

Does Lyman's Law count?

Abstract

One long-standing question that is recurrently addressed in contemporary phonological studies is whether phonological systems can count beyond three. The traditional view is that phonological systems can count only up to two but not more (e.g. Ito & Mester 2003; McCarthy & Prince 1986), whereas some scholars recently argue that phonological system should actually be able to count beyond three (e.g. Paster 2019). The current experiments address this general question regarding counting by studying Rendaku and Lyman's Law in Japanese. Rendaku is a morphophonological process in which the morpheme-initial voiceless obstruent of a second member of a compound becomes voiced. The application of Rendaku is significantly reduced if the second member already contains a voiced obstruent, a generalization that is known as Lyman's Law. Experiment 1 compared the applicability of Rendaku in nonce words which contain one voiced obstruent (e.g. [taguta]) and those which contain two voiced obstruents (e.g. [tegebi]). If Lyman's Law counts beyond three, Rendaku application is predicted to be more substantially reduced in the latter condition, as Rendaku would create morphemes which contains three voiced obstruents (i.e. [degebi]). The results show, however, that no meaningful differences were observed between the two conditions. Experiment 2 tested the recent claim that two nasal consonants may reduce the applicability of Rendaku (Kim 2019; Kumagai 2017), which, if true, suggests that Lyman's Law disfavors a configuration in which a voiced obstruent is followed by two nasals. The experimental results show that the evidence for the blockage of Rendaku by two nasals is weak at best if present at all. Overall, we conclude that there is no strong evidence that Lyman's Law counts (Ito & Mester 2003).

Keywords: Rendaku, Lyman's Law, counting, experimental phonology, nasals, voicing

1 Introduction

1.1 Theoretical background

One issue that is actively discussed in contemporary phonological studies is whether or not phonological systems can count beyond three. The predominant view in the generative literature had

27 been that linguistic systems, including phonological systems, may count up to two but not more
28 (e.g. Goldsmith 1976; Hewitt & Prince 1989; Ito & Mester 2003; McCarthy & Prince 1986; My-
29 ers 1997 among many others). This view is succinctly summarized by the following quote from
30 McCarthy & Prince (1986: 1, quoted from the 1996 version):

31 Consider first the role of counting in grammar. How long may a count run? General
32 considerations of locality, now the common currency in all areas of linguistic thought,
33 suggest that the answer is probably ‘up to two’: a rule may fix on one specified element
34 and examine a structurally adjacent element and no other.

35 McCarthy & Prince (1986) claim for example that no reduplicative patterns copy three segments;
36 i.e. [bad-badupi] vs. [bla-bladupi] vs. [adu-adupi]—they argue that this is a pattern that is predicted
37 to arise if phonological systems can refer to three segments.

38 A similar view was reiterated by Ito & Mester (2003), who proposed to capture dissimilation
39 effects in terms of self local-conjunction of markedness constraints (Smolensky 1995, 1997; see
40 also Alderete 1997 and Blust 2012 for related proposals). In their view, a dissimilation force against
41 two instances of the same structure [A] is modeled as resulting from a self-conjoined version of the
42 markedness constraint prohibiting [A] within a particular domain, i.e. *[A]&*[A]_{domain}. Since Ito
43 & Mester (2003) take local conjunction to be a recursive operation, they raise the concern that the
44 theory might predict a constraint prohibiting three instances of a particular structure. They doubt
45 that this actually happens in the phonology of natural languages, stating that (p.265):

46 With local conjunction as a recursive operation, ternary (and higher) conjunction such
47 as (No- ϕ & _{δ} No- ϕ)& _{δ} No- ϕ = No- ϕ^2 & _{δ} No- ϕ = No- ϕ^3 _{δ} are formally derivable. In the
48 example given, the third violation of No- ϕ would be the fatal one. No convincing
49 evidence has been found so far that No- ϕ^3 is ever linguistically operative separate
50 from No- ϕ^2 , which tends to support the old idea in generative linguistics (cf. syntactic
51 movement theory) that the genuine contrast in grammars is not “1 vs. 2 vs. 3 vs. 4
52 vs. . . .”, but “1 vs. greater than 1.” [NB: ϕ is a variable representing a phonological
53 structure and δ is a variable representing a domain]

54 This thesis that phonology only counts up to two, however, was recently challenged by Paster
55 (2019) in an article titled “Phonology counts.” Paster (2019) argues, for example, that H-tones can
56 spread twice (ternary H spreading), and likewise, H-tones can be displaced two moras to the right
57 (ternary H displacement). In addition to these show-case examples, Paster (2019) adduces several
58 other cases in which the phonological system apparently counts beyond three.

59 This question regarding whether phonological systems can count is also recently addressed in
60 the context of counting cumulativity (Jäger 2007; Jäger & Rosenbach 2006), in which the numbers

61 of constraint violations appear to additively affect phonological patterns. Some recent studies,
62 in particular Hayes (2020), have proposed to take a linguistic scale—e.g. propensity to undergo
63 vowel harmony in Hungarian—as a scale with actual numeric values and use these values to model
64 various probabilistic phonological patterns (see also Breiss 2020; Kawahara 2020; McPherson &
65 Hayes 2016; Smith & Pater 2020; Zuraw & Hayes 2017). In this view, linguistic systems can liter-
66 ally count the numbers of constraint violations and link those constraint violations to the predicted
67 probabilities of the relevant output candidates. One widely used model to achieve this link is Max-
68 Ent Harmonic Grammar (Goldwater & Johnson 2003; Hayes & Wilson 2008; Smolensky 1986),
69 in which the numbers of weighted constraint violations are summed up to calculate the predicted
70 probabilities of output candidates.

71 Inspired by this debate, the current study addressed this general question about the (in)capability
72 of counting by studying Rendaku and Lyman’s Law in Japanese. Rendaku is a process in which
73 the morpheme-initial voiceless obstruent of a second member of a compound becomes voiced.
74 Lyman’s Law reduces the applicability of Rendaku by prohibiting morphemes with more than one
75 voiced obstruent (Ito & Mester 1986, 2003). Two experiments were conducted in order to explore
76 whether Lyman’s Law is able to count or not.

77 1.2 Brief background on Rendaku and Lyman’s Law

78 The two experiments reported below make use of Rendaku and Lyman’s Law to address the gen-
79 eral question regarding the possibility of counting in phonological systems. In this subsection,
80 we briefly review some background information on Rendaku and Lyman’s Law. Rendaku is a
81 morphophonological process in Japanese, in which the morpheme-initial obstruent of the second
82 member (=E2) in a compound undergoes voicing, as in (1).¹ Rendaku is blocked when E2 already
83 contains a voiced obstruent, as in (2). The second generalization is known as Lyman’s Law after
84 Lyman (1894).

85 (1) Examples of Rendaku

- 86 a. /nise+**tanuki**/ → [nise+**danuki**] ‘fake raccoon’
- 87 b. /juki+**kumi**/ → [juki+**gumi**] ‘Snow Team’
- 88 c. /hoči+sora/ → [hoči+**zora**] ‘starry sky’
- 89 d. /oči+**hana**/ → [oči+**bana**] ‘dried flower’

¹/h/ becomes [b] as a result of Rendaku, because historically /h/ was /p/ in Old Japanese (Vance 2015). [h] can arguably be considered to be underlyingly /p/ in the synchronic phonology of Modern Japanese as well (McCawley 1968, 124). This paring of /h/~/[h] in the context of Rendaku does not crucially affect the rest of the discussion in this paper, however.

90 (2) Blocking of Rendaku by Lyman's Law

91 a. /nise+tokage/ → [nise+tokage], *[nise+dokage] 'fake lizard'
92 b. /çito+kage/ → [çito+kage], *[hito+gage] 'people's shadow'
93 c. /mori+soba/ → [mori+soba], *[mori+zoba] 'cold soba'
94 d. /çito+hada/ → [çito+hada], *[hito+bada] 'people's skin'

95 Patterns of Rendaku are not as simple as the examples in (1) and (2) would appear to suggest, since
96 various factors, both linguistic and idiosyncratic, affect the applicability of Rendaku (Kawahara
97 2015; Rosen 2016; Vance 2014). However, while there is a lot more to be said about Rendaku
98 and Lyman's Law, such details are not crucial for the current experiments. Interested readers are
99 referred to the collection of papers in Vance & Irwin (2016) and references cited therein.

100 **1.3 The direct motivation of the current study**

101 What directly motivated our current study is the recent claim about Rendaku and Lyman's Law,
102 namely that two nasal consonants seem to block Rendaku. Kim (2019) has argued, based on the
103 analysis of the Corpus of Spontaneous Japanese (Maekawa 2004), that no forms that contain two
104 nasals (e.g. [hanami] 'cherry watching') undergo Rendaku. Kumagai (2017) reports a nonce-word
105 judgment study, which shows that nonce words which contain two nasals (e.g. [hanama]) were
106 less likely to undergo Rendaku than those which contain just one nasal (e.g. [çimasa]). These ob-
107 servations, if correct, imply that Japanese phonology disfavors a configuration in which a voiced
108 obstruent is followed by two nasals, a statement which seems to require counting three segments
109 (i.e. *[D...N...N]). Kim (2019) indeed proposes a mechanism within a MaxEnt Harmonic Gram-
110 mar in which the numbers of violations of Lyman's Law are used to account for the blocking of
111 Rendaku by two nasals, assuming that nasals contribute to the violations of Lyman's Law. In short,
112 this observation implies that Lyman's Law can count three segments. We thus aimed to examine
113 this general possibility that Lyman's Law can count in further detail via experimentation.

114 **2 Experiment 1**

115 **2.1 Introduction**

116 Since whether nasals contribute to the violations of Lyman's Law is at best a controversial as-
117 sumption (e.g. Ito & Mester 1986; Mester & Ito 1989; Rice 1993), Experiment 1 more directly
118 addressed the possibility that a constraint can count three segments by testing whether Lyman's
119 Law distinguishes words containing three voiced obstruents ([D...D...D]) from those containing

120 two voiced obstruents ([D...D]). While Lyman’s Law more or less categorically blocks Rendaku
121 in real Japanese words (Vance 2015), the blockage of Rendaku by Lyman’s Law is only probabilis-
122 tic in nonce words (Vance 1979, 1980). Experiment 1 took advantage of this nature of Lyman’s
123 Law to address the question of counting in phonological systems.

124 To preview the results, we did not obtain strong evidence that Japanese speakers distinguish
125 words containing three voiced obstruents ([D...D...D]) from those containing two voiced obstru-
126 ents ([D...D]). In light of this result, Experiment 2 re-examined the claim that two nasals reduce
127 the applicability of Rendaku (Kim 2019; Kumagai 2017).

128 **2.2 Methods**

129 For the sake of reproducibility, the raw data, the R markdown file and the Bayesian posterior
130 samples are made available at an Open Science Framework (osf) repository.² The markdown file
131 includes materials that are not reported in the paper, such as illustration of conditional effects and
132 a posterior predictive check. Interested readers are welcome to examine these data, especially in
133 ways that are not analyzed in this paper.

134 **2.2.1 Overall design**

135 The current experiment was a nonce-word judgment experiment on Rendaku, which consisted of
136 three conditions: (1) nonce words with no voiced obstruent (e.g. [taruna]), (2) those with one
137 voiced obstruent (e.g. [taguta]), and (3) those with two voiced obstruents (e.g. [tegubi]). Existing
138 native words in Japanese, the primary target of Rendaku, do not allow two voiced obstruents in the
139 first place (Ito & Mester 1986, 2003), and thus we would not know from the behavior of existing
140 words whether Lyman’s Law distinguishes forms with one voiced obstruent and those with two
141 voiced obstruents. Previous experimental studies of Rendaku and Lyman’s Law also compared
142 only nonce words with no voiced obstruents and those with one voiced obstruent (Kawahara 2012;
143 Kawahara & Sano 2014a; Vance 1979, 1980), and thus whether Lyman’s Law can count three
144 segments has remained to be an open question till now. If Kim’s (2019) MaxEnt-based proposal
145 is on the right track, we would expect Rendaku applicability to be lowest when it results in three
146 voiced obstruents.

147 **2.2.2 Stimuli**

148 The list of nonce word E2s used in the current experiment is shown in Table 1. The experiment
149 tested all four sounds that can potentially undergo Rendaku (=/t/, /k/, /s/ and /h/) with 6 nonce items
150 each, resulting in 72 stimuli in total (3 voicing conditions * 4 consonants * 6 items). Some stimuli

²https://osf.io/9qgtx/?view_only=1af0e322bb024af29199be3511fbb5ff

¹⁵¹ were adapted from previous studies of Rendaku using nonce words (Kawahara 2012; Kawahara &
¹⁵² Sano 2014a; Vance 1979, 1980), as indicated by asterisks in Table 1.

¹⁵³ None of these words becomes a real word when Rendaku is applied. All the stimuli consist of
¹⁵⁴ three light CV syllables (=three moras). In the one voiced obstruent condition, the voiced obstruent
¹⁵⁵ always appeared in the second syllable. Since it is known that Rendaku may be substantially
¹⁵⁶ inhibited when it results in identical CV mora sequences in E2 (Kawahara & Sano 2014b), care
¹⁵⁷ was taken so that Rendaku would not result in CV moras that are identical to those in the second
¹⁵⁸ syllables or to those in third syllables.

Table 1: The list of nonce words used as E2s in Experiment 1. Those items that are directly adapted from Kawahara & Sano (2014a), who themselves adapt some stimuli from Kawahara (2012) and Vance (1979, 1980), are marked with an asterisk. /h/ is allophonically realized as [ç] before [i] and as [ɸ] before [u] (Vance 1987, 2008).

	0 vcd obs	1 vcd obs	2 vcd obs
/t/	[tamuma]*	[taguta]*	[tezuga]
	[tatsuka]*	[tozumi]*	[tezago]
	[taruna]*	[tegura]*	[tegubi]
	[tonime]*	[tazanu]	[taguga]
	[tekeha]*	[tegesa]	[tegozi]
	[tokeho]*	[toboɸu]	[tebigi]
/k/	[kimane]*	[kidaku]	[kidabe]
	[kikake]*	[kobono]*	[kodziba]
	[kotona]	[kabomo]*	[kazido]
	[kumise]	[kedere]	[kudziba]
	[konihe]*	[kuziha]	[kezodo]
	[keharo]*	[kozana]	[kadzuba]
/s/	[semaro]*	[sebare]	[segabo]
	[sekato]*	[segeha]*	[sobogi]
	[sutane]*	[sobumo]*	[sugabi]
	[samohe]*	[sadanu]	[sobode]
	[sorise]*	[sodoka]	[sadage]
	[sateme]*	[sudaɸu]	[sogebi]
/h/	[honara]*	[hobasa]*	[hogada]
	[çinumi]*	[hazuke]	[hegazu]
	[honiko]*	[hogore]*	[hedado]
	[hakisa]*	[çigiro]	[hadagu]
	[heraho]*	[ɸuzumo]	[çizuda]
	[çihonu]*	[hedeno]	[ɸubode]

159 **2.2.3 Participants**

160 The experiment was distributed online using SurveyMonkey. The participants were primarily uni-
161 versity students in Japan. Data were excluded if they reported either that (i) they were not a native
162 speaker of Japanese, (ii) that they were not born in Japan, or (iii) that they knew Lyman’s Law.
163 Data from the remaining 149 participants entered into the following statistical analysis.³

164 **2.2.4 Procedure**

165 During the instructions, the participants were first told that when Japanese creates a compound,
166 some combinations undergo voicing (i.e. Rendaku) while others do not. Three existing examples
167 of Rendaku-undergoing forms and non-Rendaku-undergoing forms were used for illustration, but
168 no examples involved a potential violation of Lyman’s Law. In the main session, the participants
169 were instructed to take each stimulus item and combine it with [nise] “fake” as E1 to create a new
170 compound. They were then asked whether the resulting compound would sound more natural with
171 or without Rendaku; e.g. given a nonce word [taruna], when it is combined with [nise], which form
172 sounds more natural, [nise-taruma] or [nise-daruna]? The stimuli were written in the *hiragana*
173 orthography, which is used to represent native words in Japanese. Before the main session, the
174 participants went through two practice trials with existing compounds. The stimuli in the main
175 trial session were presented to the participants as nonce words.⁴ The order of the stimuli in the
176 main trial sessions was randomized per participant by SurveyMonkey.

177 **2.2.5 Statistical analyses**

178 The results were analyzed with a Bayesian mixed effects logistic regression model, using the *brms*
179 package (Bürkner 2017). Bayesian analyses take prior information, if any, as well as the data
180 at hand into consideration, and produce a range of possible values (i.e. posterior distributions)
181 for each estimated parameter (see e.g. Kruschke 2014; Kruschke & Liddell 2018 for accessible
182 introductions to Bayesian modeling). Unlike in a more traditional frequentist analysis, we can
183 interpret these posterior distributions as directly reflecting our (un-)certainty about the estimates.⁵

³40 participants reported that they knew Lyman’s Law, because the experiment was advertised among university students in Japan with the help of our linguist colleagues. Six participants were excluded because they were either non-native speakers or were not born in Japan. One participant was excluded because they failed to inform us whether they knew Lyman’s Law or not.

⁴Kawahara (2012) tested whether presenting the stimuli as nonce words or presenting them as obsolete native words (as done by Vance 1979, 1980; Zuraw 2000) would impact the Japanese speakers’ judgment on Rendaku. Since no substantial differences were found between these experimental formats, we deployed the first format in the current experiment. The stimuli, however, were presented in the *hiragana* orthography, which is used to represent native words.

⁵People often interpret 95% confidence intervals calculated in a frequentist analysis as if they directly reflect the uncertainty about the estimates (i.e. the ranges of possible values that the estimates can take), but this is a misinterpretation (e.g. Kruschke & Liddell 2018).

184 As a useful heuristic, we can examine the middle 95% of the posterior distribution, known as 95%
185 Credible Interval (95% CI)—if that interval does not include 0, then we can interpret that effect
186 to be meaningful. If it includes 0, then we can examine its posterior distribution more carefully
187 to determine with how much certainty we can conclude the null effect. This ability to be able to
188 test null effects is one advantage of Bayesian analyses over frequentist analyses (Gallistel 2009),
189 which we ended up making a good use of in the interpretations of our results. See §2.3 below for
190 further details on the test of null effects within a Bayesian framework.

191 For the current statistical model, the dependent variable was whether each item was judged to
192 undergo Rendaku or not (yes Rendaku = 1 vs. no Rendaku = 0). The main fixed factor was the
193 number of voiced obstruents contained in E2. The reference level was set to be the condition with
194 one voiced obstruent, so that we can make each pairwise comparison between the three voicing
195 conditions. Another fixed factor was sound type (i.e. /t/-/k/-/s/-/h/) in order to examine how general
196 the effects of voiced obstruents, if any, would hold. A random intercept of items and participants
197 as well as random slopes of participants for both of the fixed factors and their interaction were
198 included. Bayesian models are less likely to face convergence issues than frequentist generalized
199 linear mixed effects models, thus allowing us to fit a model with a complex random structure
200 (e.g. Eager & Joseph 2017).

201 Four chains with 3,000 iterations were run, and the first 1,000 iterations from each chain were
202 discarded as warmups. The weakly informative priors, the default priors in `brms`, were used. All
203 the \hat{R} -values were for the fixed effects were 1.00 and there were no divergent transitions, indicating
204 that the chains mixed successfully. See the R markdown file for complete details.

205 2.3 Results

206 Figure 1 shows the Rendaku application rate for each condition in the form of violin plots. Each
207 panel shows a different segment type. Within each panel, each violin shows the three conditions
208 with different numbers of voiced obstruents. Transparent circles show averaged responses from
209 each participant. Solid red circles represent grand averages. Abstracting away from segmental
210 differences, the three voicing conditions resulted in the following Rendaku application rates: (1)
211 57.8%, (2) 30.8%, (3) 33.0%.⁶

⁶After the experiment, we realized that some of the forms that we adapted from the previous studies contain two nasals, which may undergo Rendaku less often. Inclusion of such items, however, is conservative in the sense that it can reduce—rather than enhance—the Rendaku applicability in the condition where Lyman’s Law is not relevant. A post-hoc analysis compared those four items that include two nasals ([tamuma], [tonime], [kimane], and [çinumi]) and the rest of the items in the first condition, and found that the former forms were slightly less likely to undergo than the latter (55.4% vs. 58.3%). Since this is a post-hoc comparison, we did not attempt to conduct statistical comparisons (see Simmons et al. 2011). Instead, Experiment 2 reported below explored this difference in a more systematic way.

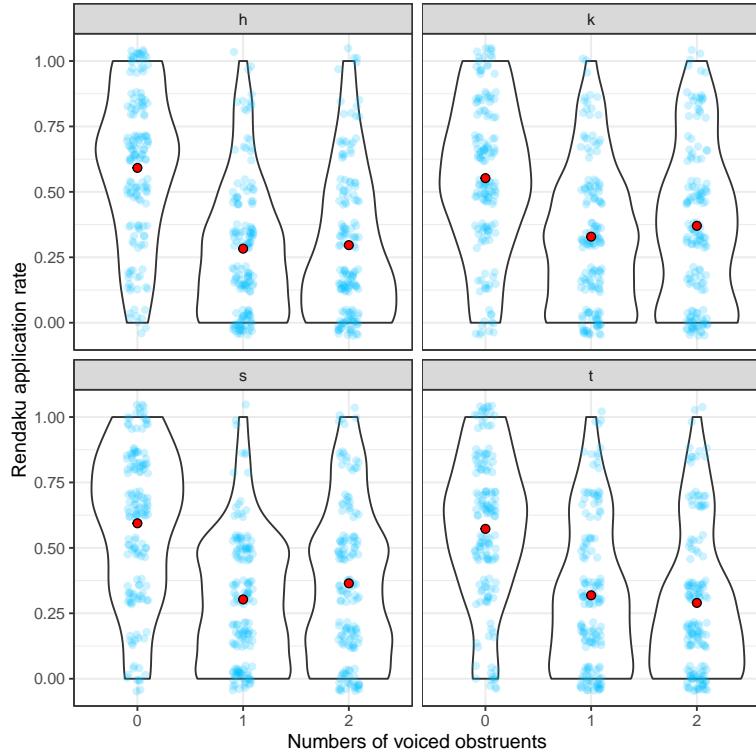


Figure 1: The results of Experiment 1.

212 We observe that the first condition (no violations of Lyman’s Law) differs from the second
 213 and the third conditions (violations of Lyman’s Law). This overall result is in line with previous
 214 experimental studies of Rendaku and Lyman’s Law, providing further support for the psychological
 215 reality of Lyman’s Law (Kawahara 2012; Kawahara & Sano 2014a; Vance 1979, 1980). On the
 216 other hand, no apparent differences were observed between the second and the third conditions—
 217 Rendaku was no less likely to be observed if it resulted in three voiced obstruents compared to
 218 when it resulted in two voiced obstruents. If anything, the third condition overall showed higher
 219 Rendaku rate than the second condition.

220 The model summary of the Bayesian mixed effects logistic regression analysis appears in Table
 221 2. For the sound type (=the coefficients in (b)), /h/ serves as the baseline, since it is alphabetically
 222 ordered first among the four sounds tested. All of the relevant 95% CIs for the coefficients in (b)
 223 include 0, suggesting that differences among the four segment types were not very meaningful,
 224 although /t/ and /k/ were slightly more likely to undergo Rendaku compared to /h/. None of the
 225 interaction terms (=the coefficients in (d)) appear to be meaningful either, suggesting that the
 226 effects of voiced obstruents do not differ substantially among different consonant types, though
 227 the first interaction term shows that the effects of Lyman’s Law were slightly less pronounced for
 228 /k/ than for /h/.

229 More relevant to the main aim of the experiment are the effects of voiced obstruents (=the
 230 coefficients in (c)). The difference between the no voiced obstruent condition and the one voiced
 231 obstruent condition is highly meaningful, suggesting that Lyman's Law reduced Rendaku appli-
 232 cability. In fact, all the posterior samples for this β -coefficient were positive ($p(\beta < 0) = 0$).
 233 The difference between the one voiced obstruent and the two voiced obstruent condition does not
 234 seem credible, however. For this comparison, we examined how many posterior samples were
 235 negative, because we expected that Rendaku might be less likely to apply when it resulted in three
 236 voiced obstruents (*à la* Kim 2019 and Kumagai 2017). Only 47.1% of the posterior samples of this
 237 β -coefficient were negative ($p(\beta < 0) = 0.47$).

Table 2: Summary of the Bayesian mixed effects logistic regression model (Experiment 1).

		β	error	95% CI
(a) intercept		-1.23	0.21	[-1.65, -0.82]
(b) sound type	/k/	0.29	0.26	[-0.22, 0.79]
	/s/	0.11	0.27	[-0.41, 0.62]
	/t/	0.20	0.27	[-0.32, 0.72]
(c) vcd obs	0 vs. 1	1.67	0.28	[1.12, 2.25]
	2 vs. 1	0.02	0.27	[-0.51, 0.53]
(d) interactions	/k/:0 vs. 1	-0.49	0.36	[-1.21, 0.21]
	/s/:0 vs. 1	-0.09	0.36	[-0.80, 0.62]
	/t/:0 vs. 1	-0.29	0.37	[-1.03, 0.43]
	/k/:2 vs. 1	0.15	0.37	[-0.56, 0.87]
	/s/:2 vs. 1	0.29	0.37	[-0.43, 1.02]
	/t/:2 vs. 1	-0.29	0.37	[-1.03, 0.45]

238 Since the difference between the one voiced obstruent and the two voiced obstruent condition
 239 was not apparent, we took advantage of a Bayesian analysis to explore to what extent we can be-
 240 lieve in "the null effect" for this difference. To do so, we deployed an analysis using ROPE (Region
 241 of Practical Equivalence: Kruschke & Liddell 2018; Makowski et al. 2019). The basic idea is that
 242 we define a range that is equivalent to a point estimate—here $\beta = 0$ —and examine how many pos-
 243 terior samples are contained in that region, a region that can be considered to be equivalent to null
 244 for practical purposes. Following Makowski et al. (2019), we take 0.1—a negligible effect size ac-
 245 cording to Cohen (1988)—of a standardized parameter to define that ROPE. In logistic regression
 246 models, this ROPE ranges from [-0.18, 0.18]. We used bayestestR (Makowski et al. 2020) to
 247 calculate how many posterior samples are contained in this ROPE. This analysis shows that 53.2%
 248 of the posterior samples within the 95% Credible Intervals were contained in this ROPE. In other
 249 words, we can be about 50% certain that there are no differences between the two conditions.

250 **2.4 Discussion**

251 The specific question we addressed in Experiment 1 is whether or not Lyman’s Law counts the
252 number of voiced obstruents, i.e. whether it distinguishes forms with two voiced obstruents from
253 those with three voiced obstruents. A short answer is that it apparently does not. While we were
254 unable to prove “the null effect,” no convincing evidence was obtained that Lyman’s Law counts
255 beyond two either. The results are compatible with the remark by Ito & Mester (2003) which we
256 quoted in the introduction, as well as the general view reviewed in that section that phonological
257 systems do not count beyond three (Goldsmith 1976; Hewitt & Prince 1989; Ito & Mester 2003;
258 McCarthy & Prince 1986; Myers 1997).

259 From the perspective of Optimality Theory (Prince & Smolensky 1993/2004), we can inter-
260 pret the current results as suggesting that, regardless of whether a morpheme contains two voiced
261 obstruents or three voiced obstruents, the constraint behind Lyman’s Law is violated to an equal
262 degree. For example, this constraint can assign a violation mark for every morpheme that contains
263 more than one voiced obstruent, rather than assigning a violation mark for each pair of voiced
264 obstruents. The latter formulation is what is assumed by (Kim 2019), as well as by Ito & Mester
265 (2003) who state that “[f]or $C_1 \&_{\delta} C_1$, the special case of self-conjunction with $C_1 = C_2$, this im-
266 plies that a candidate receives a violation mark for **each pair** of violation marks ($*C_1, *C_1$) it has
267 accrued for C_1 in domain δ ” (p.23, emphasis ours). The current experiment seems to suggest that
268 instead, it is a domain (i.e. morpheme) that receive a violation mark in this case. This is compat-
269 ible with the definition of local conjunction that Moreton & Smolensky (2002) give: “*the local*
270 *conjunction of C_1 and C_2 in D* , is a constraint which is violated whenever there is a domain of type
271 D in which both C_1 and C_2 are violated” (p.306, emphasis in the original).

272 At this point, we note that our study is specifically about how Lyman’s Law behaves with
273 respect to the number of voiced obstruents—it may as well be the case that Lyman’s Law does not
274 count, but other phonological systems may be able to count (Paster 2019). We will come back to
275 this general issue in the conclusion section.

276 A question that arises given the current results is how we should reconcile the current results
277 with the direct motivation of the current study—the observation that two nasals seem to block
278 Rendaku (Kim 2019; Kumagai 2017). One possibility is that this observation was actually epiphe-
279 nomenal. Inspection of the actual examples used by Kim (2019) shows that many of the E2s are
280 actually compounds.⁷ For example, [hanami] “cherry watching” consists of [hana] “flower/cherry”
281 and [mi] “watching.” Other examples of this kind include [kami-no-ke] ‘(lit.) head’s hair’ and
282 [tate-mono] ‘(lit.) built things.’ Since it is independently known that Rendaku applies only to the
283 elements on right branches of compounds (Ito & Mester 1986; Otsu 1980), these examples may
284 be explained away in terms of this independently motivated restriction. Other examples include

⁷We are grateful to Seoyong Kim for sharing her raw data.

285 those E2s that already contain a voiced obstruent (e.g. [tabe-mono] ‘food’ and [hidari-mimi] ‘left
286 ear’), and Rendaku in such examples should be blocked by that voiced obstruent, not necessarily
287 by the two nasals. Some other items included in Kim’s (2019) data are actually those that can
288 undergo Rendaku (e.g. [konomi] ‘favorite’ vs. [jori-gonomi] ‘pick and choose’ and [tanomi] ‘plea’
289 vs. [kami-danomi] ‘plea to God’), although non-Rendaku forms may have appeared in the corpus.

290 These alternative explanations, however, do not provide an explanation for the experimental
291 finding by Kumagai (2017), because that experiment made use of monomorphemic nonce words as
292 E2s. One issue that can be raised about the experiment by Kumagai (2017), however, is that it had
293 only three items for each condition, and thus the generalizability of his findings can be questioned.
294 In light of the results of Experiment 1, we feel that it is necessary to reexamine Kumagai’s (2017)
295 experimental finding by expanding the number of items tested. Experiment 2 takes up on this task.

296 **3 Experiment 2**

297 **3.1 Introduction**

298 Given that Experiment 1 did not find convincing evidence that Lyman’s Law counts beyond three,
299 the next experiment was designed to re-examine the claim that two nasal consonants may trigger
300 Lyman’s Law and inhibit Rendaku (Kim 2019; Kumagai 2017). Recall that many examples used
301 by Kim (2019) can potentially be explained away in terms of other independently motivated restric-
302 tions on Rendaku, and that Kumagai’s (2017) experiment had only three items for each condition.

303 There are independent reasons to test—more robustly than Kumagai (2017) did—the possi-
304 bility that two nasals can block Rendaku in Japanese. Specifically, the [voice] specifications of
305 sonorant consonants in Japanese has been known to be ambivalent. On the one hand, the standard
306 view about the role of sonorants in triggering Lyman’s Law is that they do not, and there have
307 been several attempts to model this observation. The inertness of sonorant voicing with respect to
308 Lyman’s Law has been modeled by using the underspecification theory (Ito & Mester 1986), by
309 positing a privative [voice] feature that is specific to obstruents (Mester & Ito 1989), or by posit-
310 ing different [voice] features for sonorants and obstruents (Rice 1993). See Kawahara & Zamma
311 (2016) for a review of these proposals.

312 On the other hand, there is some evidence that sonorants, especially nasals, are specified for
313 [voice] in Japanese phonology. Most clear evidence comes from the fact that nasals trigger voicing
314 of following voiceless consonants, as observed in the past tense formation (e.g. /kam-ta/ → [kan-
315 da] ‘bite + PAST’), which seems to suggest that nasals in Japanese are specified for [+voice]
316 (Ito et al. 1995; Rice 1993).⁸ An analysis of half rhymes in Japanese rap lyrics likewise shows

⁸We should also note that the productivity of alternation patterns observed in verbal inflection paradigms has been questioned by several nonce word experiments (Vance 1987, 1991). Hayashi & Iverson (1998) also argue that post-

317 that sonorant consonants are more likely to rhyme with voiced obstruents than with voiceless
318 obstruents (Kawahara 2007), and the same generalization holds in the paring patterns of imperfect
319 puns (Kawahara & Shinohara 2009), although these studies argue that these pairing patterns are
320 based on perceptual similarity rather than phonological similarity. In short, there are some senses
321 in which nasals—and perhaps sonorants in general—may be specified as [+voice] in Japanese, and
322 it would be interesting to test whether this feature can trigger Lyman’s Law, especially when there
323 are two instances.

324 **3.2 Methods**

325 As with Experiment 1, the raw data, the R markdown file, and the Bayesian posterior samples are
326 available at the osf repository.

327 **3.2.1 Stimuli**

328 In order to test whether two nasals can trigger Lyman’s Law, this experiment compared nonce
329 words which contained different numbers of nasals. The experiment also tested whether two in-
330 stances of other sonorant consonants would trigger Lyman’s Law, because the ambivalent nature
331 of [voice] specification pertains to all sonorant types (cf. Ito et al. 1995). In order to keep the size
332 of the overall experiment manageable, we limited ourselves to those items that begin with [h].⁹
333 The first condition, which served as a baseline condition, had a voiceless obstruent in the second
334 and third syllables (=condition (a)). The second condition had a nasal in the second syllable and
335 a voiceless obstruent in the third syllable (=condition (b))—this condition was included to exper-
336 imentally test the assumption embraced in the theoretical literature reviewed above that one nasal
337 does not block Rendaku. The third condition is a critical condition, which contained two nasals,
338 one in the second syllable and one in the third syllable.

339 We also included items which include one [r] in the second syllable (=condition (d)) and those
340 items which include two [r]s (=condition (e)), as well as those which include one approximant/glide
341 (=condition (f)) and those which include two approximants (=condition (g)). These conditions
342 allowed us to explore whether it is only two nasals that can block Rendaku, or whether other
343 sonorants can behave similarly when there are two of them.

344 The actual list of stimuli appears in Table 3. Just as in Experiment 1, no items were existing
345 words as they were, nor after they underwent Rendaku. They were all trisyllabic with three open

nasal voicing in Japanese is non-assimilative in nature, and thus does not offer evidence that nasals are specified as [+voice] in Japanese phonology.

⁹A practical consideration that entered into this decision is so that we can use the Buy Response function in SurveyMonkey (see below), given that with Experiment 1, we had more or less used up our pool of participants whose data we can use for experiments related to Rendaku. The Buy Response function, however, allows us to include only up to 50 questions.

Table 3: The list of nonce words used in Experiment 2.

(a) [h-vls-vls]	(b) [h-nas-vls]	(c) [h-nas-nas]	
[hatosa]	[hanuta]	[hanumo]	
[hasaka]	[hanasa]	[hanama]	
[hetosa]	[henoke]	[henona]	
[hekita]	[henaso]	[henema]	
[hotaso]	[honato]	[honimu]	
[hokata]	[honika]	[honine]	
(d) [h-r-vls]	(e) [h-r-r]	(f) [h-App-vls]	(g) [h-App-App]
[harito]	[harura]	[hajuto]	[hajuwa]
[harose]	[harare]	[hawase]	[hawaja]
[herota]	[herora]	[hejata]	[hejowa]
[heresa]	[herera]	[hewasa]	[hewaja]
[horike]	[horiru]	[hojaso]	[hojuwa]
[horiso]	[horiro]	[howake]	[howaju]

³⁴⁶ syllables.

³⁴⁷ 3.2.2 Participants

³⁴⁸ 133 participants were recruited using the Buy Response function offered by SurveyMonkey. Data
³⁴⁹ from one participant was excluded because they reported that they were a non-native speaker of
³⁵⁰ Japanese. Data from additional 11 native speakers were obtained from a Japanese university, re-
³⁵¹ sulting in a total of responses from 143 speakers. The procedure is identical to that of Experiment
³⁵² 1. Each participant was assigned a uniquely randomized order of the stimuli.

³⁵³ 3.2.3 Statistics

³⁵⁴ As with Experiment 1, the data was analyzed using a Bayesian mixed effects logistic regression
³⁵⁵ model. The fixed variable was the 7-level condition which coded the phonological differences
³⁵⁶ listed in Table 3. The baseline was set to be the condition (a), forms in which /h/ was followed by
³⁵⁷ two voiceless obstruents. The model also included free-varying random intercepts for items and
³⁵⁸ participants as well as the random slope for participants for the fixed effect. 3,000 iterations were
³⁵⁹ run for 4 chains with 1,000 warm-ups each. All the \hat{R} -values for the fixed factors were 1 and there
³⁶⁰ were no divergent transitions, suggesting that the four chains mixed successfully.

361 3.3 Results

362 Figure 2 shows the Rendaku application rate for each condition in the form of violin plots. Trans-
 363 parent circles show averaged responses from each participant. Solid red circles represent grand
 364 averages. The seven phonological conditions resulted in the following Rendaku application rates:
 365 (a) [h-vls-vls] = 43.6%; (b) [h-nas-vls] = 43.8%; (c) [h-nas-nas] = 40.2%; (d) [h-r-vls] = 45.0%; (e)
 366 [h-r-r] = 44.9%; (f) [h -App-vls] = 43.5%; (g) [h-App-App] = 38%.

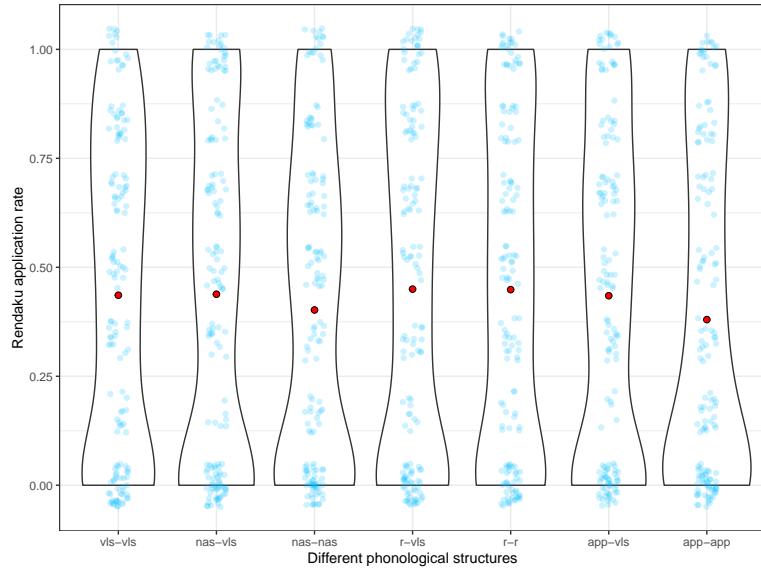


Figure 2: The results of Experiment 2.

367 Overall, the effects of phonological compositions of the stimuli were not very apparent. The
 368 critical condition, which contained two nasal consonants, showed 3.4% reduction in Rendaku
 369 responses compared to the baseline condition. The conditions which contained one sonorant,
 370 whether it is a nasal, [r], or an approximant, did not show any substantial reduction in Rendaku
 371 responses. The clearest case was the stimuli with two approximants, which showed the reduction
 372 in Rendaku responses by 5.6% compared to the baseline condition.

373 The model summary of a Bayesian mixed effects model is shown in Table 4. As observed in the
 374 table, the condition with two approximants is the only condition whose 95% CI does not include 0.
 375 Since we did observe some reduction in Rendaku applicability for the condition with two nasals,
 376 we calculated the proportions of posterior samples that are negative for this β -coefficient, and
 377 found that 91.2% of them were negative. If we take the conservative measure and assume that
 378 the lower edge of the ROPE (i.e. -0.18) should define the critical region, then only 66.1% of the
 379 posterior samples are below -0.18. This result suggests that we can only be 66% confident that two
 380 nasals lower Rendaku responses to a non-negligible degree. We conclude that the evidence for the

381 probabilistic blocking of Rendaku by two nasals is at best weak.

Table 4: Summary of the Bayesian mixed effects logistic regression model (Experiment 2).

		β	error	95% CI
(a) intercept		-0.89	0.32	[-1.54, -0.25]
(b) condition	nas-vls	-0.02	0.20	[-0.42, 0.36]
	nas-nas	-0.26	0.19	[-0.63, 0.12]
	r-vls	0.10	0.20	[-0.31, 0.49]
	r-r	0.11	0.19	[-0.27, 0.49]
	app-vls	-0.02	0.20	[-0.41, 0.37]
	app-app	-0.48	0.22	[-0.91, -0.06]

382 3.4 Discussion

383 This experiment was set out to re-examine the previous claim that two nasals may block Rendaku.
384 The results show however that the evidence for this blockage effect was weak at best if present
385 at all. Comparing the current results with those of Kumagai (2017), the crucial items used in the
386 latter experiment were [hanama], [çinama] and [funama], which all end with [nama]. The current
387 stimuli contained [hanama], and therefore, as a post-hoc comparison, we compared [hanama] and
388 other items. Indeed, [hanama] showed slightly lower Rendaku responses than other items in the
389 same condition: 38.5% vs. 40.6%. The blockage of Rendaku may have something to do with that
390 specific [nama] sequence, but does not seem to generalize to other items containing two nasals.

391 On the other hand, the condition with two approximants showed reduction in Rendaku rates to
392 a degree which can be considered to be credible. We find this result to be puzzling. We know of no
393 good reasons why approximants, in the exclusion of nasals or [r]s, interact with a voiced obstruent
394 in the calculation of Lyman’s Law in Japanese phonology. If anything, the [voice] specification is
395 more clearly motivated for nasals than for approximants, as the former arguably triggers post-nasal
396 voicing in Japanese (Ito et al. 1995, though see Hayashi & Iverson 1998 and Vance 1991).

397 4 Conclusion

398 The two experiments reported above did not find convincing evidence that Lyman’s Law counts.
399 How should we interpret the current results in light of the recent proposal by Paster (2019) that
400 phonological systems can count? While Paster (2019) shows several pieces of evidence that
401 phonology can apparently count, she also finds that all of these patterns that apparently count
402 are related to tones and stress, and the counting behavior does not seem to be observed for patterns

403 related to segmental phonology. The claim by Kim (2019) and Kumagai (2017) would have been a
404 counterexample to this generalization by Paster (2019), but this claim did not replicate well in the
405 current experiment.¹⁰ There may be, therefore, an important distinction to be made between seg-
406 mental phonological patterns and suprasegmental phonological patterns, only the latter of which
407 can count. More experimental verifications are called for to establish the thesis that segmental
408 phonological patterns never count beyond three, however. See Hyman (2011), Jardine (2016),
409 McPherson (2020), Pater (2018) among others for different views on this distinction between seg-
410 mental phonology and suprasegmental phonology.

411 The next question is how we should interpret the current results in the context of the recent
412 success of MaxEnt Harmonic Grammar in modeling various probabilistic phonological patterns.
413 In this theory, the number of constraint violations are counted, multiplied by the constraints'
414 weights, and the resulting numerical values are mapped onto predicted probabilities of the candi-
415 dates (Breiss 2020; Hayes 2020; Kawahara 2020; McPherson & Hayes 2016; Smith & Pater 2020;
416 Zuraw & Hayes 2017). To the extent that we accept the thesis that phonological systems can count
417 the number of violations, it seems to us that the logical conclusion is that Lyman's Law assigns a
418 violation mark to each morpheme, but not each pair of voiced consonant (Moreton & Smolensky
419 2002, c.f. Ito & Mester 2003 and Kim 2019). More generally speakings, constraints cannot assign
420 a violation mark based on a structural description that involves more than two segments, although
421 the grammar may count the number of constraint violations. The emerging hypothesis is that con-
422 straint violations can be counted (as in MaxEnt Harmonic Grammar), but constraints themselves
423 cannot count (as in the current experimental results). This new hypothesis should be tested against
424 a wider range of phonological phenomena across different languages.

425 To conclude, we started with a rather general question in phonological theorization—does
426 phonology count? We addressed this question by exploring whether Lyman's Law counts or not. In
427 Experiment 1, we addressed the question whether Lyman's Law distinguishes morphemes with two
428 voiced obstruents and those with three voiced obstruents. The results show that there is no strong
429 evidence for such counting behavior. In light of this negative result, we re-examined the direct
430 motivation of Experiment 1—the recent claim that two nasals may reduce Rendaku applicability.
431 Experiment 2 expanded upon Kumagai (2017) and included more items per each phonological
432 condition. The results provided at best weak evidence for the counting behavior. The general con-
433 clusion that we can draw from these results is that it is unlikely that Lyman's Law counts, except
434 for the puzzling behavior of two glides, which itself requires further scrutiny.

¹⁰Setting aside the puzzling effect of two approximants.

435 **Funding**

436 Supported by XXX (not shown in this version to keep anonymity)

437 **Conflicts of interest**

438 The authors declare no conflicts of interest.

439 **Availability of data and material**

440 The data are available at

441 https://osf.io/9qgtx/?view_only=1af0e322bb024af29199be3511fbb5ff

442 **Code availability (software application or custom code)**

443 The code is available at

444 https://osf.io/9qgtx/?view_only=1af0e322bb024af29199be3511fbb5ff

445 **Authors' contributions**

446 Both authors contributed to the conception and execution of the experiments. The first author wrote
447 the manuscript and the second author revised it. The statistical analysis was primarily conducted
448 by the first author. The second author checked the details.

449 **Ethics approval**

450 The current experiment was conducted with an approval from the authors' institute.

451 **Consent to participate**

452 The participants read through the consent form before participating in the experiments.

453 **Consent for publication**

454 Both authors approve that the current manuscript be evaluated for publication in the journal.

455 **References**

456 Alderete, John. 1997. Dissimilation as local conjunction. In Kiyomi Kusumoto (ed.), *Proceedings*
457 *of the North East Linguistics Society 27*, 17–31. Amherst: GLSA.

458 Blust, Robert. 2012. One mark per word? Some patterns of dissimilation in Austronesian and
459 Australian languages. *Phonology* 29(3). 355–381.

460 Breiss, Canaan. 2020. Constraint cumulativity in phonotactics: Evidence from artificial grammar
461 learning studies. *Phonology* 37(4). 551–576.

462 Bürkner, Paul-Christian. 2017. brms: An R Package for Bayesian Multilevel Models using Stan.
463 R package.

464 Cohen, Jacob. 1988. *Statistical power analysis for the behavioral science*. Lawrence Erlbaum
465 Associates.

466 Eager, Christopher & Roy Joseph. 2017. Mixed effects models are sometimes terrible. Ms. University
467 of Illinois at Urbana Champaign, <https://arxiv.org/abs/1701.04858>.

468 Gallistel, Randy C. 2009. The importance of proving the null. *Psychological Review* 116(2).
469 439–453.

470 Goldsmith, John. 1976. *Autosegmental phonology*: MIT Doctoral dissertation.

471 Goldwater, Sharon & Mark Johnson. 2003. Learning OT constraint rankings using a maximum
472 entropy model. *Proceedings of the Workshop on Variation within Optimality Theory* 111–120.

473 Hayashi, Emiko & Gregory Iverson. 1998. The non-assimilatory nature of postnasal voicing in
474 Japanese. *Journal of Humanities and Social Sciences* 38. 27–44.

475 Hayes, Bruce. 2020. Deriving the wug-shaped curve: A criterion for assessing formal theories of
476 linguistic variation. Ms. UCLA.

477 Hayes, Bruce & Colin Wilson. 2008. A maximum entropy model of phonotactics and phonotactic
478 learning. *Linguistic Inquiry* 39. 379–440.

479 Hewitt, Mark & Alan Prince. 1989. OCP, locality and linking: The N. Karanga verb. In E. J. Fee
480 & K. Hunt (eds.), *Proceedings of West Coast Conference on Formal Linguistics 8*, 176–191.
481 Stanford: Stanford Linguistic Association.

482 Hyman, Larry. 2011. Tone: Is it different? In John Goldsmith, Jason Riggle & Alan Yu (eds.), *The*
483 *handbook of phonological theory, 2nd edition*, Oxford: Blackwell.

484 Ito, Junko & Armin Mester. 1986. The phonology of voicing in Japanese: Theoretical conse-
485 quences for morphological accessibility. *Linguistic Inquiry* 17. 49–73.

486 Ito, Junko & Armin Mester. 2003. *Japanese morphophonemics*. Cambridge: MIT Press.

487 Ito, Junko, Armin Mester & Jaye Padgett. 1995. Licensing and underspecification in Optimality
488 Theory. *Linguistic Inquiry* 26(4). 571–614.

489 Jäger, Gerhard. 2007. Maximum Entropy Models and Stochastic Optimality Theory. In Joan W.
490 Bresnan (ed.), *Architectures, rules, and preferences: Variations on themes*, 467–479. CSLI.

491 Jäger, Gerhard & Anette Rosenbach. 2006. The winner takes it all—almost: Cumulativity in gram-
492 matical variation. *Linguistics* 44(5). 937–971.

493 Jardine, Adam. 2016. Computationally, tones are different. *Phonology* 33(2). 247–283.

494 Kawahara, Shigeto. 2007. Half-rhymes in Japanese rap lyrics and knowledge of similarity. *Journal*
495 *of East Asian Linguistics* 16(2). 113–144.

496 Kawahara, Shigeto. 2012. Lyman’s Law is active in loanwords and nonce words: Evidence from
497 naturalness judgment experiments. *Lingua* 122(11). 1193–1206.

498 Kawahara, Shigeto. 2015. Can we use rendaku for phonological argumentation? *Linguistic Van-*

499 *guard* 1. 3–14.

500 Kawahara, Shigeto. 2020. A wug-shaped curve in sound symbolism: The case of Japanese
501 Pokémon names. *Phonology* 37(3). 383–418.

502 Kawahara, Shigeto & Shin-ichiro Sano. 2014a. Identity avoidance and Lyman’s Law. *Lingua* 150.
503 71–77.

504 Kawahara, Shigeto & Shin-ichiro Sano. 2014b. Identity avoidance and rendaku. *Proceedings of
505 Phonology 2013*.

506 Kawahara, Shigeto & Kazuko Shinohara. 2009. The role of psychoacoustic similarity in Japanese
507 puns: A corpus study. *Journal of Linguistics* 45(1). 111–138.

508 Kawahara, Shigeto & Hideki Zamma. 2016. Generative treatments of rendaku. In Timothy Vance
509 & Mark Irwin (eds.), *Sequential voicing in Japanese compounds: Papers from the NINJAL
510 rendaku Project*, 13–34. Amsterdam: John Benjamins.

511 Kim, Seoyoung. 2019. Modeling super-gang effects in MaxEnt: Nasal in Rendaku. *Proceedings
512 of NELS 49*.

513 Kruschke, John K. 2014. *Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan*.
514 Academic Press.

515 Kruschke, John K. & Torrin M. Liddell. 2018. The Bayesian new statistics: Hypothesis testing, es-
516 timation, meta-analysis, and power analysis from a Bayesian perspective. *Psychological Bulletin
517 and Review* 25. 178–206.

518 Kumagai, Gakuji. 2017. Super-additivity of OCP-nasal effect on the applicability of rendaku. Talk
519 presented at GLOW in Asia XI.

520 Lyman, Benjamin S. 1894. Change from surd to sonant in Japanese compounds. *Oriental Studies
521 of the Oriental Club of Philadelphia* 160–176.

522 Maekawa, Kikuo. 2004. Nihongo hanashikotoba koopasu-no gaiyoo [An overview of the Corpus
523 of Spontaneous Japanese]. *Nihongo Kagaku* 15. 111–133.

524 Makowski, Dominique, Mattan S. Ben-Shachar, Annabel S.H. Chen & Daniel Lüdecke. 2019.
525 Indices of effect existence and significance in the Bayesian framework. *Frontiers in Psychology*
526 <https://doi.org/10.3389/fpsyg.2019.02767>.

527 Makowski, Dominique, Daniel Lüdecke, Mattan S. Ben-Shachar, Michael D. Wilson, Paul-
528 Christian Bürkner, Tristan Mahr, Henrik Singmann, Quentin F. Gronau & Sam Crawley. 2020.
529 bayestestR. R package.

530 McCarthy, John J. & Alan Prince. 1986. Prosodic morphology. Ms., University of Massachusetts
531 and Rutgers University.

532 McCawley, James D. 1968. *The phonological component of a grammar of Japanese*. The Hague:
533 Mouton.

534 McPherson, Laura. 2020. Grammatical tone and its segmental correlates: Insights for analysis.
535 Talk presented at Keio-ICU LINC (viewable at <https://www.youtube.com/watch?v=SBEX1iZv6r8&t=19s>).

537 McPherson, Laura & Bruce Hayes. 2016. Relating application frequency to morphological struc-
538 ture: The case of Tommo So vowel harmony. *Phonology* 33. 125–167.

539 Mester, Armin & Junko Ito. 1989. Feature predictability and underspecification: Palatal prosody
540 in Japanese mimetics. *Language* 65. 258–293.

541 Moreton, Elliot & Paul Smolensky. 2002. Typological consequences of local constraint conjunc-
542 tion. In Line Mikkelsen & Chris Potts (eds.), *Proceedings of West Coast Conference on Formal
543 Linguistics 21*, 306–319. Cambridge, MA: Cascadilla Press.

544 Myers, Scott. 1997. OCP effects in Optimality Theory. *Natural Language and Linguistic Theory*
545 15(4). 847–892.

546 Otsu, Yukio. 1980. Some aspects of rendaku in Japanese and related problems. In Ann Farmer
547 & Yukio Otsu (eds.), *MIT working papers in linguistics*, vol. 2, 207–228. Cambridge, Mass.:
548 Department of Linguistics and Philosophy, MIT.

549 Paster, Mary. 2019. Phonology counts. *Radical* 1. 1–61.

550 Pater, Joe. 2018. Substance matters: A reply to Jardine (2016). *Phononology* 35(1). 151–156.

551 Prince, Alan & Paul Smolensky. 1993/2004. *Optimality Theory: Constraint interaction in gener-
552 ative grammar*. Malden and Oxford: Blackwell.

553 Rice, Keren. 1993. A reexamination of the feature [sonorant]: The status of sonorant obstruents.
554 *Language* 69. 308–344.

555 Rosen, Eric. 2016. Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku
556 voicing in Japanese through harmonic grammar. *Proceedings of BLS* 235–249.

557 Simmons, J.P., L.D. Nelson & U. Simonsohn. 2011. False-positive psychology: Undisclosed flex-
558 ibility in data collection and analysis allows presenting anything as significant. *Psychological
559 Science* 22. 1359–1366.

560 Smith, Brian W. & Joe Pater. 2020. French schwa and gradient cumulativity. *Glossa* 5(1). 24, doi:
561 <http://doi.org/10.5334/gjgl.583>.

562 Smolensky, Paul. 1986. Information processing in dynamical systems: Foundations of harmony
563 theory. In D. Rumelhart, J. McClelland & PDPR Group (eds.), *Parallel distributed processing:
564 Explorations in the microstructure of cognition*, vol. 1: Foundations, 194–281. Cambridge, MA:
565 Bradford Books/MIT Press.

566 Smolensky, Paul. 1995. On the internal structure of the constraint component CON of UG. Talk
567 presented at the University of California, Los Angeles (ROA-86).

568 Smolensky, Paul. 1997. Constraint interaction in generative grammar II: Local conjunction, or
569 random rules in universal grammar. Handout of talk given at Hopkins Optimality Theory Work-
570 shop/Maryland Mayfest, Baltimore.

571 Vance, Timothy. 1979. *Nonsense word experiments in phonology and their application to rendaku
572 in Japanese*: University of Chicago Doctoral dissertation.

573 Vance, Timothy. 1980. The psychological status of a constraint on Japanese consonant alternation.
574 *Linguistics* 18. 245–267.

575 Vance, Timothy. 1987. *An introduction to Japanese phonology*. New York: SUNY Press.

576 Vance, Timothy. 1991. A new experimental study of Japanese verb morphology. *Journal of
577 Japanese Linguistics* 13. 145–156.

578 Vance, Timothy. 2008. *The sounds of Japanese*. Cambridge: Cambridge University Press.

579 Vance, Timothy. 2014. If rendaku isn't a rule, what in the world is it? In Kaori Kabata & Tsuyoshi
580 Ono (eds.), *Usage-based approaches to Japanese grammar: Towards the understanding of hu-
581 man language*, 137–152. Amsterdam: John Benjamins.

582 Vance, Timothy. 2015. Rendaku. In Haruo Kubozono (ed.), *The handbook of Japanese language
583 and linguistics: Phonetics and phonology*, 397–441. Berlin: Mouton de Gruyter.

584 Vance, Timothy & Mark Irwin (eds.). 2016. *Sequential voicing in Japanese compounds: Papers
585 from the NINJAL Rendaku Project*. Amsterdam: John Benjamins.

586 Zuraw, Kie. 2000. *Patterned exceptions in phonology*: University of California, Los Angeles
587 Doctoral dissertation.

588 Zuraw, Kie & Bruce Hayes. 2017. Intersecting constraint families: An argument for Harmonic

589 Grammar. *Language* 93. 497–548.