phonological control—may passively covary with controlled dimensions
- For example: f_0 during a vowel can be raised as a passive consequence of actively closing the vocal folds for [?] (e.g., Hombert et al., 1979)

This talk

- Which dimensions are under phonological control during Japanese sibilant production?
- Japanese has two sibilants which are similar to English sibilants
 - Japanese: anterior [s] vs. posterior [c]; English: anterior [s] vs. posterior [ʃ]
 - Precise phonetic difference between Japanese [c] and English
 [f] is somewhat unclear
 - There are also by-language differences in phonological patterning and acquisition error patterns

English [s] and []] differ in parasagittal tongue shape: Ultrasound data

Whalen et al. (2011)

Stone & Lundberg (1996)

Deeper and narrower groove for [s] than []]

English sibilants: Electropalatography (EPG)

More alveolar contact for [s] (right) than [ʃ] (left)

Also more **postalveolar contact** for [s] than [ʃ]

Consistent with deeper and narrower groove for [s] than [ʃ]

Pouplier et al. (2011)

Japanese sibilants: EPG data

Like English, more alveolar contact for [s] than [ç]

Unlike English, *less* **post-alveolar contact** for [s] than [ç]

By-language difference in parasagittal control?

Matsui (2017)

Differences in phonological patterning

- The English sibilant contrast is less susceptible to influence from surrounding vowels:
- English sibilants contrast before all vowels (but neutralized before certain clusters, e.g. [strit] ~ [ſtrit])
- The Japanese sibilant contrast is more limited
 - Complementary distribution in native words (Yamato lexical stratum): $[\varsigma]$ occurs before [i], and [s] occurs before all other vowels (/si/ \rightarrow [ς i])
 - In Sino-Japanese and recent loans, [s] and [c] contrast before non-front vowels ([ca, cu, co]), but rarely before [i]
- Perhaps this is due to a difference in phonological control

Differences in acquisition error patterns

Li et al. (2009):

- English-learning children tend to replace /ʃ/ with [s]
- Japanese-learning children tend to replace /s/ with [c]

Perhaps English-learning and Japanese-learning children learn different dimensions of phonological control

Hypothesis

- These phonetic, phonological, and acquisition facts follow from a by-language difference in phonological control:
- English sibilant production involves active parasagittal control
 - [s] = deep, narrow groove
 - [ʃ] = wider groove or doming
- Japanese sibilant production does not
 - [s] ~ [c] contrast is maintained by midsagittal constriction location

This study

Investigate parasagittal control during Japanese sibilant production using 3D Electromagnetic Articulography (EMA)

Participants: Three adult native Japanese speakers

- S01: Male, 30s, Tokyo
- S02: Male, 30s, Osaka
- S03: Female, 30s, Tokyo

Materials & Procedure

24 real Japanese words beginning with either [s] or [c] followed by either [u] or [i]

Carrier phrase: okee _____ to itte 'okay say _____ again'

Stimuli were presented on screen in Japanese orthography

Each item was presented in random order within a block (15 blocks)

Total number of tokens included in analysis = 942

Data collection

NDI Wave EMA system sampling at 100 Hz

Lingual sensors: Tongue dorsum (TD) Tongue blade (TB) Tongue tip (TT) Parasagittal tongue left (PTL) Parasagittal tongue right (PTR)

Primary parasagittal measure

Angle under the tongue (γ) in degrees calculated using the law of cosines (Howson et al., 2015)

$\gamma = \arccos((LB^2 + RB^2 - LR^2) / (2 * LB * RB)) * (180 / \pi)$

LB is the Euclidean distance between TB and PTL; RB is the Euclidean distance between TB and PTR; and LR is the Euclidean distance between PTL and PTR

Qualitative results

(1) [ç] tends to be more domed than [s]

(2) [ç] tends to have a higher TB than [s]

(3) [c] tends to have a lower TT than [s]

Hypotheses from qualitative patterns

- [c] is articulated primarily with the TB (TB under phonological control)
- [s] is articulated primarily with the TT (TT under phonological control)
- Domed shape of [c] is a passive consequence of raising the TB
- **Prediction**: Negative relationship between TB height and angle under the tongue (γ), regardless of segment

Quantitative analysis

- Acoustic data was force aligned using WebMAUS (Kisler et al., 2017)
- Gamma (doming) and TB height were calculated at the temporal midpoint of each sibilant token
- Examine average TB height and gamma by segment, as well as relationship between TB height and gamma
- Linear mixed effects models

TB height by segment

Angle under the tongue (gamma) by segment

Relationship between TB height and gamma

Trimmed dataset (> 1.5 SD below the mean)

Interim summary

- [c] has higher TB than [s]
- [c] is more domed than [s]
- For both segments, higher TB = more doming
- Can the by-segment difference in doming be entirely explained by the by-segment difference in TB height?
 - Or is segment type independently predictive of doming?

Linear mixed effects models

- To test this, we fit nested linear mixed effects models to gamma
- Both gamma and TB height were z-scored
- Segment identity was sum-coded: [s] = 1, [c] = -1

Model structure

- Baseline = gamma ~ (TB_height + segment | subject) + (TB_height | item)
- + TB_height = gamma ~ TB_height + (TB_height + segment | subject) + (TB_height | item)
- + segment = gamma ~ TB_height + segment + (TB_height + segment | subject) + (TB_height | item)
- + interaction = gamma ~ TB_height * segment +
 (TB_height + segment | subject) + (TB_height | item)

Model comparison

	npar	AIC	BIC	deviance	Chi-Sq	df	p value
baseline	11	548.57	600.84	526.57			
+ TB_height	12	535.66	592.69	511.66	14.907	1	< .001
+ segment	13	535.81	597.59	509.81	1.849	1	0.174
+ interaction	14	535.85	602.38	507.85	1.962	1	0.161

Summary of best-fitting model: fixed effects

	Estimate	Std. Error	df	t value
(Intercept)	0.254	0.056	2.494	4.567
TB_height	-1.282	0.072	2.171	-17.764

By-subject random effects

	Estimates		
Subject	(Intercept)	TB_height	segment=s
S01	0.110	-1.082	0.051
S02	0.146	-1.132	0.145
S03	0.329	-1.386	-0.016

All subjects show strong consistent effects of TB height

SO1 and SO2 show a small effect of segment type in the expected direction, but SO3 shows a small effect in the opposite direction

Summary of model results

- Most variance in gamma is explained by TB height
- Effect of segment type on gamma not significant across subjects

Discussion

- Results consistent with the hypothesis that Japanese sibilants are produced without active parasagittal control
- Rather, parasagittal tongue shape during Japanese sibilant production may be a passive consequence of TB height control
- Consistent with cross-linguistic variation in dimensions of phonological control, even for very similar sounds

Next step: English EMA data

• English is predicted to show a different relationship between segment identity, TB height, and parasagittal tongue shape

 If English sibilants involve active parasagittal control, we would expect a stronger, more consistent effect of segment identity on parasagittal tongue shape

Preview: [z] grooving in 'Wednesday'

Implications

- Is parasagittal control related to phonotactics?
 - e.g., deeper grooving sustains sibilant in English consonant clusters?
- Does English tense/lax distinction involve parasagittal control? (Stone & Lundberg, 1996)
- Does relative lack of parasagittal control in Japanese underlie difficulty of Japanese speakers learning English rhotic ~ lateral contrast, which likely involves parasagittal control? (Ying et al., 2021)

Other next steps

- More Japanese data (different speakers, different EMA sensor arrangements)
 - How robust is this pattern in Japanese?
- Biomechanical modeling in Artisynth (Stavness et al, 2014)
 - What underlies the relationship between TB height and parasagittal tongue shape?
- Investigate the nonlinearity: why the qualitatively different pattern at lower TB heights?

Thank you!

- To the experiment participants
- To the Yale Phonologroup
- To AMP 2021 participants

References

Hombert, J.-M., Ohala, J. J., & Ewan, W. G. (1979). Phonetic explanations for the development of tones. Language, 55(1), 37–58.

Howson, P., Kochetov, A., & van Lieshout, P. (2015). Examination of the grooving patterns of the Czech trill-fricative. *Journal of Phonetics*, 49, 117–129.

Ji, A., Berry, J. J., & Johnson, M. T. (2014). The electromagnetic articulography Mandarin accented English (EMA-MAE) corpus of acoustic and 3D articulatory kinematic data. *ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings*, 7719–7723.

Kisler, T., Reichel, U. D., & Schiel, F. (2017). Multilingual processing of speech via web services. *Computer Speech & Language*, 45, 326–347.

Li, F., Edwards, J., & Beckman, M. E. (2009). Contrast and covert contrast: The phonetic development of voiceless sibilant fricatives in English and Japanese toddlers. *Journal of Phonetics*, *37*(1), 111–124.

Matsui, M. F. (2017). On the Input Information of the C/D Model for Vowel Devoicing in Japanese. *Journal of the Phonetic Society of Japan*, 21(1), 127–140.

Pouplier, M., Hoole, P., & Scobbie, J. M. (2011). Investigating the asymmetry of English sibilant assimilation: Acoustic and EPG data. *Laboratory Phonology*, *2*(1), 1–33.

Stavness, I., Nazari, M. A., Flynn, C., Perrier, P., Payan, Y., Lloyd, J. E., & Fels, S. (2014). Coupled Biomechanical Modeling of the Face, Jaw, Skull, Tongue, and Hyoid Bone. In N. Magnenat-Thalmann, O. Ratib, & H. F. Choi (Eds.), *3D Multiscale Physiological Human* (pp. 253–274). London: Springer London.

Stone, M., & Lundberg, A. (1996). Three-dimensional tongue surface shapes of English consonants and vowels. *Journal of the Acoustical Society of America*, *99*(6), 3728–3737.

Whalen, D. H., Shaw, P., Noiray, A., & Antony, R. (2011). Analogs of Tahltan Consonant Harmony in English CVC Syllables. *International Congress of Phonetic Sciences (ICPhS)*, 2129–2132.

Ying, J., Shaw, J. A., Carignan, C., Proctor, M., Derrick, D., & Best, C. T. (2021). Evidence for active control of tongue lateralization in Australian English /I/. *Journal of Phonetics*, 86.

Stimuli

弛緩性 しこり 死闘 死体 主観 主体性 趣向 酒盗 ストライク スタンプ 少し スカイ

çikansei
çikori
çitoo
çitai
çukan
çutaisei
çukoo
çutoo
sutoraiku
sutampu
sukoçi
sukai

志願	制
仕事	₽ ₽
指導	
私大	_
主眼	Ę
主題	钡
酒豪	
手動	b
すと	<u>ً</u> ۲
すた	ぎち
菅野	र प
すこ	<u> しい</u>
-	

çigansei çigoto çidoo çidai çugan çudaika çugoo çudoo sudoku sudachi sugano sugoi

View publication stats