1 The phonetics of *sokuon*, or geminate obstruents

1 Introduction

Japanese has a phonemic contrast between short and long nasal and obstruent consonant series, as exemplified by minimal pairs like *[kata]* ‘frame’ vs. *[katta]* ‘bought’ and *[hato]* ‘dove’ vs. *[hatto]* ‘hat’.\(^1\) Short consonants are generally called “singletons”, whereas long consonants are called “geminates”, geminate obstruents, or obstruent geminates (see also Kawagoe, this volume). In the traditional literature on Japanese phonetics and phonology, the first half of obstruent geminates is called “*sokuon*” for which the symbol /Q/ is often used; in the Japanese orthographic system, this coda part is represented by “small tsu”. Nasal geminates or their coda portions are called *hatsuon*; in the traditional literature they are represented by /N/. This chapter focuses on obstruent geminates. Henceforth, the term “geminates” refers specifically to obstruent geminates or *sokuon*, unless otherwise noted. This chapter provides an overview of the acoustic, perceptual, and articulatory characteristics of Japanese geminates.\(^2\)

\(^1\) There is no phonemic contrast between short and long approximants (liquids and glides) in Japanese (see Kawagoe, this volume). Geminates can occur in emphatic forms (e.g. *[kowwai]* ‘very scary’ is an emphatic form of *[kowai]* ‘scary’). See Aizawa (1985), Kawahara (2001), Kawahara and Braver (2014), and section 5.3 for the non-structure preserving nature of this emphatic gemination in Japanese. For the phonetic reasons that may possibly underlie the prohibition against lexical approximant geminates, see Kawahara, Pangilinan, and Garvey (2011), Kawahara (2012), Podesva (2000) and Solé (2002).

\(^2\) Primarily due to limitation of the author’s expertise, L2 learning of Japanese geminates is not covered in this paper. Readers are directed to the following references: Han (1992); Motohashi-Saigo and Hardison (2009); Oba, Brown, and Handke (2009); Tajima et al. (2008), several papers in a special issue of *Onsei Kenkyū* 11:1 (Kubozono 2007), those cited therein, as well as Hirata (this volume). Another topic that this chapter does not cover is a gemination pattern found in the process of loanword adaptation (e.g. *[bakkusu]* ‘back’ < English *back*), which arguably has a perceptual basis (e.g. Kawagoe and Takemura 2013; Takagi and Mann 1994, though cf. Kubozono, Ito and Mester 2008). See Kawagoe (this volume) and Kubozono (this volume) for further discussion on this phenomenon.

This chapter does not deal with long vowels, although many issues discussed for geminate consonants in this paper are also relevant to long vowels. Here I list some key references. For general durational properties of long vowels in Japanese, see Braver and Kawahara (2014); Han (1962); Hoequist (1982); Kawahara and Braver (2013); Mori (2002) and Port, Dalby, and O’Dell (1987); for the effect of speech rate on long vowel production and perception, see Hirata (2004) and Hirata and Lambacher (2004); for secondary, non-durational acoustic correlates and their perceptual impacts, see Behne et al. (1999); Hirata and Tsukada (2009) and Kinoshita, Behne, and Arai (2002).
The structure of this paper is as follows. Section 2 discusses acoustic correlates of a singleton/geminate contrast in Japanese. The primary acoustic correlate exploited by Japanese speakers is constriction duration; other acoustic correlates include various durational correlates (e.g. duration of preceding vowel) and non-durational correlates (e.g. spectral properties in surrounding vowels). Section 2 also discusses other topics including the search for invariance and manner effects, as well as comparison of Japanese with other languages. Section 3 provides an overview of the experiments on the perception of geminates in Japanese. It discusses the effect of constriction duration as the primary perceptual cue, and also discusses how the duration of surrounding intervals affects the perception of geminates. Section 4 provides an overview of the literature on the articulation of Japanese geminates. Several issues that require further investigation are identified throughout the paper, and Section 5 raises several other issues that are not covered in the rest of the paper.

2 The acoustic characteristics of geminates in Japanese

2.1 The primary acoustic correlate: constriction duration

Japanese is often assumed to be a mora-timed language (see Warner and Arai 1999 for a review; see also Otake, this volume, on mora-timing); geminates are moraic, while singletons are not; for example, disyllabic words containing a geminate like [katta] ‘bought’ or [hatto] ‘hat’ have three moras. Reflecting their moraic nature, geminate consonants in Japanese have a longer consonantal constriction. Acoustically, the primary correlate of a singleton-geminate contrast is a difference in constriction duration – i.e. for stops, it is closure duration and for fricatives, it is frication duration. (In this paper, “duration” refers phonetic measures and “length” refers phonological contrast; “constriction” refers to both stop closure and narrow aperture for fricatives).3

Before proceeding to the discussion, there is one remark about what is meant by a particular acoustic correlate being “primary”. The concept of being “primary” can mean several different things. A primary acoustic correlate can be used to mean an acoustic parameter that is invariant across speakers, speech styles, phonological contexts, or even across languages; a “primary” cue is also used to mean that it constitutes the most important perceptual cue for listeners, one that dominates other secondary cues (Lahiri and Hankamer 1988) so that secondary cues are only exploited when the target stimuli are ambiguous in terms of the primary cue, distributing around a range that is not found in natural speech (Hankamer, Lahiri, and

3 For affricates, the primary acoustic correlate seems to lie in the difference in the closure duration, and not in frication duration (Oba, Brown, and Handke 2009). See section 2.3.2.
Koreman 1989; Picket, Blumstein, and Burton 1999). For a general discussion on primacy of cues, see Abramson and Lisker (1985); Stevens and Blumstein (1981); Stevens and Keyser (1989); Whalen et al. (1993) and others; for a discussion of primacy in the context of length distinctions, see Abramson (1992); Hankamer, Lahiri, and Koreman (1989); Idemaru and Guion (2008); Lahiri and Hankamer (1988); Picket, Blumstein, and Burton (1999) and Ridouane (2010). Ridouane (2010) argues that cross-linguistically, differences in constriction duration are the most consistent acoustic correlates of singleton-geminate contrasts.

With this said, the primary acoustic correlate of Japanese geminates is greater duration compared to singletons: geminate consonants are characteristically longer than singleton consonants. Figures 1 and 2 show illustrative waveforms and spectrograms of a singleton [t] and a geminate [tt] in Japanese (with the same time scale of 300ms). As we can see, the geminate [tt] has a longer closure than the singleton [t].

Many acoustic studies have investigated the durational properties of singleton-geminate contrasts in Japanese, and Table 1 summarizes their findings. This summary shows that geminate stops are generally at least twice as long as corresponding singleton stops, and can sometimes be as three times as long, regardless of the

![Figure 1: A singleton [t] in Japanese. Produced by a female native speaker of Japanese. The time scale is 300ms](image-url)
place of articulation or voicing status of the consonants (though see section 2.3 for further discussion on the manner effect on geminate duration).

2.2 Secondary acoustic correlates

As with many other phonological contrasts, a singleton-geminate contrast is acoustically manifested not only by constriction duration, but by multiple other acoustic properties as well. (Multiplicity of acoustic correlates for phonological contrasts has been an important topic throughout the history of the phonetic theory; see, for example, Abramson 1998; Kingston and Diehl 1994; Lisker 1986 and references cited therein.)

2.2.1 Other durational correlates

In Japanese, vowels are longer before geminates than before singletons (Campbell 1999; Fukui 1978; Han 1994; Hirata 2007; Hirose and Ashby 2007; Idemaru and Guion

Figure 2: A geminate [tt]. The time scale is 300ms
Table 1: Summary of the previous studies on closure duration of singleton and geminate stops and their ratios in Japanese. Duration measures are in milliseconds. SD = standard deviation; MoE = margin of error for 95% confidence intervals. Sing = singleton; Gem = geminate; VOT = Voice Onset Time; vls = voiceless; vcd = voiced

<table>
<thead>
<tr>
<th>Sources</th>
<th>Sing duration</th>
<th>Gem duration</th>
<th>Ratio</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Han (1962)</td>
<td>–</td>
<td>–</td>
<td>2.6–3.0</td>
<td>based on small N</td>
</tr>
<tr>
<td>Homma (1981)</td>
<td>[p]: 77</td>
<td>[pp]: 183</td>
<td>2.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[b]: 55</td>
<td>[bb]: 159</td>
<td>2.89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[t]: 62</td>
<td>[tt]: 170</td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[d]: 35</td>
<td>[dd]: 144</td>
<td>4.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[k]: 61</td>
<td>[kk]: 175</td>
<td>2.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[g]: 41</td>
<td>[gg]: 134</td>
<td>3.27</td>
<td></td>
</tr>
<tr>
<td>Beckman (1982)</td>
<td>[k]: 89 (17)</td>
<td>[kk]: 195 (32)</td>
<td>2.25</td>
<td>(SD), 5 speakers</td>
</tr>
<tr>
<td></td>
<td>[k]: 64 (15)</td>
<td>[kk]: 171 (32)</td>
<td>2.79</td>
<td>VOT excluded</td>
</tr>
<tr>
<td>Port et al. (1987)</td>
<td>[k]: 65 (12)</td>
<td>[kk]: 149 (25)</td>
<td>2.29</td>
<td>w_ w</td>
</tr>
<tr>
<td></td>
<td>[k]: 66 (14)</td>
<td>[kk]: 146 (28)</td>
<td>2.21</td>
<td>a_ w</td>
</tr>
<tr>
<td>Han (1994)</td>
<td>(see also Han 1992)</td>
<td></td>
<td></td>
<td>(SD), 10 speakers</td>
</tr>
<tr>
<td></td>
<td>[p]: 76.3 (5.6)</td>
<td>[pp]: 195.9 (21.9)</td>
<td>2.57</td>
<td>su_ ai</td>
</tr>
<tr>
<td></td>
<td>[p]: 72.9 (9.7)</td>
<td>[pp]: 205.4 (29.9)</td>
<td>2.82</td>
<td>su_ ori</td>
</tr>
<tr>
<td></td>
<td>[t]: 71.5 (7.4)</td>
<td>[tt]: 192.3 (27.2)</td>
<td>2.69</td>
<td>i_ e</td>
</tr>
<tr>
<td></td>
<td>[t]: 53.5 (8.0)</td>
<td>[tt]: 166.6 (24.1)</td>
<td>3.11</td>
<td>ki_ e</td>
</tr>
<tr>
<td></td>
<td>[t]: 57.9 (10.2)</td>
<td>[tt]: 174.5 (21.5)</td>
<td>3.01</td>
<td>fi_ ei</td>
</tr>
<tr>
<td></td>
<td>[t]: 52.7 (8.0)</td>
<td>[tt]: 170.9 (25.8)</td>
<td>3.24</td>
<td>ki_ e</td>
</tr>
<tr>
<td></td>
<td>[t]: 68.2 (9.0)</td>
<td>[tt]: 189.8 (28.5)</td>
<td>2.78</td>
<td>i_ a</td>
</tr>
<tr>
<td></td>
<td>[k]: 63.5 (8.5)</td>
<td>[tt]: 178.2 (22.5)</td>
<td>2.81</td>
<td>yo_ a</td>
</tr>
<tr>
<td></td>
<td>[k]: 57.5 (8.5)</td>
<td>[tt]: 175.8 (30.9)</td>
<td>3.06</td>
<td>fi_ e</td>
</tr>
<tr>
<td></td>
<td>[k]: 79.4 (6.6)</td>
<td>[kk]: 198.7 (24.6)</td>
<td>2.50</td>
<td>ha_ eN</td>
</tr>
<tr>
<td>Kawahara (2006a)</td>
<td>vls: 59.9 (2.1)</td>
<td>vls: 128.6 (3.1)</td>
<td>2.15</td>
<td>(MoE), 3 speakers</td>
</tr>
<tr>
<td></td>
<td>vcd: 42.3 (1.7)</td>
<td>vcd: 113.1 (3.0)</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>Hirose and Ashby (2007)</td>
<td>vls: 60.5</td>
<td>vls: 114.2</td>
<td>1.89</td>
<td>3 speakers</td>
</tr>
<tr>
<td></td>
<td>vcd: 44</td>
<td>vcd: 108</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td>Idemaru & Guion (2008)</td>
<td>69 (28)</td>
<td>206 (45)</td>
<td>2.99</td>
<td>(SD), 6 speakers all stop consonants</td>
</tr>
</tbody>
</table>

2008; Kawahara 2006a, 2013b; Kawahara and Braver 2014; Ofuka 2003; Port, Dalby, and O’Dell 1987; Takeyasu 2012).4 Port, Dalby, and O’Dell (1987) found, for example, that [ɯ] is on average 68ms before singleton [k] and 86ms before geminate [kk]; i.e. that [ɯ] is 18ms longer on average before geminates. Kawahara (2006a) found

4 Vowels are also longer in closed syllables before a so-called moraic nasal (or hatsuon) – i.e. in (C) VN – than in open syllables – i.e. in (C)V (Campbell 1999). This observation indicates that this lengthening is due to a general, syllable-based phenomenon. The pre-geminate lengthening can also block otherwise productive high vowel devoicing between two voiceless consonants (Han 1994; Takeyasu 2012; see also Fujimoto, this volume).
similarly that vowels before voiceless singletons are on average 36.9ms while those before voiceless geminates are 53.4ms. Furthermore, some studies even found that in C1VC2V contexts, C1 is longer when C2 is a geminate than when C2 is a singleton (Han 1994; Port, Dalby, and O’Dell 1987) (cf. Takeyasu 2012 who found the opposite, shortening pattern; Hindi shows the same lengthening pattern: Ohala 2007).

On the other hand, vowels that follow geminate/singletons show the reverse pattern: those that follow geminate consonants are shorter than those that follow singleton consonants (Campbell 1999; Han 1994; Hirata 2007; Idemaru and Guion 2008; Ofuka 2003). Han (1994) found the shortening of post-geminate vowels (and sometimes also the following word-final moraic nasals) by 9ms. In an acoustic study reported in Idemaru and Guion (2008), the mean duration of the following vowel is 63ms after geminates and 76ms after singletons. As explicitly noted by Hirata (2007), however, this difference in duration of the following vowels is less substantial and less consistent than the difference in the preceding vowel.

Finally, one may expect that Voice Onset Time (VOT) – an interval between the release of the closure and the onset of voicing of the following vowel – would be longer for geminate stops than for singleton stops, because longer closure would result in higher pressure build-up behind the stop occlusion. However, this expectation does not seem to hold: in Han (1994), VOT is slightly shorter for geminates than for singletons; in other studies (Hirata and Whiton 2005; Homma 1981), the relationship is inconsistent. See Kokuritsu Kokugo Kenkyūjo (1990) for the data on the intraoral air pressure rise in Japanese consonants, which indeed shows that geminates do not involve higher intraoral air pressure rise.

2.2.2 Other non-durational, acoustic correlates

Several studies have investigated other non-durational, acoustic correlates of a singleton-geminate contrast in Japanese. Their findings are summarized in Table 2.

As observed in Table 2, Japanese geminates are associated with various non-durational cues. Given that, in addition to the primary acoustic correlate of constriction duration, there are a number of acoustic cues that are associated with Japanese geminates, they cannot be merely characterized as “long consonants”.

A remaining question therefore is how to represent Japanese geminates phonologically. Many possibilities exist in answer to this question, such as (i) double consonants (often assumed in phonemic representation/transcription), (ii) moraic consonants (Hayes 1989), (iii) a special /Q/ phoneme – or sokuon – as assumed in the traditional literature (e.g. Hattori 1984), or (iv) a special syllable concatenater (Fujimura and Williams 2008). This issue should continue to be discussed in relation to the phonological behavior of Japanese geminates (see Kawagoe, this volume), as well as to the theory of phonetic implementation of phonological representations.
2.2.3 The search for invariance

One general research program in phonetics is the search for invariance (Stevens and Blumstein 1981). The issue addressed in this program is whether, for each phonological distinction, there exists any acoustic correlate that is invariant across phonological contexts, individual speakers, and speech styles, etc., and if so, what those invariant acoustical properties are. This issue is particularly important for a singleton-geminate contrast, because, although geminates are longer than singletons given the same speech rate, geminates in fast speech styles can be shorter than singletons in slow speech styles (Hirata and Whiton 2005; Idemaru and Guion-Anderson 2010).5

Usually proposals for invariant measures take the form of a relationship between more than one acoustic parameter. The general idea behind these studies on phonological contrasts based on durations is rate normalization – listeners normalize the duration of incoming acoustic signal according to the speech rate, which can be (unconsciously) inferred from the duration of other intervals (Miller and Liberman 1979; Pickett and Decker 1960). For example, when a preceding vowel sounds short, a listener may perceive that the speaker is speaking fast, and as a result even a phonetically short interval may be interpreted as phonologically long.6

5 It has been observed in other languages (Italian: Pickett, Blumstein, and Burton 1999 and Persian: Hansen 2004) that geminates are more susceptible to change in duration due to speech rate than singletons are. This asymmetry seems to hold in the Japanese data as well (Hirata and Whiton 2005; Idemaru and Guion-Anderson 2010).

6 An alternative theory is auditory durational contrast. This auditory mechanism (more or less automatically) renders an interval to sound longer next to a shorter interval (this mechanism is sometimes referred to as “durational contrast”). This mechanism is arguably not specific to speech, as it applies to the perception of non-speech stimuli (Diehls and Walsh 1989; Kluender, Diehl, and Wright 1988). It is beyond the scope of this paper to compare these two theories (for further discussion on this debate, see Diehl, Walsh, and Kluender 1991; Fowler 1990, 1991, 1992; Kingston et al. 2009).

Table 2: A summary of other, non-durational, acoustic correlates of Japanese geminates

<table>
<thead>
<tr>
<th>Patterns</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity</td>
<td>I&G, O</td>
</tr>
<tr>
<td>– The mean intensity difference between the surrounding vowels is larger across geminates.</td>
<td>I&G, O</td>
</tr>
<tr>
<td>F0</td>
<td>I&G, O, K</td>
</tr>
<tr>
<td>– F0 drop (a correlate of a lexical accent – see Kawahara, this volume) is larger across geminates.</td>
<td>I&G, O, K</td>
</tr>
<tr>
<td>– F0 falls toward geminates in unaccented disyllabic words.</td>
<td>F</td>
</tr>
<tr>
<td>F1</td>
<td>K</td>
</tr>
<tr>
<td>– F1 is lower after geminates.</td>
<td>K</td>
</tr>
<tr>
<td>Spectral tilt</td>
<td>I&G</td>
</tr>
<tr>
<td>– H1-A1 is smaller for vowels after geminates (i.e. vowels are creakier).</td>
<td>I&G</td>
</tr>
</tbody>
</table>
Several relational acoustic measures have been proposed as an invariant measure that distinguishes singletons from geminates across different speech rates. Hirata and Whiton (2005) recorded various disyllabic tokens of singletons and geminates in nonce words and real words in three speech styles (slow, normal, and fast), and considered three measures: (i) raw closure duration, (ii) C/V₁ ratio (the ratio between the target consonant and the preceding vowel), and (iii) C/W(ord) ratio. Hirata (2007) and Hirata and Forbes (2007) followed up on this study and considered three more measures: (i) C/V₂ ratio (V₂ = the following vowel), (ii) V-to-V interval (i.e. added durations of preceding vowel, constriction and VOT)⁷ and (iii) VMora (V-to-V interval divided by average mora duration). Idemaru and Guion-Anderson (2010) tested yet a few more relational measures: C/V₁, C/C₁V₁, C/V₂, and C/(C + V₂) (where C is the target consonant, C₁ and V₁ are the preceding consonant and vowel, and V₂ is the following vowel), in addition to those already tested by Hirata and Whiton (2005) (specifically, raw closure duration and C/W ratio). After recording their own various tokens of singletons and geminates in three speaking rates, for each measure, Idemaru and Guion-Anderson (2010) tested classification accuracy percentages based on raw values as well as z-transformed (normalized) values within each speaker. Finally, in the most recent study on this topic, Hirata and Amano (2012) introduced a yet new notion, subword, which is a disyllabic (C)V(C)CV sequence, which includes the target singleton and geminate consonant medially. This notion is equivalent to C/W in Hirata and Whiton’s (2005) work, as they used only disyllabic words.

All of these studies used discriminant analyses for each proposed measure to calculate how many percentages of tokens are accurately classified as a member of the intended category. The classification accuracy percentages of all the measures in these studies are summarized in Table 3.

One tendency that is clear from Table 3 is that relational measures generally classify singletons from geminates better than raw durational values do. Just which relational measure best cross-classifies Japanese singletons from geminates is an interesting topic for on-going and future research. We cannot also deny the possibility that there are other measures, relational or not, which better cross-classify Japanese singletons and geminates, which are yet to be uncovered.⁸

Another important issue is the perceptual relevance – or reality – of the relational, invariant acoustic measures: whether Japanese listeners exploit relational, acoustic measures, and if so, which measures are they sensitive to. For example,

⁷ For example, given [kata], the V-to-V interval is [at], and given [katta], the V-to-V interval is [att].

⁸ Other relational invariant measures proposed for length contrasts in other languages include C/V₁ ratio for Italian (Pickett, Blumstein, and Burton 1999), vowel to rhyme duration ratio for Icelandic (Pind 1986) (in which long vowels and geminates are more or less in a complementary distribution), and the ratio of the closure duration to the syllable duration in Persian (with some further complications) (Hansen 2004).
Idemaru and Guion-Anderson (2010) followed up their acoustic study with a perception test, which showed that while preceding mora (C1V1) duration significantly affects the perception of geminacy, whereas the following materials (C/V2 ratio) do so only marginally, despite the fact that ratios involving these two factors yielded comparable accuracy percentages in production (see Table 3). See also Amano and Hirata (2010) and Otaki (2011) and section 3.2 for further discussion on the relationship between production and perception, especially in terms of contextual effects on the perception of length contrasts.

2.3 Manner and voicing effects

One issue that has received relatively less attention in the previous literature on Japanese geminates is the comparison of different manners of geminates in Japanese. Most previous acoustic studies on Japanese have investigated oral stops (Beckman 1982; Han 1992, 1994; Hirata and Whiton 2005; Hirose and Ashby 2007; Homma 1981; Idemaru and Guion 2008; Kawahara 2006a), although some studies included geminates of various manner types (e.g. Han 1962 measured oral stops and nasals; Campbell 1999 measured stops and some fricatives). Other languages that have been
studied in this light—manner effects on geminate contrasts—include Italian (affricates: Faluschi and Di Benedetto 2001; fricatives: Giovanardi and Di Benedetto 1998; nasals: Mattei and Di Benedetto 2000; see also Payne 2005), Cypriot Greek (Tserdanelis and Arvaniti 2001), Guinaang Bontok (Aoyama and Reid 2006), Finnish (Lehtonen 1970), Buginese, Madurese, and Toba Batak (Cohn, Ham, and Podesva 1999).

2.3.1 Fricative geminates

Japanese allows both (voiceless) stops and fricatives to contrast in geminacy. As in other languages (Lehiste 1970), singleton fricatives are generally longer than singleton stops in Japanese (Beckman 1982; Campbell 1999; Port, Dalby, and O’Dell 1987; Sagisaka and Tohkura 1984). As a result, geminate/singleton duration ratios are smaller for fricatives than for stops. Table 4 reports unpublished data collected by the author based on three female Japanese native speakers. All speakers were in their twenties at the time of recording, and the recording took place in a sound-attenuated room. Each target sound was pronounced in a nonce word frame [ni_o] (for most cases), itself being embedded in a frame sentence. Accents were always placed on the initial syllables. All three speakers repeated 10 repetitions of all tokens.

Table 4 shows the results of duration measurements (for stops, VOT’s were not included in the closure duration, as in many studies cited in Table 1). Duration ratios

Table 4: The effects of manner of articulation on the duration of singletons and geminates in Japanese (margin of error for 95% confidence intervals.)

<table>
<thead>
<tr>
<th>Segment</th>
<th>Singleton</th>
<th>Geminate</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>[p]</td>
<td>77.3 (7.8)</td>
<td>129.6 (8.1)</td>
<td>1.68</td>
</tr>
<tr>
<td>[t]</td>
<td>55.5 (4.6)</td>
<td>124.4 (7.3)</td>
<td>2.24</td>
</tr>
<tr>
<td>[k]</td>
<td>67.3 (7.1)</td>
<td>128.7 (7.1)</td>
<td>1.91</td>
</tr>
<tr>
<td>[b]</td>
<td>53.1 (3.8)</td>
<td>131.4 (8.8)</td>
<td>2.47</td>
</tr>
<tr>
<td>[d]</td>
<td>36.6 (1.9)</td>
<td>116.0 (10.4)</td>
<td>3.16</td>
</tr>
<tr>
<td>[g]</td>
<td>52.1 (3.7)</td>
<td>115.0 (13.2)</td>
<td>2.20</td>
</tr>
<tr>
<td>[ɸ]</td>
<td>83.5 (4.8)</td>
<td>144.7 (7.4)</td>
<td>1.73</td>
</tr>
<tr>
<td>[s]</td>
<td>83.2 (4.6)</td>
<td>134.5 (7.0)</td>
<td>1.62</td>
</tr>
<tr>
<td>[ʃ]</td>
<td>85.9 (5.7)</td>
<td>138.4 (7.3)</td>
<td>1.61</td>
</tr>
<tr>
<td>[ç]</td>
<td>63.4 (2.5)</td>
<td>132.0 (6.2)</td>
<td>2.08</td>
</tr>
<tr>
<td>[h]</td>
<td>72.2 (4.2)</td>
<td>143.7 (6.4)</td>
<td>1.99</td>
</tr>
</tbody>
</table>

9 I am grateful to Kelly Garvey and Melanie Pangilinan for their help with this acoustic analysis. This project also measured the duration of singleton and geminate nasals. The result shows that the geminate/singleton duration ratio for [n] was about 2.2 (Kawahara 2013a).
are highest for voiced stops than for voiceless stops (see also Homma 1981 and Hirose and Ashby 2007 for the same finding), which are also generally higher than for fricatives (except for [ç] and [h]).

One phonological importance of the difference between stop pairs and fricative pairs is that the length contrast may be less perceptible for fricatives than for stops. This less perceptible contrast of fricative pairs may lead to a diachronic neutralization (Blevins 2004) and/or avoidance of fricative geminates in synchronic phonological patterns (Kawahara 2006b, 2013b) due to a principle of contrastive dispersion to avoid contrasts that are not very well perceptible (Engstrand and Krull 1994; Flemming 2004; Liljencrants and Lindblom 1972; Lindblom 1986 and references cited therein; see also Martin and Peperkamp 2011 for a recent review on the effect of speech perception on phonological patterns.).

2.3.2 Affricate geminates

Affricates ([ts]) are not contrastive in the native phonology of Japanese, appearing as an allophonic variant of /t/ before [ɯ] (see Pintér, this volume); Geminate [ts], however, appears marginally in some borrowing as in [kjattsɯ] “cats” (see Kubozono, this volume). For this reason, the phonetic properties of affricate geminates have been much understudied. As far as I know, the only extensive study is that is offered by Oba, Brown, and Handke (2009), who found that the primary acoustic correlate of affricate geminates seems to lie in the difference in the closure duration, and not in frication duration. More studies on the properties of affricate geminates in Japanese are hoped for.

2.3.3 Voiced obstruent geminates

Finally, the effect of voicing on geminates is no less interesting. The native phonology of Japanese does not allow voiced obstruent geminates (Ito and Mester 1995, 1999; Kuroda 1965). The lack of voiced obstruent geminates has been argued to be due to their aerodynamic difficulty (Hayes and Steriade 2004; Ohala 1983; Westbury and

10 This study also found that the duration ratio of [p]-[pp] is smaller than that of [t]-[tt] and [k]-[kk]. This lower ratio may be related to the fact that length is not contrastive for [p] in the native phonology in Japanese (see Ito and Mester 1995, 1999 and Nasu, this volume). One puzzle, however, is why voiced stops have high duration ratios despite the fact that they are not contrastive in native Japanese phonology (Ito and Mester 1995, 1999). See also Engstrand and Krull (1994) for the relationship between the functional load of length contrasts and their phonetic realization. A full consideration on this relationship should be explored in future studies.

11 Whether there indeed is a difference in perceptibility between stops and fricatives should be tested in a perception study.
For voiced stops, the intraoral air pressure goes up behind the oral stop closure; this rise in the intraoral air pressure makes it difficult to maintain the airflow required for vocal fold vibration. For voiced fricatives, the intraoral air pressure must rise to create frication, which again makes it difficult to maintain the transglottal air pressure drop. Perhaps for these reasons (synchronously or diachronically), the native phonology of Japanese does not allow voiced obstruent geminates.

However, gemination found in the context of loanword adaptation resulted in voiced obstruent geminates (e.g. Katayama 1998; Kubozono, Ito, and Mester 2008; Shirai 2002; see also Kawagoe, this volume, and Kubozono, this volume); e.g. [heddo] ‘head’ and [eggu] ‘egg’. Nevertheless, presumably due to the aerodynamic difficulty, voiced geminate stops are generally “semi-devoiced” in Japanese. All three speakers recorded in Kawahara (2006a) show semi-devoicing. Figures 3 and 4 illustrate the difference between singletons and geminates: for singleton [g], closure voicing is fully maintained, while for geminate [gg], voicing during the stop closure ceases in the middle of the whole closure. In Kawahara (2006a), on average, voicing is maintained only about 40% of the whole closure. Hirose and Ashby (2007) replicate this finding, showing that voiced Japanese geminates have only 47% of closure voicing.

As far as I know, there is no quantitative study on the phonetic implementation on voiced geminate fricatives in Japanese – this is a topic which is worth pursuing in a future study.

One notable aspect of this semi-devoicing of geminates is that the following word-final high vowels after “semi-devoiced” geminates (e.g. [eggu] ‘egg’) do not devoice, even though the vowels are preceded by a – phonetically speaking – voiceless interval (Hirose and Ashby 2007). The lack of high vowel devoicing in this context shows that the (semi-devoiced) voiced geminates are still phonologically voiced, and that high vowel devoicing is conditioned by phonological, rather than, phonetic factors. See Fujimoto (this volume) for further discussion on this debate.

The semi-devoicing of voiced obstruent geminates is found in other languages (e.g. (Tashlhiyt) Berber: Ridouane 2010), but it is not universal, despite the fact that it presumably arises from a physical, aerodynamic difficulty (Ohala 1983). Cohn, Ham and Podesva (1999) show, for example, that Buginese, Madurese, and Toba Batak all maintain voicing throughout the geminate closure; Egyptian Arabic is another language which has fully voiced geminates (Kawahara 2006a), and Lebanese

12 These spectrograms are based on new recordings made for Kawahara (2013c).
13 Voiced fricatives in Japanese become affricates word-initially, although whether this alternation is in free-variation or an allophonic alternation is controversial (Maekawa 2010). Osamu Fujimura (p.c., April 2012) points out that this hardening process may also happen when voiced fricatives become geminates as well, as in [oddzu] ‘odds’. Affrication process may then be a general hardening process, which occurs in phonetically strong positions (i.e. word-initially and in geminates).
Arabic shows high percentages of voicing maintenance in medial, non-final positions (Ham 2001). Several Japanese dialects in Kyushu, including the Nagasaki dialect, also seem to show fully voiced geminate stops (Matsuura 2012). Cohn, Ham, and Podesva (1999) speculate that speakers resort to extra articulatory maneuvers like larynx lowering and cheek expansion to deal with the aerodynamic challenges (Ohala 1983). These articulatory gestures expand the size of oral cavity, thereby lowering the intraoral pressure (by Boyle’s Law), providing the sufficient transglottal air pressure drop necessary to maintain vocal fold vibration (see Hayes and Steriade 2004, Ohala 1983, Ohala and Riordan 1979, and others).

The reason that (non-Kyushu) Japanese speakers do not deploy such articulatory strategies – at least not to the extent that geminates are fully voiced – may be that...
voiced obstruent geminates are historically relatively new (see Pintér, this volume), and therefore the functional load of a voicing contrast in geminates is low, the contrast being restricted to loanwords (Ito and Mester 1995, 1999); i.e. there are not many minimal pairs. It would thus be interesting to observe whether speakers of future generations would start producing fully-voiced geminates, if the voicing contrast in geminate becomes more widespread in the Japanese lexicon. Moreover, a further cross-linguistic comparison is warranted to explore the relationship between how voiced stop geminates are implemented, and how the particular phonetic implementation patterns affect their phonological patterns (if they do at all) (see Kawahara 2006a for discussion).

Figure 4: A geminate [gg]
2.4 Comparison with other languages

2.4.1 Constriction duration

I have already mentioned a few differences and similarities between Japanese geminates and geminates found in other languages, but now we turn our attention to a more detailed comparison of Japanese with other languages. As reviewed in section 2.1, Japanese geminates are acoustically characterized by long constriction duration, almost always twice as long as corresponding singletons. Similarly, constriction duration is usually the primary acoustic correlate of a singleton/geminate contrast in other languages; e.g. (Lebanese) Arabic (Ham 2001), Bengali (Lahiri and Hankamer 1988), Berber (Ridouane 2010), Bernese (Ham 2001), Buginese (Cohn, Ham, and Podesva 1999), Estonian (Engstrand and Krull 1994), Finnish (Engstrand and Krull 1994; Lehtonen 1970), Cypriot Greek (Tserdanelis and Arvaniti 2001), Guinaang Bontok (Aoyama and Reid 2006), Hindi (Ohala 2007; Shrotriya et al. 1995), Hungarian (Ham 2001), Italian (Esposito and Di Benedetto 1999; Payne 2005; Pickett, Blumstein, and Burton 1999), Madurese (Cohn, Ham, and Podesva 1999), Malayalam (Local and Simpson 1999), Pattani Malay (Abramson 1987b), Persian (Hansen 2004), Swedish (Engstrand and Krull 1994), Swiss German (Kraehenmann and Lahiri 2008), Toba Batak (Cohn, Ham, and Podesva 1999), and Turkish (Lahiri and Hankamer 1988) (see Kawahara and Braver 2014 and Ridouane 2010 for more languages and references).

One interesting cross-linguistic difference is the size of duration ratios between singletons and geminates. In Norwegian, for example, the ratio is much smaller than in Japanese (ranging from 1.22–1.38 in medial positions, cf. Table 1), and more substantial differences manifest themselves in the duration of preceding vowels (Fintoft 1961) (although one should note that Fintoft measured only non-stop consonants; see section 2.3.1). In Buginese and Madurese, the geminate/singleton duration ratios are generally below 2 (Cohn, Ham, and Podesva 1999). Generalizing this observation, Ham (2001) entertains the possibility that geminate/singleton duration ratios are smaller for syllable-timed languages (e.g. Norwegian) than for mora-timed languages (e.g. Japanese). See also Maekawa (1984) for a comparison between Standard Tokyo dialect and Akita dialect – a dialect that has been described as syllable-timed – which points to the same generalization.

2.4.2 Other durational correlates

As discussed in section 2.2.1, vowels are longer before geminates in Japanese. This observation may come as a surprise given a cross-linguistic tendency that vowels in

14 Accordingly, when perceiving a singleton/geminate contrast, Norwegian speakers substantially rely on preceding vowel duration, much more than speakers of other languages (Kingston et al. 2009).
closed syllables are often shorter than vowels in open syllables (Maddieson 1985). Indeed many languages have shorter vowels before geminates than before singletons; e.g. Bengali (Lahiri and Hankamer 1988), Berber (Ridouane 2010), Italian (Esposito and Di Benedetto 1999; Pickett, Blumstein, and Burton 1999), Hindi (Ohala 2007; Shrotriya et al. 1995), Malayalam (Local and Simpson 1999), and the three Polynesian languages studied by Cohn, Ham, and Podesva (1999).

However, there are other languages that arguably show lengthening of vowels before geminates: Turkish,15 Finnish (Lehtonen 1970, pp. 110–111), Shinhala (Letterman 1994) (although only one of the two speakers showed clear evidence) and Persian (Hansen 2004) (although no direct statistical tests are reported). The existence of such languages shows that Japanese may not simply be a typological anomaly, but languages vary in whether geminates shorten or lengthen the preceding vowels. I will come back to this issue of this cross-linguistic difference in section 3.2 in relation to its perceptual relevance.

In some languages, there are no substantial differences in the preceding vowel duration with singletons and geminates; e.g. Egyptian Arabic (Norlin 1987), Lebanese Arabic (at least for short vowels) (Ham 2001), Estonian (Engstrand and Krull 1994), and Hungarian (Ham 2001). In Cypriot Greek, there is slight tendency toward shortening before geminates, but this tendency is not very consistent (Tserdanelis and Arvaniti 2001).

Finally, the lack of an effect of geminacy on VOT in Japanese is paralleled in many languages including Buginese, Madurese, Toba Batak (Cohn, Ham, and Podesva 1999), Bernese, Hungarian, Lebanese Arabic (Ham 2001), Bengali (Hankamer, Lahiri, and Koreman 1989), and Berber (Ridouane 2010). Cypriot Greek has consistently longer VOT for geminates (Tserdanelis and Arvaniti 2001), but Turkish shows shorter VOT for geminates (Lahiri and Hankamer 1988).

2.4.3 Other non-durational, acoustic correlates

In addition to the durational correlates, different languages seem to show different non-durational acoustic correlates to signal singleton-geminate contrasts. These non-durational correlates are summarized in (1)–(6).16

(1) Bengali (Hankamer, Lahiri and Koreman 1989)
 a. Root Mean Square (RMS) amplitude of the following syllable is higher after singletons.

15 In Lahiri and Hankamer (1988), the difference is small and not statistically significant; see also Jannedy (1995) for evidence that this lengthening applies to closed syllables in general, as in Japanese (see footnote 4).
16 See the original references for stimulus designs and measurement procedures.
(2) Berber (Ridouane 2010)
 a. Geminates have higher amplitude during release.
 b. Geminates show burst release more consistently than singletons.

(3) Hindi (Shrotriya et al. 1995)
 a. F0 rises toward geminates in the preceding vowel.
 b. Burst intensity is stronger for geminates (by about 10dB).

(4) Italian (Payne 2006, based on electropalatographic (EPG) data)
 a. Geminates involve a more palatalized constriction than singletons.
 b. Geminate stops involve a more complete occlusion.
 c. Geminates are associated with a laminal gesture; singletons are associated with an apical gesture.

(5) Malayalam (Local and Simpson 1999)
 a. Sonorant geminates show palatal resonance with higher F2.
 b. The surrounding vowels differ in F1 and F2.

(6) Pattani Malay
 a. The peak amplitude of initial vowels (with respect to the following vowel) is higher after word-initial geminates than singletons (Abramson 1987b, 1998).
 b. Fundamental frequency of word-initial vowels is higher after word-initial geminates (Abramson 1998).
 c. First vowels are longer (with respect to second vowels) after word-initial geminates (Abramson 1998).
 d. The slope of amplitude rise is steeper after word-initial geminates (Abramson 1998).

So far Idemaru and Guion (2008) is the most extensive study looking for spectral correlates of geminacy contrasts in Japanese, and it is yet to be investigated whether the correlates listed in (1)–(6) are found in Japanese (though the Pattani Malay case may be special because it involves cases of word-initial geminates). However, it seems likely at this point that the phonetic implementation patterns of singleton-geminate contrasts are language-specific, the only universal rule being that geminates are longer than singletons (Ham 2001; Ridouane 2010). A remaining task in the phonetic theory is how to model the universality and language-specificity of phonetic implementation patterns of length contrasts. We should also perhaps bear in mind that “geminates” in different languages may not be the same phonological entity – there remains a possibility that these “geminates” have different phonological representations. See also Davis (2011) for relevant discussion.
3 The perception of geminates in Japanese

We now turn to the perception of a singleton-geminate contrast, beginning with a discussion of cues used by Japanese listeners and continuing with a discussion of cross-linguistic cues for geminacy contrasts.

3.1 The primary cue: constriction duration

Many studies have shown that the longer the constriction, the more likely the target is perceived as a geminate. This effect has been shown to hold in many perception studies using Japanese listeners (Amano and Hirata 2010; Arai and Kawagoe 1998; Fujisaki, Nakamura, and Imoto 1975; Fujisaki and Sugito 1977; Fukui 1978; Hirata 1990; Kingston et al. 2009; Oba, Brown, and Handke 2009; Takeyasu 2012; Watanabe and Hirato 1985). As an example, Figure 5 reproduces the results of Kingston et al.

![Figure 5: The effect of closure duration and the preceding vowel duration on the perception of geminates by Japanese listeners. Adapted from Kingston et al. (2009). Reprinted with permission from Elsevier](image-url)
(2009) in which closure duration was varied from 60ms and 150ms in 15ms increments (see the next section for the three vocalic contexts). We observe that geminate responses increase as closure duration increases.

3.2 Contextual effects

More controversial than the effects of constriction duration are contextual effects. Fukui (1978) found that when the closure duration of an original singleton consonant was lengthened, it was almost always perceived as a geminate when the closure duration was doubled. On the other hand, shortening an original geminate did not result in a comparable shift in perception. The results show that closure duration is not the only cue for perceiving geminates. Similar types of effects (albeit to different degrees) were found in similar types of experiments on other languages (Bengali: Hankamer, Lahiri, and Koreman 1989, Pattani Malay: Abramson 1987a, 1992, Tamil: Lisker 1958, and Turkish: Hankamer, Lahiri, and Koreman 1989).

As reviewed in section 2.2.1, given that vowels are longer before geminates, we expect that Japanese speakers are more likely to perceive a consonant as a geminate after a longer vowel than after a shorter vowel. Several results indeed found a contextual effect in this direction (Arai and Kawagoe 1998; Kingston et al. 2009; Ofuka 2003; Ofuka, Mori, and Kirintani 2005; Takeyasu 2012). This contextual effect is illustrated in Figure 5 in which listeners judged more of the continuum as geminates after longer vowels.

On the other hand, several studies have found opposite results as well. For example, Watanabe and Hirato (1985) found that the perceptual boundaries between singletons and geminates shift toward longer duration after longer vowels, meaning that longer duration was required after longer vowels for consonants to be perceived as geminates (although only two listeners participated in this study). A similar boundary shift was found in Hirata (1990). Idemaru and Guion-Anderson (2010) kept the duration of the consonant at about 140ms and changed the duration of the preceding mora (C1 + V1 = onset plus preceding vowel), and found that the shorter the preceding mora duration, the more geminate responses were obtained. On the other hand, Takeyasu (2012) argues that it is the duration of C1/V1 ratio that matters, and that higher C1/V1 ratios lead to more geminate percepts. For more references of studies that obtained the results in this direction, see also Fujisaki and Sugito (1977)\(^\text{17}\) and Idemaru, Holt, and Seltman (2012).

In summary, some studies found an “assimilative” pattern (more geminate responses after longer vowels) while others found a “contrastive” pattern (more geminate responses after shorter vowels). Where the difference between the two types

17 Fujisaki and Sugito (1977) found a contextual effect for the /s/-/ss/ contrast, but the paper is not explicit about the other two geminate pairs (/t/-/tt/ and /m/-/mm/).
of results comes from is an interesting question. There is some evidence that the magnitudes of the duration ratios between the target and context may matter in this regard (Nakajima, ten Hoopen, and Hilkuysen 1992). Takeyasu (2012) also entertains the hypothesis that in experiments that obtained a contrastive effect, listeners may have judged the preceding vowels to be phonologically long, in which case the listeners are biased against judging the following consonant as long to avoid a superheavy syllable (see Ito and Mester, this volume, and Kubozono 1999 for a phonological constraint against superheavy syllables in Japanese, and Kawagoe and Takemura 2013 for its perceptual impact). Further experimentation is necessary to settle this issue.

Unlike preceding vowels, vowels are shorter after geminates than after singletons (Campbell 1999; Han 1994; Idemaru and Guion 2008; Ofuka 2003) (see section 2.2.1). While Hirato and Watanabe (1987) found no effects of the duration of the following vowel on the perception of geminates, Ofuka, Mori and Kiritani (2005) did in fact find that listeners are more likely to judge stimuli as a geminate before a shorter vowel; Idemaru and Guion-Anderson (2010) found a similar contextual effect of following vowels, although they found the effect of preceding C_1V_1 mora to be more substantial. See also Nakajima, ten Hoopen, and Hilkuysen (1992) for a relevant discussion.

Another issue is the (non-)locality of contextual effects. For example, Hirata (1990) tested the effect of sentence level speech rate on perception of length contrasts, and found that the duration of the whole sentential materials following the target word can impact the perception of geminates. The study found that those tokens which are unambiguously identified as either a singleton or a geminate can be perceived as a member of a different category if the following materials provide enough cues for speech rate.

When listeners normalize the perceived duration for speech rate, one remaining question is: to what extent do they rely on local cues like the immediately preceding/following vowels or (CV) moras or (C)V(C)V subword (Hirata and Amano 2012), and to what extent do they rely on more global cues (like the entire word or utterance). On the one hand, in terms of psycholinguistic computational simplicity, local cues are presumably easier to track (Idemaru and Guion-Anderson 2010). Nevertheless, some studies (Amano and Hirata 2010; Hirata 1990; Pickett and Decker 1960) show the effect of global cues; for example, by comparing several relational measures, Amano and Hirata (2010) demonstrate that the relationship between consonant duration and entire word duration provides a good perceptual cue to a length distinction in Japanese. Recall also that Hirata (1990) found contextual effects at sentential levels.

18 They demonstrate that it is not a simple ratio between these two durations, but a regression function with an intercept that most accurately predicts the perceptual behavior of Japanese listeners. This function is equivalent to the ratio between closure duration (c) plus some constant (k) and word duration (w); i.e. $(c + k)/w$.
However, taking into account a whole word or sentence to determine a length property of a singleton/geminate contrast may impose a psycholinguistic burden. In order to identify what the word is, it is necessary to determine whether the consonant in question is a singleton or a geminate, but in order for listeners to determine whether the consonant is singleton or a geminate, they need to know what the word is – there may be a chicken-and-egg problem here.

I do not wish to imply that this challenge is insurmountable, rather that more phonetic and psycholinguistic research is necessary to address this issue. Hirata (2007) suggests that gating experiments (Grosjean 1980) may address the issue of the (non-)locality of the perception of length contrasts. In this way, the relationship between production and perception of geminates in Japanese (as well as in other languages) provides an interesting forum of research, which may bear on the general theory of speech perception (see Amano and Hirata 2010, Hirata and Amano 2012, Idemaru and Guion-Anderson 2010, Idemaru, Holt, and Seltman 2012, Otaki 2011, Pind 1986; and others for discussion).

Another remaining question is how non-durational cues – F0 values and movement, spectral envelope, burst intensity, etc. (see also Table 2) – interact with durational cues in the perception of Japanese geminates. For example, Ofuka (2003) observes that geminates are shorter in accented disyllabic words than in corresponding unaccented words, and also that in perception, a consonant with a particular duration is more likely to be perceived as a geminate when the word is accented (see also Hirata 1990 who obtained similar results). Likewise, Kubozono, Takeyasu, and Giriko (2013) show that English monosyllabic utterances with falling pitch contours – which are acoustically similar to Japanese pitch accents (Kawahara, this volume) – are more likely to be perceived as geminates by Japanese listeners. On the other hand, Idemaru (2011) did not find any substantial effects of amplitude or the steepness of F0 fall on the perception of geminacy for Japanese listeners. More extensive studies are warranted to investigate the intricacy of perception of geminates in Japanese.

3.3 Comparison with other languages

Like Japanese, the effect of constriction duration on the perception of duration has been found in many languages; e.g. Arabic (Obrecht 1965), Bengali (Hankamer, Lahiri, and Koreman 1989), English\(^\text{19}\) (Pickett and Decker 1960), Finnish (Lehtonen 1970), Hindi (Shrotriya et al. 1995), Italian (Esposito and Di Benedetto 1999; Kingston et al. 2009), Norwegian (Kingston et al. 2009), Pattani Malay (Abramson 1987a, 1992), and Turkish (Hankamer, Lahiri, and Koreman 1989).

\(^{19}\) English does not have a lexical geminate contrast; this experiment tested a pair like _topic_ vs. _top pick_ where one member of the pair contains multiple morphemes.
Across languages, the effect of a language particular phonetic implementation pattern – shortening or lengthening of the preceding vowel – is often reflected in the perception pattern as well. For example, unlike in Japanese, in both Norwegian (Fintoft 1961) and Italian (Esposito and Di Benedetto 1999), vowels are shorter before geminates. This shortening affects the perception of geminates – listeners of these languages are more likely to perceive a consonant as a geminate before a shorter vowel than a longer vowel (Esposito and Di Benedetto 1999; Kingston et al. 2009; van Dommelen 1999). In Icelandic, in which long vowels and geminates are in a complementary distribution, Pind (1986) shows that vowel duration with respect to the entire rhyme duration is a good predictor of geminate perception – given fixed rhyme durations, shorter vowel durations yielded more geminate responses.

One interesting puzzle that arises from this cross-linguistic comparison regarding shortening vs. lengthening in pre-geminate position is as follows: some researchers propose that C/V duration ratios provide mutually enhancing perceptual cues for duration when a shorter consonant is preceded by a longer vowel, as is the case for voicing contrasts in many languages (Kingston and Diehl 1994; Kohler 1979; Pickett, Blumstein, and Burton 1999; Port and Dalby 1982). A combination of a short vowel and a long consonant yields enhanced, high C/V₁ duration ratios, whereas a combination of a long vowel and a short consonant yields low ratios. Languages like Italian and Norwegian, in which preceding vowels are shorter before geminates, can be assumed to deploy this perceptual enhancement pattern. In this light, a question arises why Japanese lengthens a vowel before a geminate.

A tentative answer that I can offer is that V₁C unit (or V-to-V interval) may constitute another kind of perceptual unit, a unit that has been hypothesized to play a role in the perception of Japanese and other languages (Hirata and Forbes 2007; Kato, Tsuzaki, and Sagisaka 2003; Kingston et al. 2009; Ofuka, Mori, and Kiritani 2005; Sato 1978; van Dommelen 1999).²⁰ If V₁C is an important perceptual unit – whether it is universal or specific to Japanese – then a longer vowel before a geminate can be considered as perceptually enhancing the longer duration of geminates.

4 The articulatory characteristics of Japanese geminates

Compared to acoustic and perception studies of Japanese geminates, there are relatively fewer studies on the articulation of Japanese geminates, although there

²⁰ An alternative idea is that although Japanese is a mora-timed language (where a mora usually constitutes a CV unit), geminates, whose coda part should constitute its own mora, are not by themselves as long as a CV unit; pre-geminate vowel lengthening may occur to compensate for this shortage of duration, as hypothesized and discussed by Warner and Arai (1999). See also Otake (this volume) for more on mora-timing in Japanese. One puzzle for this explanation is why, then, Japanese speakers shorten the following vowels after geminates.
are some notable studies. Ishii (1999), for example, obtained articulatory data of Japanese geminates and long vowels using X-ray microbeam measurements, as shown in Figure 6. The three types of the stimuli were tested in this study, which were [papa] (φ), [paapa] (H), and [pappa] (Q).

Based on Figure 6, Fujimura and Williams (2008) make three observations. First, as we can observe in the top panel, a geminate [pp] in Japanese shows a prolonged lip closure compared to a singleton [p]. Second, while the lip movement toward its closure is comparable between singletons and geminates (the top panel) (though cf. Löfqvist 2007; Smith 1995), the lingual (tongue) movements are slower for geminates than for singletons (the second and the third panel). Finally, the V-to-V movement is slower and more gradual across geminates than across singletons (the bottom panel).

These results are corroborated by studies by Löfqvist (2006, 2007) using a magnetometer system. Longer constriction duration was confirmed for labial (Löfqvist 2006) as well as alveolar and velar stops (Kochetov 2012; Löfqvist 2007). The speed of the tongue movement was found to be slower for alveolar and velar geminate stops than corresponding singletons (Löfqvist 2007). Slower V-to-V movement across geminate stops was also found by Löfqvist (2006).

Löfqvist (2006) studies nasal geminates, and therefore this finding is technically for hatsuon, not for sokuon.
Takada (1985) investigated X-ray data of Japanese consonants, and found two differences between singletons and geminates: slower movement in terms of lingual contact and jaw contact, with maximal contact formed at a later phase in the constriction in geminates. Smith (1995), again based on X-ray microbeam data, shows that a singleton/geminate distinction affects the gestural timing of the following vowel in Japanese, whereas in Italian it does not – she attributes this difference to differences in gestural coordination of vowels and consonants in Japanese and Italian. The EPG data by Kochetov (2012) shows greater degree of linguopalatal contact for geminates than for singletons. Sawashima (1968), using a fiberscope, shows that glottal abduction is larger for geminate fricatives than singleton fricatives. Finally, Kokuritsu Kokugo Kenkyūjo (1990) offers detailed articulatory data of Japanese sounds in general, including those of geminates.

5 Remaining issues

Although I have raised a number of remaining questions already, I would like to close this chapter with a discussion about several more questions that require further experimentation.

5.1 Non-intervocalic geminates

For lexical contrasts, Japanese allows geminates only intervocally. However, some word-initial geminates are found due to an elision process in casual speech; e.g. [ttakɯ] from /mattaku/ (a phrase that often accompanies a sigh) and [sseena] from /usseena/ ‘shut up’. Cues to word-initial geminates have been studied in some other languages (Abramson 1992, 1999; Kraehenmann and Lahiri 2008; Kraehenmann 2011; Muller 2001; Ridouane 2010), but the Japanese case has not been extensively investigated. A specific question is whether such word-initial geminates involve longer constriction just like intervocalic geminates. Articulatory studies, using devices like EPG (Kraehenmann and Lahiri 2008; Payne 2006; Ridouane 2010), would address the question of whether geminates do indeed involve a longer constriction word-initially (see Kraehenmann and Lahiri 2008 and Ridouane 2010 who found a positive answer to this question in Swiss German and Berber).

Similarly, an orthographic marker for Japanese geminates – “small tsu” – can also appear word-finally, especially in mimetic words (see Nasu, this volume), although this word-final gemination diacritic does not convey a lexical contrast. The exact nature of its phonetic realization is yet to be explored – impressionistically, it is realized as a glottal stop, but as far as I know, it has not been fully explored in instrumental work.
5.2 Derived geminates vs. underlying geminates

Some phonetic studies in other languages have compared lexical geminates and geminates derived by some phonological processes, most often by assimilation. They have generally shown that lexical geminates and geminates derived by phonological processes are phonetically identical, as in Bengali (Lahiri and Hankamer 1988), Berber (Ridouane 2010), Sardinian (Ladd and Scobbie 2003), and Turkish (Lahiri and Hankamer 1988). However, Ridouane (2010) found a difference between lexical geminates and geminates created via morpheme concatenation in terms of preceding vowel duration and burst amplitude. Similarly, Payne (2005) argues that in Italian lexical geminates tend to be longer than post-lexical geminates created by RADDOPPIAMENTO SINTATTICO (RS) (although there are some complicating factors; see Payne 2006 for further discussion).

As far as I know, no studies have compared underlying and derived geminates in Japanese. For example, the final consonant of a prefix /maC-/ ‘truly’ assimilates to the root-initial consonant, resulting in a geminate (e.g. [mak-ka] ‘truly red’, [mas-sakasama] ‘truly reversed’, and [mam-marui] ‘truly round’). It would be interesting to investigate whether there is a difference between such derived geminates and underlying geminates. One reason why we may expect a difference is as follows. Monomoraic roots in Japanese can be lengthened to have a long vowel, when pronounced in isolation without a case particle (Mori 2002); however, duration ratios between these lengthened vowels and short vowels are smaller than the ratios between underlying long vowels and short vowels found in the previous research – i.e., that this lengthening pattern is only incompletely neutralizing (Mori 2002 compares her results with the data from Beckman 1982 and Hoequist 1982; Braver and Kawahara 2014 confirmed that there are differences in duration between lengthened vowels and underlying long vowels within one experiment). It would be particularly interesting if we find such an incomplete neutralization pattern (Port and O’Dell 1985 et seq.) in the context of gemination.

5.3 The phonetics of emphatic geminates

Japanese deploys gemination to convey emphatic meanings (e.g. [kattai] ‘very hard’ from [katai] ‘hard’) (Aizawa 1985; Kawahara 2001, 2006b, 2013b). In terms of orthography, this gemination can be written with multiple signs of gemination (“small tsu”)...
(Aizawa 1985). It would be interesting to investigate to what extent such repetition of geminate diacritics is reflected in actual production (and for that matter, can be tracked in perception). This issue is partly addressed by Kawahara and Braver (2014). A production study shows that at least some speakers can make a six-way duration differences, given five degrees of emphatic consonants (and non-emphatic consonants). Other speakers showed a steady correlation between emphasis levels and duration. The articulatory and perceptual properties of these emphatic geminates should be investigated more in future research.

Furthermore, this emphatic gemination pattern can create otherwise unacceptable types of geminates, such as voiced obstruent geminates in native words and approximant geminates (Aizawa 1985; Kawahara 2001; Kawahara and Braver 2014). Together with the general phonetic properties of emphatic geminates, the phonetic realization of approximant geminates in Japanese, in particular, is understudied and yet to be investigated.

5.4 The laryngeal “tension” of geminates

Despite the studies mentioned in section 4, the exact articulatory nature of Japanese geminacy contrasts is yet to be fully explored. One particular issue concerns whether Japanese geminates involve laryngeal constriction or not. Impressionistically, Japanese geminates are sometimes conceived of as having an accompanying glottal constriction. Hattori (1984) suggests that the first half of geminates involves glottal tension (p. 139). Aizawa (1985) uses a term “choked consonant” to refer to (emphatic) geminates. Idemaru and Guion (2008) also found shallower spectral tilt (H1-A1) in the vowels following geminates, indicating some creakiness, which implies some glottal constriction (although two other measures of creakiness did not show differences in their study). Fujimura and Williams (2008) argue that laryngealization is a distinctive characteristic of Japanese geminates, which may even contribute to the perception of geminates.

On the other hand, a study by Fujimoto, Maekawa, and Funatsu (2010) using a high-speed digital video recording system, did not find evidence for laryngeal or glottal tension in Japanese geminates. They also found that glottal opening is slightly larger during (voiceless) geminates than during singletons. Therefore, whether Japanese geminates involve glottal tension, and if so how that glottalization is coordinated/synchronized with supralaryngeal (oral) gestures, is still to be explored.

5.5 Dialectal differences

There are few cross-dialectal studies on Japanese geminates, especially those written in English, which would be available to those scholars who do not read the Japanese
literature. Due to the limitation of my expertise, I cannot discuss this issue extensively, but it would be particularly interesting to compare the properties of geminates in mora-timed dialects with syllable-timed dialects, such as the Aomori dialect (Takada 1985), the Akita dialect (Maekawa 1984), and the Kagoshima dialect (Kubozono and Matsui 2003).

5.6 Manner differences and the perception of geminates

Finally, as discussed in section 2.3, manner effects on the production of geminates in Japanese have been understudied. Relatedly, many perception experiments on Japanese geminates are based on voiceless stops (Amano and Hirata 2010; Arai and Kawagoe 1998; Hirata 1990; Hirato and Watanabe 1987; Fukui 1978; Idemaru and Guion-Anderson 2010; Kingston et al. 2009; Ofuka 2003; Takeyasu 2012; Watanabe and Hirato 1985). Fujisaki, Nakamura, and Imoto (1975) studied all manners, but nevertheless only report the results for fricatives (though see also Fujisaki and Sugito 1977 where they report the data for all manners). There are a few recent studies (Matsui 2012; Takeyasu 2009; Tews 2008), which investigated factors affecting the perception of geminates in fricatives. Oba, Brown, and Handke (2009) showed that the primary cue for affricate geminates lies in the closure phase, not in the frication phase. The production and the perception of different manners of geminates, including nasal geminates, warrants further investigation.

Acknowledgements

Thanks to Megan Moran, Mel Pangilinan, and Akiko Takemura for collecting many of the references cited herein. For discussion on this paper and/or comments on earlier versions of this draft, I thank Osamu Fujimura, Manami Hirayama, Michinao Matsui, Toshio Matsuura, Hope McManus, Kazu Kurisu, Akiko Takemura, and two reviewers (Itsu Kawagoe and Yukari Hirata). Hope McManus reformatted and proof-read this paper. Some portions of this paper have appeared in Kawahara (2013a), which is written in Japanese and additionally discusses aspects of long vowels. A part of this research is supported by the Research Council Grant from Rutgers University. Remaining errors are mine.

References

Fowler, Carol. 1991. Auditory perception is not special: We see the world, we feel the world, we hear the world. *Journal of the Acoustical Society of America* 89. 2910–2915.

Hirato, Nobuo and Shinichiro Watanabe. 1987. Sokuon no chikaku to kōzoku boin no jizoku jikan tono kankei [The relationship between the perception of moraic obstruents and the duration of the following vowels]. *Onsei Gengo* II. 99–106.

Obrecht, Dean. 1965. Three experiments in the perception of geminate consonants in Arabic. Language and Speech 8. 31–41.

Otaki, Yoko. 2011. The boundary of the quantitative contrast between singleton/geminate consonants in production and perception. In Wai-Sum Lee and Eric Zee (eds.), Proceedings of ICPhS XVII, Hong Kong: City University of Hong Kong, 1546–1549.

