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Abstract1

2

Recent quantitative work on the variable [g] ~[ŋ] alternation in compounds of certain3

dialects of Japanese has revealed token frequency of the compound as a whole, and of the4

compound’s second-member (N2) in its freestanding form, to be important predictors of the5

alternation (Breiss et al., 2021a, Breiss et al. to appear). In this paper, we propose a formal6

phonological analysis of data presented in Breiss et al. (to appear) that integrates usage-7

based factors like frequency with the action of the phonological grammar, extending the8

mechanisms of lexicon-grammar interaction proposed in Breiss (2024). We demonstrate that9

the model fits experimental data better than—or at least comparably to—a theoretically-naïve10

statistical model proposed in the previous work. Based on the success of our modeling, we11

discuss the role of token frequency in phonological patterning more broadly, and how the12

mechanism that we propose in this paper might be extended to unify a range of contradictory13

frequency-dependent processes that have been observed in the literature.14

1 Introduction15

This paper is about how to integrate information about usage frequency—here, the token fre-16

quency of morphemes in the language experience of an individual speaker—into a constraint-17
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based phonological grammar formalism that characterizes that speaker’s generative linguistic18

knowledge.19

We take as our empirical case the frequency-conditioned variability in optional paradigm uni-20

formity in voiced velar nasalization (henceforth “nasalization”) in phonologically-conservative21

Japanese dialects, recently studied using corpus data by Breiss et al. (2021b) and experimentally22

verified in Breiss, Katsuda and Kawahara (to appear) — henceforth BKK. These studies are the23

latest in a long research tradition centered on the allophonic distribution of /g/ in conserva-24

tive Japanese dialects, where a static phonotactic restriction enforces /g/ to be realized as [g]25

prosodic-word-initially and [ŋ] elsewhere (e.g. Kindaichi 1942; Trubetskoy 1969; Labrune 2012).26

This correspondence is disrupted in compounds with /g/-initial second member (N2) that can oc-27

cur as a free morpheme: in compounds with N2s that do not occur as free-standing words, the28

/g/ → [ŋ] alternation is exceptionless, but in compounds where N2 may additionally occur as a29

free-standing word (that is, with initial [g]) the nasalization process is optional (Ito and Mester,30

1996, 2003).31

The contribution of recent work by BKK (reviewed in detail in section 2) is to characterize this32

variation in quantitative detail, and in particular to highlight how the token frequency of both33

the compound and the free N2 impact the outcome of optional nasalization: higher frequency34

compounds encourage more nasalization of medial /g/ to [ŋ], while higher frequency free N2s35

encourage more retention of medial /g/ as [g], remaining uniform across the paradigm of their36

free-standing forms and compound forms (Steriade, 2000; Benua, 2000).37

Thenovel contribution of this paper is to provide a formally explicit model of the experimental38

data. The model builds upon the Voting Bases model of lexicon-grammar interaction (Breiss,39

2024), originally proposed to model Lexical Conservatism (Steriade, 1997). Lexical Conservatism40

is a type of paradigm uniformitywhere the distribution of stem allomorphs (referred to as “bases”)41

in a paradigm influences the way that paradigm accommodates new members. The canonical42

example comes from Steriade (1997), who observed that the phonologically-similar forms rémedy43

and párody differ in their behaviorwhen affixedwith -able, yielding remédiablewith shifted stress,44

but párodiable, with fixed stress. She argued that this difference stems not from the forms remedy45

and parody themselves, but from the fact that remedy has a stem allomorph remédi- in remédial46

that satisfies the marked lapse arising from affixation.47

Breiss (2024) examined the same Lexical Conservatism dependency using novel derived forms48

(like lábor + -able, with related form labórious, and pláster + -able with no phonologically-49

advantageous related form), and found that in experimental settings, speakers are sensitive not50

only to the presence of the phonologically-beneficial stem allomorph (like remédial and labórious),51

but also to its salience in the lexicon as manipulated by priming. To account for these data, he52

proposed a formal phonological model that integrates the influence of the contents of the lexi-53
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con along with their resting activation, enabling the phonological grammar to be sensitive to the54

psycholinguistic properties of the morphemes which it manipulates. Breiss (2024) termed this55

formal model of lexicon-grammar interaction the Voting Bases model.56

In this paper, we demonstrate that the Voting Bases model extends, without modification, to57

the separate case of lexicon-grammar interaction found in Japanese nasalization. The success58

of the model suggests that the foundational principles of the Voting Bases model may be a good59

candidate for a general theory of the way that the lexicon and grammar interact. This finding also60

underscores the explanatory value to be gained for phonological phenomena by adopting a more61

psycholinguistically-nuanced portrait of the lexicon as a dynamic substrate that can influence the62

computations of the grammar on the items which it contains.63

The layout of the paper is as follows: the first two sections of the paper review in some depth64

basic facts about Japanese nasalization drawn from the literature (section 2), and then specifically65

reviews in detail Experiment 1 of BKK (section 3). The following section, 4, focuses on the Voting66

Bases model, and how we apply it to the context of optional paradigm uniformity. Section 5 then67

actually fits the model to the experimental results, and discusses relative and absolute model fit in68

comparison to minimally-different models that incorporate only some of the assumptions of the69

Voting Bases model. The paper closes in section 6 with a discussion of broader issues, touching70

on how such a system might come to be in the mind of the learner, on the merits of a joint model71

of psycholinguistic and grammatical influence on word formation, and on what a unified theory72

of token frequency effects on the phonological grammar might look like.73

2 The traditional picture of Japanese nasalization74

The data that we model in this paper comes from Experiment 1 of BKK, which investigated the75

variation between [g] and [ŋ] induced by the phonotactics of phonologically-conservative di-76

alects of Japanese. The pattern, which has been well-studied in both in generative and non-77

generative literature on Japanese linguistics (Kindaichi, 1942; Trubetskoy, 1969; Hibiya, 1995;78

Labrune, 2012; Ito and Mester, 1996, 2003), is exemplified in the complementary distribution of79

[g] and [ŋ] shown in the monomorphemic data in example (1) below, where the voiced oral velar80

stop is only permitted word-initially, and the velar nasal is only permitted word-medially.81

(1) a. /kaŋami/ → [kaŋami]82

“mirror”83

b. /gimu/ → [gimu]84

“obligation”85

We assume throughout that non-alternating forms are stored surface-true as URs in the lexi-86
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con, in accordance with the phonological tradition of (Strong) Lexicon Optimization (Prince and87

Smolensky, 1993; Sanders, 2003). This stance is supported by psycholinguistic research on the88

contents of lexical representations, reviewed in section 4.1.89

Japanese’s extensive use of compounding in word-formation gives the opportunity for the90

phonotactic restriction to drive alternations, seen in examples (2)-(5) below. Here we see that91

when a /g/-initial morpheme is word-initial (either as a prosodically-free word, in examples (2)–92

(4), or as the first member (N1) of a compound, in example (5)1), it is realized with an initial [g],93

while when it occurs as the second member of a compound (N2) it is realized with initial [ŋ].94

Critically for the current study, Ito and Mester (1996) observed that although in all cases the /g/-95

initial N2 may be realized word-medially with initial [ŋ], nasalization is optional when the N296

can stand on its own as a prosodically-free form (cf. the “b” series in (2)–(4) vs. (5c))—a case of97

optional paradigm uniformity.98

(2) a. /hai +
lung

gan/
cancer

→ [hai-ŋan] ~ [hai-gan]99

“lung cancer”100

b. /gan/→ [gan]101

cancer102

“cancer”103

(3) a. /noo +
brain

geka/
surgery

→[noo-ŋeka] ~ [noo-geka]104

“brain surgery”105

b. /geka/→ [geka]106

surgery107

“surgery”108

(4) a. /doku +
poison

ga/
moth

→ [doku-ŋa] ~ [doku-ga]109

“poison moth”110

b. /ga/ → [ga], “moth” (a free-standing morpheme)111

(5) a. /doku +
poison

ga/
fang

→ [doku-ŋa], *[doku-ga]112

“poison fang”113

b. /ga +
fang

ʒoo/→
castle

[ga-ʒoo]114

“main castle”115

1We temporarily adopt here for the traditional assumption that the [g]-initial form of a free N2 is underlying,
for expository ease and continuity with the previous literature. Our own proposal is laid out in section 4.
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c. /ga/→
fang

*[ga] (a bound morpheme)116

“fang”117

Breiss et al. (2021b) examined this variation in a corpus derived from a pronouncing dictionary118

(NHK, 1993) and found that among compounds with free N2s, the two most prominent predictors119

of whether an item would be nasalized was the frequency of the N2’s free [g]-initial form, and120

the frequency of the whole compound. These effects ran in opposite directions: higher frequency121

compounds were more likely to be nasalized (the left facet of Figure 1); on the other hand, the122

more frequent the free N2, the less likely the nasalization was (the right facet of Figure 1).123

Figure 1: The effects of whole compound frequency (left facet) and N2 frequency (right facet)
on the probability of nasalization (vertical axis), with binomial smooths in the corpus data. One
dot represents one lexical item; vertical jitter has been added for readability. Figure and caption
adapted with permission from Breiss et al. (to appear), data from Breiss et al. (2021b).

The corpus data was modeled as a case of probabilistic paradigm uniformity in Breiss et al.124

(2021a) using Output-Output Faithfulness constraints (Benua, 2000) indexed to items binned by125

the relative frequency of each compound andN2. The paperwas limited, however, by the untested126

assumption of their model that the frequency-modulation of paradigm uniformity in their corpus127

data actually represents the synchronic knowledge of speakers. Additionally, their formal model128

was not explicitly informed by psycholinguistic considerations and thus its linking hypothesis129

between frequency (necessarily a lexical characteristic) and the phonological grammar was vul-130

nerable to criticism on grounds of being stipulative—in other words, there was nothing in their131

model that prevented the opposite relation between frequency and paradigm uniformity from132

holding.133
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In this paper, we offer two improvements on the state of affairs in Breiss et al. (2021a). First, we134

model experimental data from Breiss et al. (to appear) (BKK) where the frequency-conditioning135

of the variable paradigm uniformity is reproduced in existing compounds and extended to novel136

ones. Second, we do this by extending the Voting Bases model of Breiss (2024) which is compat-137

ible with consensus understanding of the way lexical frequency is connected to the lexical rep-138

resentation and activation, and which offers an explicit linking hypothesis relating the real-time139

dynamics of the lexicon to the representation and computations of the phonological grammar.140

3 BKK’s Experiment 1141

BKK carried out two experiments on Japanese nasalization. Their paper had the goal of seeing142

whether the corpus data was representative of speakers’ generalizable knowledge, both in the143

aggregate and also at the level of the individual. They found that both individually and in aggre-144

gate, speakers’ propensity to nasalize displayed sensitivity to the frequency of the free N2 and145

compound, in existing and novel compounds. In this paper, we focus our modeling efforts on the146

results of their Experiment 1, which we describe in some detail below.2147

3.1 Stimulus selection148

BKK chose stimuli that were roughly balanced between existing Japanese compounds of varying149

frequencies, and novel (that is, zero-frequency) semantically-compositional compounds. Both150

existing and novel stimuli had attested free N2s of a range of frequencies. Out of a desire to151

sample compounds with a wide range of frequencies that would likely be known to participants,152

existing compounds ranged from two to eight moras in length, while all novel compounds were153

four moras long.154

3.2 Participants155

BKK sought to recruit speakers of the phonologically-conservative Tōhoku dialect of Japanese,156

and used word-of-mouth and snowball sampling to find 20 speakers. In order to increase the157

precision of individual-level estimates of experimental manipulations, all but one speaker par-158

ticipated in the experiment twice, with the two sessions separated by a period ranging from a159

few weeks to a few months. Although the phonologically-conservative Yamanote dialect was160

2They also sought to determine whether correlation between nasalization and the overall prosodic size of the
compound, which is observed in the corpus (Breiss et al., 2021b) but is a typologically unusual pattern, was repli-
cated in participants’ online productions (Experiment 2). They actually found that there was no evidence of a direct
relationship between nasalization and global prosodic length (cf. Jiang 2023). We therefore do not address this ex-
perimental data here, as our point is made in the simpler case of data from Experiment 1.

6



the subject of the corpus study of Breiss et al. (2021b) and of much of the previous linguistic161

analysis, this dialect is currently spoken only by the very elderly who might not be comfortable162

participating in a study online.163

Before participating in the experiment, each participant was screened with a short dialect164

questionnaire to ensure that their speech exhibited the allophonic distribution of word-initial165

[g] and word-medial [ŋ]. This was done because the literature addressing nasalization assumes166

that it is triggered in order to enforce compliance with this phonotactic restriction imposed on167

monomorphemic words; therefore it is important to base conclusions about the variability of168

nasalization on data from speakers who do exhibit the phonotactic in question.3 For the purposes169

of the model which we develop, we will see that these monomorphemic words provide crucial170

evidence for the lower bound of the weight of the markedness constraint driving nasalization,171

since with data from compounds alone, it is not uniquely identified against the background of172

faithfulness constraints that the Voting Bases model uses (see section 5 for further details).173

The dialect questionnaire consisted of a production task where speakers were asked to read174

aloud 10 monomorphemic words with word-initial [g] of varying frequencies, and 10 monomor-175

phemic words with word-medial [ŋ]. The stimuli were written with kanji orthography, which176

does not distinguish between [g] and [ŋ]—this is also true of the main production experiment177

described below, so we follow BKK in assuming that the participants’ production was not influ-178

enced by orthographic factors. The twenty words were shown to the participant in a random179

order, and their productions were recorded; only the eight participants who exhibited the target180

pattern of allophony in all monomorphemes were invited to participate in the main experiment.181

3.3 Experiment structure182

Each experimental session proceeded as follows. First, participants were asked to complete the183

dialect questionnaire; if they met the criterion discussed above, they were invited to complete184

the rest of the experiment. Before the production task, participants read out loud and indicated185

whether they knew half of the free N2s in the experiment—this was done in order to prime them,186

under the hypothesis that raising their resting frequency in the participant’s lexicon would in-187

fluence their phonological behavior (see further discussion in section section 4.4). After this188

knowledge check, participants saw each compound one at a time in a random order, and pro-189

duced the form aloud while their speech was recorded. After the production task, participants190

produced and indicated knowledge of the other half of the free N2s in the experiment, as well191

as all of the compounds. The N2s that were primed were counter-balanced between participants192

across the two runs of the experiment.193

3The question of how nasalization is produced or represented by speakers who entirely lack, or only variably
enforce, the [g] ~[ŋ] allophony in monomorphemic words is not addressed by BKK, nor do we consider it here.
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3.4 Results194

BKK found that the participants reflected at an individual level the frequency-conditioned vari-195

ability seen in the corpus study of Breiss et al. (2021b). In existing compounds (Figure 2), their196

productions were influenced by both the frequency of the compound (the left facet), for which197

higher values correlated with more nasalization, and by the frequency of the free N2 (the right198

facet), where higher values correlated with less nasalization.199

Figure 2: Probability of nasalization (the vertical axis) plotted against compound log-frequency
(the left facet) and N2 log-frequency (the right facet), with binomial smooths for readability, in the
experiment by BKK. Plot and caption reproduced with permission from Breiss et al. (to appear).

Figure 3 plots the same effect of N2 frequency in novel compounds: forms with higher-200

frequency N2s were less likely to undergo nasalization relative to those with lower-frequency201

N2s.202

Finally, BKK found that the frequency effect was stable at the level of the individual, across203

existing and novel compounds, which is plotted in Figure 4. In this Figure, the horizontal axis plots204

the strength and direction of the effect of N2 log-frequency in novel compounds, and the vertical205

axis plots the strength and direction of the effect of N2 log-frequency in the existing compounds;206

see the caption of Figure 4 for further details. Although different participants were more or less207

sensitive to the frequency of a given N2, lying higher or lower on each axis, there was uniformity208

in this degree of sensitivity such that the two co-varied along a diagonal line through the center209

of the plot. BKK interpreted this correlation as evidence that morpheme usage frequency and210

phonological markedness have separable, distinct influences on speaker productions.211
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Figure 3: The probability of undergoing nasalization in novel compounds, plotted against N2
log-frequency, with a binomial smooth to aid readability. Plot and caption reproduced with per-
mission from Breiss et al. (to appear).

Figure 4: The coefficient of N2 log-frequency in novel compounds, derived from the model in
Table 1 of Breiss et al. (to appear), is plotted on the horizontal axis, and the coefficient for N2
log-frequency in existing compounds, derived from the model summarised in Table 3 of Breiss
et al. (to appear), is plotted on the vertical axis. Points represent median values of the posterior
with ranges encompassing the 95% Bayesian Credible Intervals, colors represent speakers, and a
linear smooth has been added for readability, with the line of slope 1 intersecting the origin in
dotted red. Plot and caption adapted with permission from Breiss et al. (to appear).
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3.5 Summary and goals for modeling212

To summarize, the findings of BKK that are relevant for the modeling task of this paper are213

the following. Among those speakers for whom the phonotactic restriction enforcing [g]~[ŋ]214

allophony was exceptionless in monomorphemic words:215

1. Phonotactically-driven nasalization is variable in compounds with prosodically-free N2s.216

2. In these compounds, the probability of nasalization is increased by higher compound fre-217

quency, and decreased by higher N2 frequency.218

3. The frequency effect is uniform within individuals across existing and novel compounds.219

Below, we propose a formal model of these facts, using the Voting Bases model to relate a lexicon220

containing usage-frequency information to a phonological grammar couched in the Maximum221

Entropy (MaxEnt) framework.4222

4 Modeling token frequency in the phonological grammar223

Based on the facts laid out above, we seek a model of the phonological grammar that allows224

non-phonological properties of individual lexical items (here, frequency) to influence their par-225

ticipation in phonological processes (here, paradigm uniformity). Note that we specifically aim226

to model phonological and non-phonological influences on the outputs of the phonological gram-227

mar, rather than any possible morphological or paradigmatic effects on phonetic realization (see228

Purse et al. (2022) for a review), about which the Voting Bases model as laid out in Breiss (2024)229

makes no predictions.230

4.1 The contents of a lexical entry231

As prolegomena to the grammatical model, it will be important to establish some relevant context232

regarding the contents of the lexicon, because it is these representations that are at stake in233

discussions of token frequency. Psycholinguistic research has amassed a large body of evidence234

that the lexicon is richly structured, with numerous types of linked representations of various235

levels of detail grouped under the same lexical entry. We do not review this research in depth236

here, but simply highlight the findings relevant to developing the type of integrated phonological237

4We do not attempt to model the frequency of the first compound member, N1, on the probability of nasal-
ization in compounds, since this was not manipulated by BKK. Future work might profitably pursue this question
experimentally and formally, since corpus data in Breiss et al. (2021b) suggests that higher N1 frequency may also
independently lower the probability of nasalization; see Rebrus and Törkenczy (2017) for a similar finding of N1
frequency on compound coherence in Hungarian vowel harmony.
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theory referenced above. For a thorough discussion and literature review on the (phonologically-238

relevant) contents of a lexical entry, see Pierrehumbert (2016); for more on how this information239

interacts with the Voting Bases theory in cases beyond those relevant for the nasalization, see240

Breiss (2021, 2024).241

Since nasalization concerns paradigm uniformity, we assume the lexical entry for an exist-242

ing word lists (among many other things) their allomorphs (cf. Strong Lexicon Optimization,243

Sanders 2006): for a non-alternating monomorpheme like [kaŋami] “mirror”, this would be sim-244

ply /kaŋami/; for a monomorpheme that can appear as an N2 and undergo nasalization, such as245

[ga]–[ŋa] “moth”, the lexical entry would list both /ga/ and /ŋa/. Finally, we assume that existing246

compounds are stored whole, with nasalization applied so as to respect the phonotactic in the247

lexicon (Albright, 2008; Martin, 2007).248

With regard to non-phonological characteristics of the lexicon, we follow a large body of249

evidence that lexical representations have differing degrees of salience or strength of encoding,250

which is often referred to as their resting activation (Morton, 1970). Following Breiss (2021, 2024),251

we take resting activation to correspond to the strength of a memory representation itself, not a252

number or rank stored in long-term memory as a characteristic of the lexical item. Thus, char-253

acteristics (long-term or dynamic) of lexical items like their frequency, and whether or not they254

were recently activated (for example, by priming), all contribute dynamically to an item’s resting255

activation. Importantly, also following Breiss, we use the term “resting activation” as a stand-256

in for any scalar summary statistic that can be derived from an implemented model of lexical257

dynamics. We remain intentionally agnostic as to the specific model of these dynamics, simply258

stressing that so long as such a model can be used to drive a measure of relative salience influ-259

enced by the factors just mentioned, the Voting Bases model can make reference to it to scale260

faithfulness constraint violations. We discuss how resting activation is modeled as influencing261

the phonological grammar below in section 4.4.262

4.2 The Voting Bases model263

We now turn to a formal phonological model of the Japanese nasalization data. We use the Voting264

model of Base competition proposed in Breiss (2021, 2024). The Voting model has been used to265

model data in Lexical Conservatism in English and Spanish, and is broadly compatible with the266

view of the lexicon laid out above. Here, we extend the model to the probabilistic paradigm-267

uniformity found in Japanese nasalization.268

The Voting Bases model has two parts: the first is that all listed stem allomorphs (“bases”)269

in the lexicon exert an analogical pull on derivatives (operationalized using allomorph-specific270

faithfulness constraints), violations of which are scaled in proportion to the resting activation of271

the representation to which faithfulness is being assessed. The second part is that markedness272
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constraints evaluate candidates in the standard way for constraint-based phonological models.273

The Voting Bases model assumes a probabilistic, weighted-constraint phonological grammar;274

here, we use MaxEnt Harmonic Grammar (Smolensky, 1986; Goldwater and Johnson, 2003), but275

in principle we could also use another grammar formalism that has these characteristics, like276

Stochastic (or Noisy) Harmonic Grammar (Boersma and Pater, 2016). We use MaxEnt since it has277

various strengths; e.g. it directly relates Harmony to probability (Hayes, 2022), permits constraint278

cumulativity by default (Jäger and Rosenbach, 2006; Breiss, 2020), has a learning algorithm to set279

its weights, and is rooted in well-understood statistical techniques used widely outside linguistics280

(Jurafsky and Martin, 2009, ch. 5). We stress, however, that our analyses can be recast in terms281

of other stochastic constraint-based frameworks.282

4.3 Constraints283

In the analysis developed in this paper, we adopt the general approach of Ito and Mester (1996,284

2003), following loosely Breiss et al. (2021a). We only use three constraints: a single marked-285

ness constraint to motivate nasalization (extending the spirit of the constraint *VgV from Ito and286

Mester (2003) to be compatible with nasal-final N1s, which pattern identically to vowel-final N1s),287

and a pair of faithfulness constraints which correspond to the second member’s free form and to288

the analogical pull of the compound as a whole, if one exists. They are listed below.5289

• *InteRnal-[g]: Assign one violation for each word-internal [g] in a candidate.290

• Id-[nasal]-N2: Assign one violation for each segment in the listed allomorph for the free-291

standing N2 that does not match its corresponding segment in the feature [nasal].292

• Id-[nasal]-Compound: Assign one violation for each segment in the listed allomorph for293

the full compound that does not match its corresponding segment in the candidate in the294

feature [nasal].295

Note that the constraint definitions do not make reference to scaling or the contents of the296

lexicon; the proposal in the Voting Bases model is an architectural proposal about how psycholin-297

guistic, “extra-grammatical” factors act within and beside the phonological grammar to influence298

certain variable phenomena.299

5The first faithfulness constraint plays the same role as faithfulness to the Remote Base in an analysis of Lexical
Conservatism. The second faithfulness constraint parallels faithfulness to the Local Base in a Lexical Conservatism
analysis (Breiss, 2021, 2024). We use more transparent names here for the sake of clarity, since nothing in the Voting
Bases model structurally prioritizes Remote Bases over Local ones.
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4.4 Modeling resting activation300

The discussion in 4.1 above left open how a specific numerical value for resting activation might301

be calculated on the basis of the psycholinguistic characteristics of item’s lexical entry. Here,302

we take the approach of modeling it as function of log-frequency of the frequency of the allo-303

morph, which is passed through the sigmoid function 1
1+e−logfreq that translates the linear predic-304

tor (i.e. −logfreq) into the bounded interval of {0,1}, which will be the scaling factor applied to305

faithfulness violations. This is illustrated in Figure 5. The effect of this non-linear transforma-306

tion will be to preserve the idea that it is less penalized to be unfaithful to low-frequency lexical307

items compared to higher-frequency ones, while damping down the difference between extreme308

values of the scale and rendering it bounded. The final move we make here is rather than using309

raw log-frequencies, we use scaled and centered log-frequencies, following the statistical analysis310

in BKK. This corresponds to the notion that it is not so much the absolute frequency of each item311

that is important, but how frequent it is relative to the other competitor items in the lexicon (here312

approximated by the population of items in the experiment), which is in line with previous work313

on morphological decomposition in stored forms (Hay, 2001). Finally, in the analysis that we314

develop below, we do not model the priming of N2, since BKK did not find substantial evidence315

that it affected their experimental data.6316

4.5 Schematic illustrations317

Before modeling the experimental data itself, it will be useful to work with some toy data to get318

a feel for how resting-activation-scaled faithfulness violations interact with the dynamics of a319

MaxEnt grammar. First, let us consider the case of novel compounds, since they are the simplest320

case to lay out the workings of the analysis. Recall the empirical pattern: here, although the321

frequency of the compound is zero, we nevertheless find that nasalization is modulated by the322

frequency of N2. Now, consider the case of two hypothetical novel compounds, onewith a higher-323

frequency N2, and one with a lower-frequency N2, such that when the sigmoid transformation324

is applied to their frequencies the higher-frequency form scales its violations of Id-[nasal]-N2 by325

0.7, and the lower scales its own violations of the same constraint by 0.3 (these specific numbers326

are chosen purely for the sake of illustration). Using the constraints defined in section 4.3 above,327

we can define the tableaux below in Figure 6.328

6The Voting Bases framework is easily extensible to multiple predictors of resting activation: to incorporate
priming, one could simply treat the term passed into the sigmoid as itself a log-linear model, adding a coefficient
(weight) for the effect of priming, in addition to a coefficient for the effect of lexical frequency. This is beyond
the current scope of this paper, however, and so we simply assume a fixed coefficient for lexical frequency, since
there being only one predictor in the log-linear model for resting activation would make the coefficient of frequency
redundant with the weight of the faithfulness constraint being scaled. Similarly extensions of the Voting Bases model
could also model by-participant variability in the priming effect using a hierarchical model structure.
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Figure 5: Sigmoid function that translates the (centered) frequencies into the scaling factors. See
text for details.

/…/N1, /g…/High−freq.N2 *InteRnal-[g] Id-[nas]N2

Weight: 2 1 H p
a. […g …] 1 2 .21
b. […ŋ …] .7 .7 .79

/…/N1, /g…/Low−freq.N2 *InteRnal-[g] Id-[nas]N2

Weight: 2 1 H p
c. […g …] 1 2 .15
d. […ŋ …] .3 .3 .85

Figure 6: Schematic application of the Voting model of Base Competition to the formation of a
novel compound in the wug-test.

We can see that the pull of faithfulness to the N2 with higher frequency is stronger than329

the one with lower frequency, though both are relatively marginal outcomes since the weight of330

*InteRnal-[g] dominates the distribution of probabilities in this scenario.331

Moving on to existing compounds, we now must add another item to the lexical entry we are332

considering in our left-hand input cell to our tableaux, shown in Figure 7. For the sake of minimal333

contrasts, we assume that the frequency of both N2s are equal andmedial relative to the examples334

in Figure 6 above, allowing us to examine the effect of compound frequency holding N2 frequency335

constant. However, in our analysis of the actual data, both scaling factors are independently set336

on a per-item basis.337

Here we see that the scaling of the compound again depends on frequency, but because of the338
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/…/N1, /g…/N2,
/…ŋ…/High−freq.compound

*InteRnal-[g] Id-[nas]N2 Id-[nas]Compound

Weight: 2 1 1 H p
e. […g …] 1 .7 2.7 .09
f. […ŋ …] .5 .5 .91

/…/N1, /g…/N2,
/…ŋ…/Low−freq.compound

*InteRnal-[g] Id-[nas]N2 Id-[nas]Compound

Weight: 2 1 1 H p
g. […g …] 1 .3 2.3 .14
h. […ŋ …] .5 .5 .86

Figure 7: Schematic application of the Voting model of Base Competition to the formation of an
existing compound in the wug-test.

assumption we made about the listed form of the compound—specifically, that phonologically339

well-formed words are preferentially the target of lexicalization (Albright, 2008; Martin, 2007)—340

we find that the faithfulness to the compound’s UR penalizes the candidate that does not exhibit341

nasalization and violates markedness.342

Finally, we lay out the case where the competition between candidates is driven primarily by343

faithfulness. Above, where markedness had a high weight, the candidate that satisfied marked-344

ness had a higher probability than the one which violated it, and the effects of the faithfulnesss345

constraints were on the probability of the minority candidate. In the scenario where marked-346

ness is low and the weights of the faithfulness constraints are dominant, the majority candidate347

is the one that satisfies faithfulness to the whole compound, and the presence of the N2 is the348

main reason that the unfaithful (but markedness-satisfying) candidate gets appreciable probabil-349

ity; this is a type of “analogical” effect where markedness has little role, as in Figure 8, in which350

the markedness constraint is assigned a very low weight (here, arbitrarily set as 0.1).351

5 The model in action352

Moving on to the analysis itself, we first fit models separately to the existing and novel com-353

pound data, to demonstrate the suitability of the Voting model in each context, and also to allow354

better comparison to the statistical models fit to the experimental data above. We then consider355

how nasalization might be modeled more comprehensively by incorporating information from356

non-alternating monomorphemes where the complementary distribution between [g] and [ŋ]357

is enforced, and also by incorporating our knowledge that the free form of N2s surface non-358

alternatingly with initial [g], despite the presence of an [ŋ]-initial stem allomorph.359

In all cases, we fit the MaxEnt models using the Solver() function in Microsoft Excel (Fylstra360
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/…/N1, /g…/N2,
/…ŋ…/High−freq.compound

*InteRnal-[g] Id-[nas]N2 Id-[nas]Compound

Weight: 0.1 1 2 H p
i. […g …] 1 .7 1.5 .27
j. […ŋ …] .5 0.5 .73

/…/N1, /g…/N2,
/…ŋ…/Low−freq.compound

*InteRnal-[g] Id-[nas]N2 Id-[nas]Compound

Weight: 0.1 1 2 H p
k. […g …] 1 .3 0.7 .45
l. […ŋ …] .5 0.5 .55

Figure 8: Schematic application of the Voting model of Base Competition to the formation of
an existing compound in the wug-test, in a regime where faithfulness is strong and markedness
weak.

et al., 1998), and used a relatively weak Gaussian prior of Normal(0,10) on constraint weights,361

which has the effect of allowing weights to vary in response to values that best fit the data, while362

making extreme values (here, above twenty or so) less appealing. For more on priors on weights363

in MaxEnt phonological models, see Wilson (2006) and White (2017). All models fit in this paper364

are provided in the supplementary materials.365

5.1 Existing compounds366

We first applied the analysis sketched in section 4.5 to data from existing compounds. Recall that367

in these forms, compounds with higher-frequency N2s are more likely to resist nasalization than368

those with lower-frequency N2s, but that compound frequency itself also influences nasalization,369

with higher-frequency compounds favoring the surface-realization of their underlying [ŋ]. We370

take as our data to model the counts of compounds produced having undergone nasalization or371

not, in cases where speakers know both the compound and the N2 in question.372

The best-fitting constraint weights for existing compounds are 6.93 for Id-[nasal]-Compound,373

and 7.22 for Id-[nasal]-N2, with *InteRnal-[g] receiving a weight of zero. The weights of the two374

faithfulness constraints were not significantly different from one another, as assessed via a like-375

lihood ratio test: Δlog-likelihood = 1.3, p = 0.11; a similar conclusion was suggested by the376

near-zero difference in the sample-size corrected AIC of the two models: ΔAICc = 1.8. AICc377

differences greater than 10 are typically taken to indicate strong support for the model with the378

lower AICc value; for more on model-comparison in statistical models and phonological gram-379

mars, see Shih (2017) and Wilson and Obdeyn (2009). This result suggests that the attractive380

influence of both Bases is critical in driving the alternation in attested forms; the zero weight of381

the markedness constraint *InteRnal-[g] indicates that in existing compounds, analogical faith-382
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fulness is doing all the work here, despite the assumption in the literature that the alternation is383

markedness-driven. We will revisit the role of markedness when evaluating the joint model of384

novel and existing compounds below in section 5.3.385

We also compared the full model to one where the two faithfulness constraints were allowed386

to take on different values but were not scaled by frequency. As one might expect, since low- and387

high-frequency forms have the same violation profiles in the phonological grammar, a grammar388

without access to frequency information can only predict one rate of nasalization across all forms;389

this model fits the data dramatically less well (Δlog-likelihood= 264.87, p < .001 with one degree390

of freedom, ΔAICc = 527.15).391

Finally, we evaluate the absolute performance of the model by examining how well it fits392

the data: although the two models have different internal structures, we can ask whether the393

theoretically-informed MaxEnt model here does as good a job in explaining the data patterns394

as the theory-neutral mixed effects logistic regression model reported by BKK when assessing395

the statistical robustness of the experimental results.7 We do this using the measure of R2, which396

ranges from zero to one, and can be thought of as the proportion of the variation in the dependent397

variable (here, whether nasalization applies or not) explained by the collection of independent398

variables (the phonological and lexical characteristics of interest).399

We used the r2_bayes() function from the performance package (Lüdecke et al., 2021) to obtain400

the marginal R2 of the statistical model—that is, the amount of variance in the data explained by401

the fixed effects—and compared it to the R2 for the MaxEnt model.8 Since the statistical model402

is Bayesian, we obtain a median and 95% Credible Interval for our R2: 0.48 and [0.31, 0.56], re-403

spectively. This is lower, though still relatively comparable, to the MaxEnt models R2 of 0.63, for404

which we have only a point estimate. Although the two are relatively close, the point value for405

the marginal R2 of the MaxEnt model is outside the 95% Credible Interval of the statistical model;406

this comparison suggests that the theoretically-structured model out-performs the theory-blind407

statistical one. While we find this result to be encouraging, this conclusion is tentative, however—408

since theMaxEntmodel does not capture variation at the level of the speaker, it may be overfitting409

the data somewhat, attributing to the population grammar variance that should more conserva-410

tively be attributed to speaker-level idiosyncrasies.411

7The model specification in BKK was as follows: Nasalization ∼ 1 + LogN2Freq*N2Primed +
LogCompoundFreq + NasalFinalN1 + (1 + LogN2Freq*N2Primed + LogCompoundFreq
+ NasalFinalN1 | Speaker) + (1 + N2Primed | Compound); see BKK section 3.3 and 3.4.1
for details.

8We used marginal R2, which makes reference to fixed effects only, since the conditional R2 that takes into
account the variance explained by both fixed and random effects has no direct comparison in the MaxEnt model
we fit. For more on the relationship between mixed effects models and hierarchical structures in linguistic data, see
Zymet (2019).
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5.2 Novel compounds412

Turning to entirely novel compounds, we fit the analysis sketched in section 4.5 to the data ob-413

tained by BKK. Here, the best fit weight for the constraints gives only Id-[nasal]-N2 a nonzero414

weight, at 2.18; faithfulness to existing compounds receives no weight (as expected, since novel415

compounds by definition do not have an existing compound to be faithful to), and also the416

markedness constraint is weighted zero. This is also to be expected, since the one degree of417

freedom in the model is actually the harmony difference between faithful and repairing com-418

pounds, and so since faithfulness receives a non-zero positive weight, the Gaussian prior prefers419

the other constraint to remain at zero.420

As above, we compared the fit of the MaxEnt model of novel compounds to one that did not421

allow access to frequency information, which fit the data much less well relative to a model that422

does allow the lexicon to scale violations of faithfulness constraints (Δlog-likelihood = 11.12,423

p < .001 with one degree of freedom, ΔAICc = 22.19). We also compared the absolute fit of424

our theoretically-motivated MaxEnt model to the purely statistical model fit by BKK9, and find425

that the R2 of our model, 0.11, falls within the 95% Credible Interval of the median of that of426

the statistical model, 0.06 [0.00, 0.18]. While low in absolute terms, it is reassuring that it is in427

line with the statistical model, suggesting that our grammatical model is not overfit to the data.428

We suspect that the cause of the poor model fit may be that there is greater between-individual429

variation in novel compounds than in existing ones, while the model we fit to the novel data has430

fewer parameters, and thus is less expressive, than that fit to existing data.431

5.3 Fitting a joint model432

To get a more holistic picture of nasalization, we fit a joint model to both existing and novel com-433

pounds, and integrated the fact that the participants were included in the experiment on the basis434

of exhibiting complementary distribution of [g] and [ŋ] in monomorphemes. Therefore, in addi-435

tion to both sets of compound data, the model included the monomorphemes used in the dialect436

questionnaire to screen participants for inclusion in the experiment, including frequency-based437

scaling of their faithfulness violations. Since we assume lexicon optimization, we cannot accu-438

rately assess the weight of the markedness constraint *InteRnal-[g] that drives the language-439

wide phonotactic because the number of monomorphemes that we surveyed was relatively small440

in comparison to all the data in the Japanese lexicon that exhibits this complementary distribution441

(Ito and Mester, 2003), and thus contributes to the actual weight of *InteRnal-[g] in speakers’442

grammars. However, we can find a lower bound on its weight by constraining the sets of weights443

9Model specification: Nasalization ∼ 1 + LogN2Freq*N2Primed + (1 +
LogN2Freq*N2Primed | Speaker) + (1 + N2Primed | Compound); see BKK section 3.3
and 3.4.2 for details.
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we consider to those that maximize the likelihood of the compound data, while simultaneously444

preserving allophony in monomorphemes (operationalized as having 95% or greater probability445

of faithful realization). The final model yielded weights listed in Table 9, and predictions plotted446

in Figure 10.447

Constraint Weight
*InteRnal-[g] 0.16
Id-[nasal]-Compound 5.12
Id-[nasal]-N2 4.25

Figure 9: Best-fitting weights for the
experimental data, existing and novel
compounds combined, that preserves
the allophony in monomorphemes.

Figure 10: Predicted (vertical axis) vs. observed (horizontal
axis) rates of nasalization for categories existing (green)
and novel (purple) compounds under the combined model
(weights in Table 9).

Although the integration of non-alternating monomorphemic words was intended to give a448

better picture of the weight of the markedness constraint, their inclusion ended up leaving the449

weights of the Ident-[nasal] constraints relatively unchanged, with the markedness constraint450

only getting a modest weight. We take this to indicate that much of the variability seen in the451

experimental data is actually driven by a strong analogical effect of faithfulness, rather than452

paradigm-uniformity being parasitic on markedness. This is consistent with the weights ob-453

tained when fitting the individual datasets above; when forced to account for the non-alternation454

of monomorphemes, a modest weight for *InteRnal-[g] suffices, relative to the stronger weights455

of faithfulness required to drive the paradigm-uniformity effect.456

Finally, we compare the joint model to one where we force either the weights of both faith-457

fulness constraints to be the same (Δlog-likelihood= 28.56, p < .001 with one degree of freedom,458

ΔAICc= 56.54, favoring the model with independently-weighted faithfulness constraints), or one459

where faithfulness is not scaled by frequency (Δlog-likelihood= 761.88, p< .001 with one degree460
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of freedom, ΔAICc = 1,466.66, favoring the model where faithfulness is scaled by frequency). In461

both cases, the more complex model presented here fits the data significantly better than the462

alternatives, supporting two basic tenets of the Voting Bases model: multiple faithfulness con-463

straints active in the grammar, each scaled by the resting activation of the lexical items they refer464

to (with frequency being the current proxy for resting activation). The R2 values for the combined465

model components are within 0.01 of their values for the separately-fit models, demonstrating no466

compromise in absolute model fit.467

6 Discussion468

This paper has proposed a model of variable voiced velar nasalization in Japanese, drawing on ex-469

perimental data published in Breiss et al. (to appear). Themodel integrates grammatical and func-470

tional determinants of variation, drawing on the Voting Bases framework of lexicon-grammar471

interaction, which was originally developed to model an entirely separate phonological phe-472

nomenon, Lexical Conservatism in English and Spanish (Breiss, 2024). Here, we address several473

major issues that the model raises, notably about whether the proposed system can be learned474

from the actual Japanese lexicon (section 6.1), about the competence-performance distinction475

(section 6.2), and about how the Voting Bases model’s mechanism for integrating usage frequency476

and formal grammar compares to other propositions in the literature (section 6.3). Finally, we477

close the paper with a more general discussion about how we might understand the broader em-478

pirical landscape of frequency effects in phonological patterning in light of the proposal in this479

paper.480

6.1 Whence the weights? Evidence in the lexicon481

Having observed that there is robust frequency-conditioning of nasalization in both existing and482

novel compounds, we can ask what the source of this frequency-conditioning might be. By hy-483

pothesis, the relationship between frequency and resting activation is one that is automatic and484

not overtly learned. However, we find that the model performs significantly better when al-485

lowed to set the weights of faithfulness constraints referencing different allomorphs to different486

weights. This result suggests that, setting aside the relationship between frequency and activa-487

tion, the speakers must be able to attribute different amounts of influence to different faithfulness488

constraint violations depending on which base the violation is assessed against. Put another way,489

the learner needs to be able to figure out how analogically-driven her lexicon is. Here, we present490

a preliminary investigation of what kind of evidencemight exist in the Japanese lexicon that could491

allow speakers to assign different weights to Id-[nasal]-Compound and Id-[nasal]-N2.492
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We fit a grammar with the constraints in section 4.3 and frequency-driven scaling of faithful-493

ness violations to the set of compounds in the corpus analyzed by Breiss et al. (2021b) that had494

a free N2. We found that the optimal weights of the grammar were zero for both *InteRnal-[g]495

and Id-[nasal]-Compound, and 1.08 for Id-[nasal]-N2. We had anticipated there being little to496

no weight assigned to the markedness constraint in this dataset for the same reasons discussed497

above in section 5.3, but we also found that instead of a tension between faithfulness to the com-498

pound itself and faithfulness to the N2, the grammar instead left it to the paradigm uniformity499

effect alone to perturb the otherwise at-chance distribution of variation (at chance because the500

weight of Id-[nasal]-Compound was at zero, indicating, all else equal, that the alternating and501

non-alternating candidates were equiprobable). This is qualitatively the same finding as for the502

novel compounds.503

We compared the model fit to the corpus data to one where the grammar was forced to assign504

the same weight to Id-[nasal]-Compound and Id-[nasal]-N2, and found that it was significantly505

out-performed by the model that allowed the grammar to allot differing weights to different506

faithfulness constraints to different bases (Δlog-likelihood = 45.3, p < .001 with one degree of507

freedom). We take this as tentative evidence that there is an empirical basis in the lexicon for508

assigning different degrees of faithfulness to different bases.509

6.2 Competence, performance, and formal modeling510

This paper has proposed a model of Japanese nasalization that integrates token frequency into the511

workings of the phonological grammar. Since the prospect of integrating a putatively performance-512

related factor like token frequency into a formal phonological model is not an uncontroversial513

one, below we directly address some possible criticisms of this approach. We certainly do not514

think that these are the last words on the topic, but we do feel that by explicitly discussing what515

we are doing and ourmotivations for doing it, we take a first step towards a clearer understanding516

of the stakes and consequences of the choices made in modeling information about usage jointly517

with the phonological grammar.518

One initial objection to formally modeling the frequency-conditioned variation in nasaliza-519

tion might be that there is nothing competence-related to model here at all—the variation is520

solely driven by “performance” factors (Chomsky, 1965). We respond that this cannot be true521

of Japanese nasalization: the fact that only compounds whose N2 is morphologically free ex-522

hibit frequency-sensitive variation, despite the existence of bound morphemes with [g]- and [ŋ]-523

initial forms like [ga]/[ŋa] “fang”, as shown by the examples in (5), requires an explanation that524

makes reference to grammatical structures. Further afield, cases like Lexical Conservatism much525

more strongly blur the line between the contents of the lexicon and the phonological grammar526

and are well-modeled by a framework like Voting Bases. The fact that this paper demonstrates527
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both paradigm uniformity and Lexical Conservatism emerge as special cases of the same theory528

speaks to the theoretical insight that can be gained by jointly modeling “performance-related”529

and “competence-related” influences on the phonological grammar.530

Another objection to the grammatical model that may be put forward in the current paper531

is that by incorporating both resting activation (a psycholinguistic quantity) and phonological532

markedness (a grammatical quantity) into the same formal model, we compromise the distinc-533

tion between competence and performance to the extent that it is not clear what we can actually534

say the model is a model of. If true, this would indeed be a flaw of the approach; however, a virtue535

of the Voting Bases model is that lexical influence on the grammar is clearly delimited: the model536

only allows the lexicon to scale the weights of faithfulness constraints to corresponding lexical537

representations. Manipulating the resting activation of a given UR has identifiable, localized in-538

fluences on the computations of the phonological grammar, and instantiates a linking hypothesis539

consistent with a consensus view of the basic structure of the lexicon. This mechanism can be540

seen as one way of implementing the idea of “grammar dominance” put forth, for example, by541

Coetzee (2016) and Coetzee and Kawahara (2013). The “core” phonological grammar—weighted542

constraints which can assess violations of novel candidates—can be recovered by simply ignor-543

ing the influence of the lexicon on constraint violations, and can be studied in novel contexts like544

wug-tests, where there is no relevant lexical representation to bear on the grammar.545

A final objection that we consider is that the very act of jointly modeling usage frequency546

and the phonological grammar risks leading the analyst to think of fundamentally performance-547

related factors as in fact competence-related, thus undercutting the goal of researchers whose548

focus is only understanding linguistic competence. We contend that this is simply false, and in549

fact, the reverse is true: for a researcher who only cares about linguistic competence, modeling550

usage factors jointly with theories of competence is vital. When confronting data derived from551

language use (that is, modeling corpus data as in Breiss et al. (2021a), or experimental data where552

stimuli are existing morphemes of the language as in Breiss et al. (to appear), a joint model will553

better expose the true influence of competence-related factors on the data under study, with the554

performance-related parts of themodel accounting for the otherwise-distorting influence of these555

factors. Simply ignoring performance-related factors in a formal model makes the strong claim556

that they have no effect, an assumption which is untenable in the cases examined here, and, we557

suggest, is also false in many (if not all) types of linguistic data that speakers might have prior558

usage-based experience with (Arnon and Snider, 2010; Smith and Moore-Cantwell, 2017; Zymet,559

2018; Morgan and Levy, 2016, 2023). Rather, an integrated approach that jointly models grammar560

and usage is essential to disentangle competence from performance factors, if this is the goal of561

the analysis.562
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6.3 Comparison with other models563

The Voting Bases model is one of several approaches in the literature that propose to model564

the interaction of usage frequency and phonological grammar. In particular, it is similar to the565

methods proposed in Coetzee and Pater (2008) and Coetzee and Kawahara (2013) which directly566

scale the weight of faithfulness constraints by the frequency of the form they make reference567

to, and that of Baird (2021) where a simulated perception-production loop comes to the same568

result via online learning. This family of approaches involves lowering the weight of faithfulness569

constraints to high-frequency forms relative to lower-frequency forms which enables them to570

model data like coronal stop deletion in English (Coetzee and Kawahara, 2013), where higher-571

frequency monomorphemes (like just) tend to get produced more often with a deleted coronal572

stop than phonologically-similar words (like jest). Common to these models is that they assume573

that the underlying form is /t/-ful, and thus the task of their model must relate higher frequency574

to therefore have lower constraint weights for it.575

A weakness of these models is that, with the possible exception of Baird (2021), the direction-576

ality between frequency and constraint weight is arbitrary—the primary goal set in these studies577

was to fit the data, which is better than the alternative which does not model the effects of lexi-578

cal frequencies at all, but they suffered somewhat for the lack of clear functional grounding the579

relation.580

By contrast, the frequency-faithfulness relation that Voting Basesmodel adopts runs in the op-581

posite direction—more frequent forms exact a greater penalty for unfaithful realizations relative582

to less frequent forms; constraint violations are less severe for low-frequency vs. high-frequency583

forms. This allows the model to fit a similar range of data, but with a linking hypothesis that584

is explicitly rooted in resting activation, a construct that is externally justified by a large body585

of work in psycholinguistics, as reviewed in Breiss (2021, 2024). Lexical items with higher rest-586

ing activation are more insistent on faithfulness to themselves, corresponding to their increased587

salience in the language processing system. The main contribution of the Voting Bases model588

in modeling this phenomenon is that the influence of the lexicon on the grammar should be, in589

principle, derivable without reference to any facts about the experiment in question; given some590

independently-established computationally-implemented model of lexical dynamics that repre-591

sents a scalar quantity of resting activation (or similar construct), the strong prediction of the592

Voting Bases model is that that quantity should be able to be a fully adequate scaling factor for593

faithfulness constraint violations. The specific mechanism that is used in this paper—scaling the594

weights by the sigmoidal transformation of the resting activation—is used since it represents,595

to us, a reasonable first stab, but the linking function may need to be revised in light of future596

findings.597

In summary, we suggest that the Voting Bases model, because of its functional grounding598
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of frequency effects in externally-motivated psycholinguistic phenomena, is on firmer footing599

than theories that have alternative linking functions between frequency and grammar, which are600

arguably arbitrary.601

6.4 Towards a unified picture of token frequency in phonology602

In this section, we broaden our view of token frequency effects in phonology, and discuss how603

considering the varying functional roles of frequency can reconcile some seemingly-contradictory604

bodies of evidence.605

First, there is evidence that higher token-frequency leads to more markedness-reducing al-606

ternations. Coetzee and Kawahara (2013) found that higher-frequency lexical items were more607

likely to undergo phonological processes of simplification and (markedness-)reduction: high-608

frequency English words like jus(t) underwent an optional process of coronal stop deletion at a609

higher rate than low-frequency words like jes(t), and high-frequency Japanese words like [baggu]610

“bag” underwent geminate devoicing more often than low-frequency words like [budda] “Bud-611

dha” (Kawahara and Sano, 2013). Zuraw (2007) examines frequency-conditioned application of612

markedness-reducing phonological processes in a corpus of written Tagalog, and likewise finds613

higher rates of repair within higher-frequency units (words, clitic groups, etc), subject to the614

markedness principles of the language.615

On the other hand, there is also evidence to show that higher-frequency forms are more616

likely to be exceptional, and thus marked with regard to the overall properties of the grammar.617

Smith and Moore-Cantwell (2017) found that higher-frequency comparative constructions are618

more likely to flout grammar-wide trends driven by markedness. In a similar vein, Anttila (2006)619

and Mayer (2021) found that higher-frequency morphologically-complex forms were more likely620

to behave opaquely with respect to grammar-wide phonological processes.621

We can compare these effects to the ones observed in Breiss et al. (2021b) and Breiss et al.622

(to appear): higher-frequency N2s act as stronger attractors, yielding more faithfulness to their623

preserved surface [g] resulting in lower rates of nasalization, whereas higher compound fre-624

quency as a whole yielded higher rates of nasalization. Thus it seems that for compounds, higher625

frequency is correlated with more phonological-process application and markedness-reduction;626

this is broadly in line with the findings of Coetzee and Kawahara (2013) where higher-frequency627

words undergo more phonological alternations. However, we found that at the same time, in628

compounds with free N2s, higher free N2 frequency is related to less process application, with629

higher-frequency supporting the retention of a marked structure (word-medial [g]).630

We suggest we can resolve this tension by distinguishing between the processes that token631

frequency can impact: one is whether to set up an independent lexical representation for a surface632

allomorph, and the other is influencing the strength of that representation in the lexicon of the633
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speaker.634

If a form is exceptional and high-frequency, it may be more economical for a speaker to pay a635

one-time “cost” of encoding the exception as a listed form that is not derived by the grammar, thus636

relieving the phonology of the difficulty of having to generate the exceptional or idiosyncratic637

form on each of the many frequent occasions of use (cf. Adaptor Grammars (Johnson et al., 2007,638

et seq.) or Fragment Grammars (O’Donnell, 2015) which offer computationally-explicit imple-639

mentations of this general idea). For lower-frequency exceptional forms, the likelihood of listing640

is less since the price trades off less favorably with the amount of times it is used; thus lower-641

frequency forms are more susceptible to change and regularization to the dominant grammatical642

trends over time compared to higher-frequency forms. Another aspect of this trade-off is the643

emergence of Lexicon Optimization (Prince and Smolensky, 1993; Sanders, 2003, 2006); even if a644

form is not particularly exceptionful, if a UR almost always surfaces with a phonological process645

applied to it, with sufficient frequency it becomes less costly to just store the formwith phonolog-646

ical process applied—that is, create a separate allomorph that is specific to the environment that647

would trigger the phonological rule. This, similarly, relieves the grammar of the job of having to648

repair the form every time. Thus, we find Lexicon Optimization targeting forms like jus(t) over649

forms like jest, making these forms restructured to automatically have the phonological alterna-650

tion applied, thus giving the appearance of having undergone a markedness-improving repair in651

the grammar, but actually the frequency of the form has resulted in restructuring to the lexicon652

(see Breiss and Wilson (2020) for an initial attempt at a computational model of the phonological653

grammar and lexicon that exhibits this property).654

As reviewed above, lexical frequency also influences the resting activation of a lexical item655

once it is listed in the lexicon. In the Voting Bases model, higher resting activation leads to656

the listed form exerting a stronger pull on the surface realization of a related form; where this657

pressure goes against the broader principle of markedness in the grammar, as in cases of paradigm658

uniformity, we find that marked structures with high-frequency output-bases are preserved; in659

cases where the listed form coincides with the output of the markedness-reducing process, as660

in many cases of Lexical Conservatism (Steriade, 1997; Steriade and Stanton, 2020; Breiss, 2021),661

then the higher-frequency form promotes an unmarked surface form.662

Recent work by Jarosz et al. (2024) has laid out a class of models which exhibit characteristics663

that align favorably with the dynamics of frequency laid out here, suggesting that an integrated,664

implemented model that can jointly account for the variety of frequency effects reviewed in this665

section is perhaps quite close at hand. Future work may profitably explore how well these mod-666

els can provide converging evidence from computational learning simulations to support the667

psycholinguistic, experimental, and diachronic evidence for the contents of the lexicon that the668

Voting Bases theory relies on. In sum, the broader landscape of token frequency in phonology669

25



is compatible with the functional grounding given to frequency under the Voting Base model,670

though much empirical and formal work remains to be done to further support the predictions of671

the framework more broadly as a candidate for a general theory of the influence of the dynamic672

lexicon on the probabilistic grammar.673
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