Durational properties of emphatically lengthened consonants in Japanese

Shigeto Kawahara and Aaron Braver

DOI: 10.1017/S0025100314000085, Published online: 25 November 2014

Link to this article: http://journals.cambridge.org/abstract_S0025100314000085

How to cite this article:
doi:10.1017/S0025100314000085

Request Permissions : Click here
Languages can make use of phonetic duration to signal two kinds of meanings. The first is a lexical, phonological contrast. For example, in Japanese [kata] with a short [t] means ‘frame’ and [katta] with a long [tt] means ‘bought’. This sort of contrast is usually limited to a binary distinction, and its phonetic properties have been well studied for many diverse languages. The other use of phonetic duration is to express pragmatic emphasis. Speakers of some languages can use lengthening to express emphasis, as in the English example Thank you sooooooo much. This lengthening can employ multiple degrees of duration, beyond the more standard binary contrast. This second use of duration has been understudied, and this paper attempts to fill that gap. To that end, this paper reports the first experimental documentation of the consonant lengthening pattern in Japanese, which expresses pragmatic emphasis. The results show that at least some speakers show six levels of durational distinctions, while other speakers show less clear-cut distinctions among different levels of emphatically lengthened consonants. Nevertheless, all but one speaker showed a linear correlation between duration and level of emphasis.

1 Introduction

Languages can make use of phonetic duration to signal two sorts of semantic functions. The first is a lexical, phonological contrast. For example, in Japanese [kata] with a short [t] means ‘frame’ and [katta] with a long [tt] means ‘bought’. In most languages with such a length contrast, the contrast is binary; that is, the distinction is a matter of short vs. long.¹ The phonetic properties of such lexical short–long contrasts have been well studied for many

¹ There are rare cases in which the contrast is arguably ternary: short vs. long vs. overlong (e.g. Estonian: Prince 1980, and Saami: Bals Baal, Odden & Rice 2012). However, ternary length contrasts are very rare cross-linguistically (Ladefoged & Maddieson 1996: 93), and even in languages that do have ternary length contrasts, morphological and other factors are likely to affect the distribution of overlong consonants. As Prince (1980: 511) puts it, in Estonian, ‘the three-way contrast, and in particular the distribution of overlength, is richly and curiously connected with patterns of morphology, syllable structure, and stress’. See also Bals Baal et al. (2012) for similar complications related to the case of the ternary consonant length contrast in Northern Saami.
Table 1 A summary of phonetic studies on lexical duration-based contrasts in consonants.

<table>
<thead>
<tr>
<th>Language</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>Norlin 1987, Ham 2001</td>
</tr>
<tr>
<td>Bengali</td>
<td>Lahiri & Hankamer 1988</td>
</tr>
<tr>
<td>Berber</td>
<td>Ridouane 2010</td>
</tr>
<tr>
<td>Berberene</td>
<td>Ham 2001</td>
</tr>
<tr>
<td>Buginese</td>
<td>Cohn, Ham & Podesva 1999</td>
</tr>
<tr>
<td>Chicasaw</td>
<td>Gordon, Munro & Ladefoged 2000</td>
</tr>
<tr>
<td>Estonian</td>
<td>Engstrand & Krull 1994</td>
</tr>
<tr>
<td>Cypriot Greek</td>
<td>Tserdanelis & Arvaniti 2001</td>
</tr>
<tr>
<td>Guinaang Bontok</td>
<td>Aoyama & Reid 2006</td>
</tr>
<tr>
<td>Hindi</td>
<td>Shrotriya et al. 1995, Ohala 2007</td>
</tr>
<tr>
<td>Hungarian</td>
<td>Ham 2001</td>
</tr>
<tr>
<td>Icelandic</td>
<td>Garnes 1976</td>
</tr>
<tr>
<td>Itonyos Trique</td>
<td>DiCanio 2012</td>
</tr>
<tr>
<td>Javan</td>
<td>Jaeger 1983</td>
</tr>
<tr>
<td>Madurese</td>
<td>Cohn, Ham & Podesva 1993, Ham 2001</td>
</tr>
<tr>
<td>Malayalam</td>
<td>Local & Simpson 1999</td>
</tr>
<tr>
<td>Marathi</td>
<td>Lisker 1958</td>
</tr>
<tr>
<td>Pattani Malay</td>
<td>Abramson 1987</td>
</tr>
<tr>
<td>Persian</td>
<td>Hansen 2004</td>
</tr>
<tr>
<td>Rembarrnga</td>
<td>McKay 1980</td>
</tr>
<tr>
<td>(Lule) Saami</td>
<td>Engstrand 1987</td>
</tr>
<tr>
<td>Swedish</td>
<td>Lisker 1958, Engstrand & Krull 1994</td>
</tr>
<tr>
<td>Swiss German</td>
<td>Kraehenmann 2003, Kraehenmann & Lahiri 2008</td>
</tr>
<tr>
<td>Toba Batak</td>
<td>Cohn, Ham & Podesva 1999</td>
</tr>
<tr>
<td>Turkish</td>
<td>Lahiri & Hankamer 1988</td>
</tr>
<tr>
<td>Zapotec</td>
<td>Jaeger 1983</td>
</tr>
</tbody>
</table>

languages; Table 1 summarizes previous phonetic studies on short vs. long consonants in various languages (this list is not exhaustive; see also Ridouane 2010 for another recent summary.).

Less well studied are cases in which speakers use lengthening to express pragmatic emphasis. For example, in English, speakers can say *Thank you sooooooo much* to express an emphatic meaning; in this case, the speaker is trying to indicate that the speaker’s degree of gratitude is very high.\(^2\) An impressionistic observation seems to suggest that this sort of lengthening is not limited to a binary contrast – an intuition which will be confirmed in the experiment reported below. Compared to lexical singleton–geminate distinctions, the phonetic properties of this sort of contrast are understudied in the phonetics literature, and our experiment aims to fill this gap.

\(^2\) The terms ‘emphasis’ and ‘emphatic’ used in this paper are different from so-called ‘emphatic consonants’ found in Arabic and other languages (Kahn 1975, Norlin 1987, Laufer & Baer 1988, McCarthy 1994, Bellem 2007). The crucial difference is that the emphatic consonants in Arabic are separate phonemes, opposed to non-emphatic counterparts. What the current experiment deals with is not a lexical contrast, but lengthening due to pragmatic emphasis.
Table 2 The Japanese orthographic system for gemination. The forms in (a) and (b) represent a lexical singleton–geminate pair. The forms in (d)–(h) represent emphatically lengthened geminates, which are the focus of investigation in the current study.

<table>
<thead>
<tr>
<th>Japanese orthography</th>
<th>Transcription</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) kata</td>
<td>[kata]</td>
<td>'shoulder'</td>
</tr>
<tr>
<td>(b) katta</td>
<td>[katta]</td>
<td>'bought'</td>
</tr>
<tr>
<td>(c) katai</td>
<td>[katai]</td>
<td>'hard'</td>
</tr>
<tr>
<td>(d) kattai</td>
<td>[kattai]</td>
<td>'hard (emphatic)'</td>
</tr>
<tr>
<td>(e) katttai</td>
<td>[katttai]</td>
<td>'hard (emphatic)'</td>
</tr>
<tr>
<td>(f) kattttai</td>
<td>[kattttai]</td>
<td>'hard (emphatic)'</td>
</tr>
<tr>
<td>(g) katttttai</td>
<td>[katttttai]</td>
<td>'hard (emphatic)'</td>
</tr>
</tbody>
</table>

As a case study, we investigate the durational properties of emphatically lengthened consonants found in casual speech of Japanese, in which speakers lengthen segments to express emphasis (Aizawa 1985; Nasu 1999; Kawahara 2001, 2013). This emphatic lengthening is a characteristic of casual speech by young speakers, and frequently appears (orthographically) on the internet and in comic books. In this phenomenon, there can be various degrees of durational differences, beyond the standard short–long binary distinction. In Japanese, gemination is expressed orthographically with a small diacritic symbol (ﾞ) preceding the mora containing the consonant in question, as shown in example (b) in Table 2. The emphatic lengthening that is at issue here can be expressed by the use of the same gemination marker. For example, Japanese speakers can take an adjective like the one in (c), and geminate the (word-medial) consonant to express emphatic meaning, as in (d). In casual writing, we observe examples in which consonants are accompanied by a number of gemination marks, as in (e)–(h).

The aim of this project is to investigate the durational characteristics of this multi-level emphasis pattern, the primary question being how many levels of distinction speakers can actually realize acoustically in this sort of pragmatically driven lengthening. While the phonetic properties of Japanese lexical geminates have been investigated in many instrumental studies in the past (see Kawahara, in press, for a recent overview), the current multi-level emphasis pattern has not been investigated from a phonetic/instrumental perspective. This paper thus offers the first experimental documentation of this emphasis pattern. More generally speaking, the phonetics of pragmatically lengthened segments has been less well studied than the phonetics of lexical short–long contrasts, and our study aims to provide extensive documentation of the first kind of lengthening.

2 Method

2.1 Stimuli

This study measured the duration of four coronal obstruents, [t d s z], as used in the emphatic environments. For each sound, two adjectives were chosen, since adjectives are (semantically...
Table 3 | List of stimuli. Two adjectives for each consonant were chosen.

<table>
<thead>
<tr>
<th>[t]</th>
<th>[d]</th>
<th>[s]</th>
<th>[z]</th>
</tr>
</thead>
<tbody>
<tr>
<td>katai</td>
<td>‘hard’</td>
<td>cidoi</td>
<td>‘awful’</td>
</tr>
<tr>
<td>itai</td>
<td>‘aching’</td>
<td>kudoi</td>
<td>‘worthy’</td>
</tr>
</tbody>
</table>

speaking) most likely to undergo emphasis. The adjectives used in this experiment, listed in Table 3, were all disyllabic and lexically accented on the second syllable (i.e. they all had an HL falling pitch contour on the second syllable). The target consonants were always placed in word-medial position. Each adjective was paired with a subject noun phrase to make a complete sentence: e.g. [ano kūgi uzai] ‘That lecture is annoying’.

For each adjective, in addition to a non-emphatic rendition, five degrees of emphasis were created; e.g. [katai] (no emphasis), [kattai] (level 1 emphasis), [katttai] (level 2), [kattttai] (level 3), [katttttai] (level 4), and [kattttttai] (level 5), as illustrated in examples (c)–(h) in Table 2 above.

As a result, there were a total of 48 stimuli (4 consonants × 2 adjectives × 6 consonant lengths). A random number was assigned to each stimulus item to track which stimulus was actually pronounced.

2.2 Participants

The participants were seven native speakers of Japanese (Speakers FR, FV, SX, EG, NN, LV, TV). They were all undergraduate students at International Christian University (Tokyo, Japan). They were paid 500 Japanese yen for their time. They were all in their twenties at the time of recording.

2.3 Procedure

The experiment took place in a sound-attenuated room at International Christian University. Superlab version 4.0 was used to present the stimuli (Cedrus Corporation 2010). The stimuli and the instructions were presented in Japanese orthography. In the instructions, speakers were told that the experiment was about various levels of emphasis in Japanese, i.e. that they were going to be reading sentences with multiple gemination marks.

In order to prevent them from resorting to explicit counting of gemination marks by way of gesture, they were asked not to use gestures such as counting using fingers or nodding their heads. They were also told that their goal was not to count the gemination marks, but rather to pronounce Japanese utterances that are suitable for each stimulus. They were also told that the experiment was not a competition, and that the experiment was instead a test of what Japanese speakers actually do (i.e. the experiment was not for a prescriptive, but rather for a descriptive purpose).

Each block contained all the stimuli. After each block, the speaker took a short break. The order within each block was randomized by Superlab within each repetition. The speakers were asked to go through eight blocks (48 × 8 = 384 tokens), although due to time limitations, one speaker (Speaker NN) could only complete six repetitions (each speaker was assigned 30 minutes for this experiment because of a scheduling restriction). Some speakers mispronounced or skipped a few tokens.

As a practice session before the main session, all the speakers went through all the stimuli once to familiarize themselves with the stimuli and the task. After the practice phase, they were allowed to ask any questions that they had.

therefore focuses on obstruent geminates. In order to control for the effect of place of articulation on duration (Maddieson 1997), the experiment used only coronal consonants.
Their pronunciation was directly recorded into a portable recorder (TASCAM DR-40) with a 44.1 kHz sampling rate and a 16 bit quantization level. The experimenter (the first author) sat with the speakers throughout the experiment.

2.4 Acoustic analysis
To investigate the acoustic realizations of this emphasis pattern, this study focused on consonant durations, because they are the main acoustic correlate of Japanese length contrasts (Han 1962, 1992, 1994; Homma 1981; Beckman 1982; Hirata & Whiton 2005; Kawahara 2006; Hirose & Ashby 2007; Idemaru & Guion 2008; Amano & Hirata 2010; Hirata & Amano 2012). There are other acoustic covariants of gemination in Japanese (Kawahara 2006, Idemaru & Guion 2008), and a post-hoc analysis on preceding vowel duration is reported in Section 3.3 below.

The boundary between the target consonants and the surrounding vowels was placed by inspecting both the waveforms (onset and offset of aperiodic noise for the fricatives and stop closure for stops) and spectrograms (abrupt cessation of F2 and F3 in particular). Figures 1 and 2 illustrate sample waveforms and spectrograms of three tokens of [t] and [s] (no emphasis, level 1 emphasis, level 2 emphasis) – the time scales are all 1000 ms. The acoustic analysis was performed using PRAAT (Boersma & Weenink 1999–2014, Boersma 2001).

2.5 Statistics
Since there are many comparisons (6 levels of emphasis × 4 types of consonants × 2 adjectives = 48 comparisons for each speaker), to avoid Type I error, we did not conduct pair-wise comparisons of every condition. Instead, we compared each level of emphasis by collapsing the consonant types and adjective types, thereby making only five pair-wise comparisons for each speaker. By Bonferroni adjustment, the α-level was set to be .05/5 = .01.5 In addition, post-hoc inspection of the data also suggested that regression analyses would be useful, so they are reported in the results section. All statistical analyses were performed using R (R Development Core Team 1993–2014).

3 Results

3.1 Individual patterns
Since inter-speaker differences were apparent in the results, the results of individual speakers are reported separately. We discuss each speaker in order of how clearly they showed durational differences among different emphasis levels. The result figures have different y-axis scales, as different speakers used different durational ranges. After examining the behavior of each speaker, we summarize and compare the behaviors of all speakers in Section 3.2 below.

First, of the seven speakers, two (Speakers FR and TW) seem to make a perfect six-way distinction, i.e. the consonant durations for each level of emphasis are different. The results of these speakers are illustrated in Figures 3 and 4.

We observe that for both speakers there is a large increase in duration from plain consonants to the level 1 emphatically lengthened consonants. Further, within the emphatically lengthened consonants, there is a steady, linear increase in duration as the emphasis level

5 We thank an anonymous reviewer for useful advice on this point. To provide a measure of how much variability exists in the current data, error bars, which represent 95% confidence intervals, are also provided in the result figures. They were generally calculated over 16 repetitions of each consonant (2 adjectives × 8 repetitions), except for Speaker NN, who pronounced the stimuli six times each (see above).
Figure 1 Sample waveforms and spectrograms of \([t]\), pronounced in \([\text{it(tt)}\text{ai}]\). The time scales are all 1000 ms.
Figure 2 Sample waveforms and spectrograms of [s], pronounced in [mus(ss)ai]. The time scales are all 1000 ms.
increases. Non-paired multiple comparison t-tests show that all levels are different in terms of their duration. These results are given in Table 4.

In addition, to assess the linear correlation between emphasis levels and duration within different levels of emphatically lengthened consonants, a linear regression was run with duration as the dependent variable and with emphasis level as the independent variable (no-emphasis consonants were not included in this regression analysis because of the non-linearity we observe between no-emphasis consonants and emphatically lengthened consonants). For both speakers, the effect of the emphasis level is significant ($t(317) = 38.0, p < .001$ for Speaker FR and $t(316) = 19.6, p < .001$ for Speaker TW). The estimated coefficients of emphasis level are 86 ms and 63 ms, respectively – these values are estimates of how many milliseconds these speakers increase a consonant’s duration per emphasis level.

Finally, to numerically assess the strength of the correlation between emphasis levels and duration, Pearson correlation coefficients (r) were calculated. The no-emphasis consonants were excluded from this analysis also, because there are large jumps in duration between plain consonants and the emphatically lengthened consonants. The results show that r-values are .91 for Speaker FR and .74 for Speaker TW, both very high correlations (both significant at the $p < .001$ level).

Other speakers also showed a steady increase in duration, but not as clearly as Speakers FR and TW. Speaker EL shows the next highest correlation between emphasis level and duration, as shown in Figure 5.

Although this speaker does not show a difference between level 4 and level 5 for the two fricatives, there seems to be a clear, general increase of duration as the emphasis levels
go higher. The results of multiple comparison t-tests, given in Table 5, show that all the differences but the comparison between level 4 and level 5 are significant.\(^6\)

The effect of emphasis is statistically significant in the regression model ($t(317) = 17.3$, $p < .001$), and the coefficient estimate is 30 ms. Despite the fact that this speaker does not show differences for some levels of emphasis, the r-value for Speaker EL is high ($r = .70$, $p < .001$). We also notice that the duration range is smaller (about 500 ms in Figure 5) compared to the previous two speakers (about 700 ms and 600 ms in Figures 3 and 4, respectively), and

\(^6\) A post-hoc test comparing only stops shows that the difference between level 4 and level 5 is significant ($t(62) = 3.6$, $p < .001$).
thus this speaker manages to – or at least attempts to – make six levels of duration distinctions within a smaller duration range. This characteristic is perhaps responsible for the smaller estimate of the effect of emphasis in the regression model.

The next speaker, Speaker SX, shows some increase in duration correlating with emphasis levels, but we observe a number of emphasis pairs that are not differentiated from one another, as shown in Figure 6.

The speaker does not show a difference from level 2 to level 4 for [s], or between level 1 and level 2, or level 4 and level 5, for [d]. We also note that this speaker’s duration range is even smaller than that of Speaker EL (the maximum range is about 300 ms in Figure 6).

Figure 5 The average durations of each emphasis level: Speaker EL.

Table 5 Non-paired multiple comparison t-tests for Speaker EL, showing the effect of emphasis level on duration. $\alpha = .01$ after Bonferroni adjustment (.05/5).

<table>
<thead>
<tr>
<th>Comparison</th>
<th>t(df)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>level 0 vs. level 1</td>
<td>$t(126) = 21.5$</td>
<td>$p < .001$</td>
</tr>
<tr>
<td>level 1 vs. level 2</td>
<td>$t(126) = 5.5$</td>
<td>$p < .001$</td>
</tr>
<tr>
<td>level 2 vs. level 3</td>
<td>$t(126) = 5.5$</td>
<td>$p < .001$</td>
</tr>
<tr>
<td>level 3 vs. level 4</td>
<td>$t(125) = 4.5$</td>
<td>$p < .001$</td>
</tr>
<tr>
<td>level 4 vs. level 5</td>
<td>$t(125) = 1.9$</td>
<td>n.s. ($p = .06$)</td>
</tr>
</tbody>
</table>
Emphatically lengthened consonants in Japanese

The effect of emphasis is still significant in the regression model ($t(314) = 15.5, p < .001$), but the coefficient estimate is lower (22 ms), compared to the previous three speakers. The smaller coefficient is presumably related to the fact that the duration range is smallest among the speakers we have seen thus far. This speaker’s r-value is slightly lower than the previous speakers’ r-values ($r = .66, p < .001$). Nevertheless, all the differences turned out to be significant by multiple comparison t-tests, the results of which are given in Table 6, presumably because each level of difference is manifested by some if not all consonants.

Next, as seen in Figure 7, Speaker EG often fails to show differences between emphasis levels in the middle range (between level 1 and level 2 as well as between level 3 and level 4 for [s], and from level 1 to level 3 for the two voiced consonants). The statistical tests, given

Figure 6 The average durations of each emphasis level: Speaker SX.

Table 6 Non-paired multiple comparison t-tests for Speaker SX, showing the effect of emphasis level on duration. $\alpha = .01$ after Bonferroni adjustment (.05/5).

<table>
<thead>
<tr>
<th>Comparison</th>
<th>t(df)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>level 0 vs. level 1</td>
<td>$t(126) = 17.6$</td>
<td>$p < .001$</td>
</tr>
<tr>
<td>level 1 vs. level 2</td>
<td>$t(126) = 4.3$</td>
<td>$p < .001$</td>
</tr>
<tr>
<td>level 2 vs. level 3</td>
<td>$t(126) = 2.8$</td>
<td>$p < .01$</td>
</tr>
<tr>
<td>level 3 vs. level 4</td>
<td>$t(122) = 4.1$</td>
<td>$p < .001$</td>
</tr>
<tr>
<td>level 4 vs. level 5</td>
<td>$t(122) = 3.2$</td>
<td>$p < .01$</td>
</tr>
</tbody>
</table>
in Table 7, show no significant differences between level 1 and level 3, but significant results elsewhere.

It seems that this speaker has a four-way contrast: non-emphatic (level 0), emphatic (level 1 to 3), very emphatic (level 4), and most emphatic (level 5). As an anonymous reviewer pointed out, this speaker may only have these four-way internal representations, and translated the various degrees of gemination marks to fit into these categories.

The effect of emphasis is nevertheless significant in the regression analysis \(t(310) = 15.1, p < .001 \), and the coefficient estimate is higher than Speaker SX (52 ms). Despite the apparent lack of differences in the middle range, \(r \) is reasonably high \((r = .65, \ p < .001) \).
Emphatically lengthened consonants in Japanese

Speaker FV, shown in Figure 8, does show a steady increase in duration, but we observe that the speaker does not show a difference between certain emphasis levels; e.g. level 1 and level 2 as well as level 3 and level 4 for [t]; level 4 and level 5 for [d]; level 3 and level 4 for [s]; level 1 to level 3, and level 4 to level 5 for [z]. The statistical tests show that, after Bonferroni correction, only the difference between level 0 and level 1 and the difference between level 2 and level 3 are reliable, as can be seen in Table 8. The effect of emphasis is still significant in the regression analysis ($t(275) = 11.2, p < .001$), but the coefficient estimate is low (24 ms). r is also low ($r = .56, p < .001$), as compared to the other speakers we have seen.

Figure 8 The average durations of each emphasis level: Speaker FV.

Table 8 Non-paired multiple comparison t-tests for Speaker FV, showing the effect of emphasis level on duration. $\alpha = .01$ after Bonferroni adjustment (0.05/5).

<table>
<thead>
<tr>
<th>Comparison</th>
<th>t(df)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>level 0 vs. level 1</td>
<td>$t(108) = 13.7$</td>
<td>$p < .001$</td>
</tr>
<tr>
<td>level 1 vs. level 2</td>
<td>$t(108) = 2.4$</td>
<td>n.s. ($p = .018$)</td>
</tr>
<tr>
<td>level 2 vs. level 3</td>
<td>$t(110) = 2.6$</td>
<td>$p < .01$</td>
</tr>
<tr>
<td>level 3 vs. level 4</td>
<td>$t(109) = 2.3$</td>
<td>n.s. ($p = .02$)</td>
</tr>
<tr>
<td>level 4 vs. level 5</td>
<td>$t(109) = 2.5$</td>
<td>n.s. ($p = .012$)</td>
</tr>
</tbody>
</table>
Finally, one speaker (Speaker NN) showed a more or less binary distinction, i.e. plain vs. emphatically lengthened, as shown in Figure 9. That is, this speaker does not seem to show distinctions among different levels of emphatically lengthened consonants (and this speaker seems to show an evident reversal between level 1 and level 2 for [z]). The results of multiple comparison t-tests, given in Table 9, support this observation. Although statistically significant ($t(236) = 3.33, p < .001$), the coefficient estimate in the regression model is as small as 7 ms. The r-value is also very low ($r = .21, p < .001$), compared to the other speakers. In short, this speaker may allow only two categories – no-emphasis and emphatically-lengthened – without any further distinctions among emphatically lengthened consonants.

Table 9 Non-paired multiple comparison t-tests for Speaker NN, showing the effect of emphasis level on duration. $\alpha = .01$ after Bonferroni adjustment (.05/5).

<table>
<thead>
<tr>
<th>Speaker NN</th>
<th>Comparison</th>
<th>t(df)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>level 0 vs. level 1</td>
<td>$t(93) = 10.5$</td>
<td>$p < .001$</td>
</tr>
<tr>
<td></td>
<td>level 1 vs. level 2</td>
<td>$t(92) = 0.0$</td>
<td>n.s. ($p = .97$)</td>
</tr>
<tr>
<td></td>
<td>level 2 vs. level 3</td>
<td>$t(93) = 2.6$</td>
<td>n.s. ($p = .011$)</td>
</tr>
<tr>
<td></td>
<td>level 3 vs. level 4</td>
<td>$t(94) = -0.3$</td>
<td>n.s. ($p = .75$)</td>
</tr>
<tr>
<td></td>
<td>level 4 vs. level 5</td>
<td>$t(94) = -0.2$</td>
<td>n.s. ($p = .85$)</td>
</tr>
</tbody>
</table>
3.2 Summary of the patterns of closure duration

Table 10 provides a summary of each speaker’s behavior. It provides the regression function for each speaker, as well as the r-value. The coefficients represent how many milliseconds each speaker increases consonant duration per emphasis level.\(^7\) The r-values are a measure of the strength of the linear correlation between emphasis levels and duration. In addition, as a measure of their duration range, the maximum duration is provided for each speaker.

All speakers showed a positive correlation between duration and emphasis levels. There are only a few instances of evident reversals, although in a number of cases we observed no differences between certain levels of emphasis.

We also observed that there are noticeable differences among speakers. Two speakers (FR and TW) showed perfect six-way distinctions. One speaker (EL) showed some cases in which no differences were observed, but the correlation between emphasis levels and duration was still high. Speaker EG seems to have had four categories. One speaker (NN) made little distinction among emphatically lengthened consonants, although there was a very weak correlation between duration and emphasis levels.

In Table 10, we observe an association between how finely each speaker realizes different degrees of emphasis and duration range. For example, Speakers FR and TW, who showed a fine six-way distinction, have very large duration ranges. Speaker NN, who showed an almost binary contrast between plain consonants and emphatically lengthened consonants, has a small duration range. The correlation is not perfect, however, since for example, Speaker EL has a high r-value but nevertheless has a relatively small duration range.

To summarize, all speakers showed a positive correlation between emphasis level and consonant duration, although we also observe some inter-speaker variability. Some speakers (especially Speakers FR and TW) seem to have managed to perfectly distinguish six levels of consonantal duration differences. The current experiment included (only) up to level 5 emphasis; it remains to be seen where the limit lies with respect to how many levels of emphasis can actually be produced.

3.3 Is the effect of lengthening localized? The effect on the preceding vowels

This study focused on consonant duration, because the main acoustic correlate of Japanese geminates is constriction duration (Han 1962, 1992, 1994; Homma 1981; Beckman 1982;\(^7\) Fujisaki, Nakamura & Imoto (1975) showed that the just noticeable difference (jnd) in duration for Japanese listeners is about 10 ms for non-speech pure tones whose base duration was 100 ms. The discrimination of durational differences is affected by various factors, including base duration (Abel 1972, Kato, Tsuzaki & Sagisaka 2002), the spectral nature of the intervals under question (Kato et al. 2002) and intensity changes from the surrounding intervals (Kato & Tsuzaki 1994, Kato, Tsuzaki & Sagisaka 1997, Kawahara, 2012). Therefore, whether the durational differences exhibited by speakers are perceptible or not must be tested in a separate perception experiment, although the coefficients are all larger than 10 ms (with the exception of Speaker NN).
Figure 10 The average durations of preceding vowels for each emphasis level with 95% confidence intervals. The figures have different y-axis scales, because different speakers use different duration ranges.

Hirata & Whiton 2005; Hirose & Ashby 2007; Kawahara 2006; Idemaru & Guion 2008; Amano & Hirata 2010; Hirata & Amano 2012). However, in addition to the results given above, a question arises as to whether, when Japanese speakers are expressing emphasis, the effect of emphasis is localized to only the target consonants. To address this question, a post-hoc analysis examined the duration of preceding vowels using a subset of the data (namely, instances of the stimulus item [katai] ‘hard’, as this word provided the best environment for duration measurement of preceding vowels among our existing stimuli).8

The results are shown in Figure 10 for each speaker (ordered as per the discussion in Section 3.1 and Table 10 above). We observe, first of all, that all speakers show longer preceding vowels in the emphatically lengthened conditions than in the plain consonant condition. This observation matches well with the earlier observation about Japanese that

8 Although the durations of following vowels are also known to be affected by the singleton–geminate difference in Japanese (Han 1994, Campbell 1999, Ofuka 2003, Hirata 2007, Idemaru & Guion 2008), they were not analyzed here because previous studies show that the influence of geminates is smaller on following vowels both acoustically and perceptually (Hirato & Watanabe 1987, Ofuka, Mori & Kiritani 2005, Hirata 2007, Idemaru & Guion-Anderson 2010).
Table 11 Summary of the correlation (Pearson’s r) between duration of preceding vowels and emphasis levels for each speaker. The r-values for consonants are reproduced in the rightmost column for the sake of comparison.

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Preceding vowels</th>
<th>Consonants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>sig.</td>
</tr>
<tr>
<td>Speaker FR</td>
<td>.52</td>
<td>$p < .001$</td>
</tr>
<tr>
<td>Speaker TW</td>
<td>.43</td>
<td>$p < .01$</td>
</tr>
<tr>
<td>Speaker EL</td>
<td>.65</td>
<td>$p < .001$</td>
</tr>
<tr>
<td>Speaker SX</td>
<td>-.007</td>
<td>n.s.</td>
</tr>
<tr>
<td>Speaker EG</td>
<td>.16</td>
<td>n.s.</td>
</tr>
<tr>
<td>Speaker FV</td>
<td>-.02</td>
<td>n.s.</td>
</tr>
<tr>
<td>Speaker NN</td>
<td>.14</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

preceding vowels are longer before geminates than before singletons (Fukui 1978, Port, Dalby & O’Dell 1987, Han 1994, Campbell 1999, Ofuka 2003, Kawahara 2006, Hirata 2007, Hirose & Ashby 2007, Idemaru & Guion 2008, Takeyasu 2012). This difference in duration between those preceding plain consonants and those preceding emphasized consonants, shown in Figure 10, is thus as expected from what we know about Japanese lexical geminates.

In addition, we observe some differences in pre-consonantal vowel duration among different emphatic levels for some speakers, but the tendency is much less clear compared to the differences we observed in consonantal duration. Even the two speakers who showed the clearest six-way differences in consonantal durations (Speakers FR and TW) do not show differences in preceding vowel duration among levels higher than 2. Speaker EL also does not show differences for levels higher than emphasis level 2. The next three speakers (Speaker SX, EG, FV) only show a two-way difference between plain consonants on the one hand and the emphatically lengthened consonants on the other, reflecting the general pattern found in Japanese (see above), but they do not show clear differences among the emphatically lengthened consonants. For Speaker NN, the difference between the plain and emphatically-lengthened conditions does not seem substantial.9

To compare the patterns of consonantal durations and vowel durations, Table 11 summarizes the correlation (Pearson’s r) values between durations of preceding vowels and emphasis levels for each speaker. Recall that these values are a measure of the strength of correlation between durations and emphasis levels. In the rightmost column, r-values for consonants are reproduced for each speaker from Table 10 for the sake of comparison. Table 11 confirms the observations we made regarding Figure 10. Speakers FR, TW and EL all show positive correlation, but these r-values are not as high as those we observed for consonantal durations with these speakers (see the rightmost column). The other speakers do not show a significant correlation between emphasis levels and preceding vowel duration. It can be concluded that the consonant gemination pattern in Japanese targets consonant duration more than preceding vowel duration, and that the effect of lengthening is primarily localized to consonant duration.

4 General discussion

4.1 Theoretical discussion

There are a number of theoretical questions that the current results bear on. One implication of this study, beyond providing the first experimental description of the emphatic gemination

9 A post-hoc t-test shows that there are indeed no significant differences ($t(10) = .98$, n.s.).
pattern in Japanese, is that at least two speakers showed clear six-way differences, and all but one speaker showed a steady linear correlation between duration and emphasis level. In general, then, from the point of view of articulation, it is likely that speakers can make durational differences that go beyond a binary distinction. This finding is interesting in light of the observation that for lexical singleton–geminate contrasts, the differences are usually limited to a binary difference (Ladefoged & Maddieson 1996). This conclusion— that they can produce more than binary durational differences— does not of course automatically generalize to the speakers of other languages, but at least some speakers from one language are able to produce six-way durational differences. Future cross-linguistic examinations are needed in order to further examine this conclusion.

Another theoretical question that arises is why, given that speakers can in general make durational distinctions beyond a binary contrast, do natural languages usually exploit only a two-way distinction for lexical contrasts. An obvious hypothesis would be that perception is playing a role here—a three-way durational contrast may be difficult to perceive and may cause confusion, which is to be avoided, following the spirit of Adaptive Dispersion Theory (see e.g. Liljencrants & Lindblom 1972; Lindblom 1986; Flemming 1995; Schwartz et al. 1997a, b; Padgett 2002; Diehl, Lindblom & Creeger 2004; see especially Engstrand & Krull 1994 and Kawahara 2012 for the relevance of perceptual dispersion in durational dimensions). Another hypothesis is more formal—that phonological systems build on binary distinctive features (the length contrast being one of these) (Chomsky & Halle 1968), such that lexical contrasts are always limited to binary distinctions by Universal Grammar. SETTLING THIS DEBATE IS BEYOND THE SCOPE OF THE PRESENT PAPER, AND WARRANTS FUTURE EXPERIMENTAL STUDIES.

Third, an anonymous reviewer raises the question of how the current results bear on the representation of long segments generally. In current phonological theory, there are, broadly speaking, two competing approaches: (i) simply representing long segments as [+long] (Kuroda 1967, Chomsky & Halle 1968), and (ii) separating timing slots from segmental content, with timing slots being represented by, for example, C-slots (McCarthy 1979), moras (Hayes 1989) or by root nodes (Selkirk 1990) (see Davis 2011 for a recent overview). For the emphatic lengthening phenomenon at least, it is impossible to simply deploy a [+long] feature, because the contrast is not binary. The second type of theory can more parsimoniously accommodate the lengthening phenomenon, because in principle, timing slots can be added for each emphasis level.

Finally, recall that for all the speakers, the emphatically lengthened consonants were longer than the plain consonants (despite the fact that not all speakers realized differences among the different levels of emphasis). Moreover, as observed in all the results figures, all speakers have a very large increase in duration from plain consonants to emphatically lengthened consonants, and this increase is larger than the observed differences among the different levels within the emphatically lengthened consonants. Thus it seems that Japanese speakers overall make a binary contrast between plain and emphatically lengthened consonants, and within the emphatic consonants, speakers choose different options about how to scale the

10We should perhaps be careful about extending this conclusion to lexical geminates, however, because there is no guarantee that lexical geminates and emphatically lengthened geminate are representationally identical. We note, however, that both lexical geminates and emphatically lengthened geminates in Japanese show lengthening of the preceding vowels. This parallel suggests that lexical geminates and emphatically lengthened geminates may have something in common with respect to their phonological representation.

11This observation is even more surprising when we consider the fact that Japanese is a mora-timed language, in which the duration of each mora is more or less consistent (see Beckman 1982, Port et al. 1987, Han 1994, Warner & Arai 2001 for discussion). Since single-level gemination is counted as the addition of one mora, at least in terms of orthography, the larger difference between plain consonants and consonants with level 1 emphasis is unexpected from the moraic point of view.
Emphatically lengthened consonants in Japanese

degrees of emphasis. That is, plain consonants are not 0 on the scale of emphasis, but instead are categorically different from all emphatically lengthened consonants. This pattern may imply that the distinction between non-emphatic and emphatic is semantically more important than the finer degrees of emphasis, and that speakers reflect this difference of semantic importance in their production of emphasized and plain consonants.

4.2 Remaining questions

The current study also raises several questions. For example, would speakers of other languages be able to make similar durational differences? Would there be a difference between languages that exploit duration-based lexical contrasts (as in Japanese) and those that do not (as in English)? In a follow-up study currently in progress, we have examined a similar phenomenon in English, using examples like That guy is soooooo creepy and That joke is suuuuper funny (Dresher et al. 2013). The preliminary results, partly illustrated in Figure 11, show that at least some English speakers – who do not have a phonological length contrast in their native language – do make differences that are similar to those found in our current project. This sort of cross-linguistic comparison should be examined in future studies.

The phenomenon of emphatic lengthening in Japanese (and other languages) can be studied from other perspectives as well. For example, it is conceivable that emphasis is conveyed along other acoustic dimensions, such as intensity differences. In such cases,
would we expect to see the same sort of fine-grained patterns which go beyond binary distinctions? Another question is whether Japanese speakers make similar levels of differences in actual production patterns in naturalistic settings, i.e. even when they are not prompted in experimental settings. Yet another question is that of perception: Given that speakers can produce distinctions that go beyond binary, to what extent can native speakers perceive them? These are interesting questions, which are, however, beyond the scope of the current study. Ultimately, our project may raise more questions than it answers, but for that very reason, this project will open up opportunities for future studies on the phonetics of pragmatic emphatic lengthening.

5 Final summary

In summary, while the phonetics of lexical singleton–geminate contrasts is well studied, there are few if any phonetic studies on pragmatically lengthened segments. The current paper has offered a first study of pragmatically lengthened consonants, using Japanese as a case study. It has shown that two speakers made six-way durational distinctions, and all other speakers (except for one) showed a steady correlation between consonant duration and emphasis level. The locus of durational differences is chiefly localized to consonant duration. This study raises many questions about the phonetics of pragmatic lengthening in Japanese and other languages, and thus opens up opportunities for future phonetic studies.

Acknowledgements

The recording for this experiment was conducted while the first author was a visiting scholar at International Christian University (Tokyo), which was made possible by a fellowship offered by the Japan ICU Foundation, for which we are grateful. The help by research assistants at the Rutgers Phonetics Laboratory with the acoustic analysis was indispensable. John Kingston and three anonymous reviewers offered very helpful comments on this project. Remaining errors are ours.

References

13A perception experiment using English listeners has been conducted and is currently being analyzed.

