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Do charm/bottom quarks exist in quark matter�

� Charm quark production at     
initial (gluon) hard scatterings  
in relativistic heavy ion collisions
(ex. J-PARC).
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1. Heavy quark in quark matter
Charm quark in quark matter



2. “Kondo phase” of heavy quark matter
Lagrangian

2

h ̄ i is finite and thus the QCD Kondo e↵ect is at work.
Although the results in this analysis are obtained with
heavy quarks uniformly distributed in the whole space,
one can translate them into those of a droplet through
the “energy gain” per a single heavy quark.

Lagrangian.—We consider a model having the current-
current interaction with the color exchange between a
light (massless) quark ( ) and a heavy quark ( ) with
mass m

Q

[28–31]:
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where G
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> 0 and T
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/2 (a = 1, . . . , N2
c

� 1) are
the generators of SU(N

c

) with �

a being the Gell-Mann
matrices and N

c

= 3 in QCD. The coupling strength G

c

is taken to be positive so that the interaction produces
attraction in the color anti-triplet channel mimicking the
one-gluon-exchange interaction. We consider N

f

flavors
for light quarks:  = ( 1

, . . . , 

Nf )t. For simplicity,
flavor indices are not explicitly written for the fields  i

(i = 1, . . . , N
f

) and we assume that they have the com-
mon chemical potential µ. We note that L is invariant
under both the chiral symmetry for light quarks and the
heavy-quark spin symmetry for heavy quarks.

We can simplify the Lagrangian (1) in the heavy quark
limit [32, 33]: We separate the heavy quark momentum
p

µ into the on-mass-shell part m

Q

v

µ and the o↵-mass-
shell part k

µ as p

µ = m

Q

v

µ + k

µ with v

µ being the
four-velocity of the heavy quark (vµv

µ

= 1). The energy
scale of kµ should be much smaller than m

Q

. We focus
on the dynamics concerning the residual momentum k

µ.
Namely, we replace  by the e↵ective field  

v

having the
momentum k

µ as  !  
v

= 1
2 (1+v/)eimQv·x . Concern-

ing the four-point interaction, we use the Fierz transfor-
mation,

P
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,
for the color part. It is important to use the Fierz
transformation only for the SU(N

c

) generator, not for
Dirac matrices. Below, we consider the static limit for
the impurity motion v

µ = (1,~0 ) and use the relation
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As for the heavy quark number density, we consider

the condition,  †
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), with the three-dimensional delta func-
tion �

(3)(~x) and ~x

i

being the position of the impurity
i.

P
i

indicates average over the whole space. Thus,
n

Q

is the averaged number density of impurities. When
we consider the impurity distribution in space, we tend
to suppose that a single heavy quark exists like a single
point in space. In contrast, for the present analysis, we
suppose that the heavy quarks are distributed uniformly

in space, and the density is su�ciently large so that the
averaged distance between heavy quarks is smaller than
the coherence length for the QCD Kondo e↵ect ' 1/|�|,
which will be explained later. Due to the uniformity of

the heavy quark distribution, the ground state does not
break the translational invariance in contrast to the case
with a single heavy quark impurity. In addition, as men-
tioned before, we assume that all the heavy quarks are
static and do not propagate in space.
Mean-field approximation.— It has been known within

the perturbative renormalization group analysis [13] that
the model (1) exhibits the QCD Kondo e↵ect for a single
impurity case. We treat here the same model in a non-
perturbative way when the impurities are homogeneously
distributed. As commented before, we consider the color-
singlet correlation between a light quark with flavor i and
a heavy impurity h ̄i

↵

 
v�

i (and its conjugate) which is
associated with the instabilities in the QCD Kondo ef-
fect. Notice that the mean-fields are matrices with Dirac
indices ↵ and �. Then we perform the mean-field approx-
imation in the Lagrangian (1) (represented with respect
to the e↵ective heavy impurity field  

v

):
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where we have neglected the term of the second or-
der with respect to fluctuation. The expectation value,
h ̄i
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v�

i (or h ̄
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�

i), is evaluated by using the ground
state wave function.
Physically, the mean field h ̄i

↵

 
v�

i should be directly
related to the formation of a bound state of a light quark
“hole” and a heavy quark. This is analogous to the
formation of a � meson in association with the quark-
antiquark (q̄q) condensate in vacuum [28–31].
Let us define the gap function as
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(complex) parameter �i and k̂ = ~

k/|~k|. Notice that �i

is independent of momentum, which reflects the transla-
tional invariance of the ground state. Plugging this form
of the gap, we finally find the mean-field Lagrangian in
the momentum space (vµ = (1,~0)):
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where we have added the term with the Lagrange mul-
tiplier � to include the constraint on the number con-
servation of the heavy quarks. This constraint is nec-
essary because the heavy quark number density should
be conserved on average in the mean field (3) (see
Refs. [20, 21, 23]). Note that � can be regarded as the en-
ergy cost for putting a heavy quark into a quark matter

Light quark (u,d,s) ψ and heavy quark (c) Ψ

� Nf flavor for light quark
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where we have added the term with the Lagrange mul-
tiplier � to include the constraint on the number con-
servation of the heavy quarks. This constraint is nec-
essary because the heavy quark number density should
be conserved on average in the mean field (3) (see
Refs. [20, 21, 23]). Note that � can be regarded as the en-
ergy cost for putting a heavy quark into a quark matter
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fect. Notice that the mean-fields are matrices with Dirac
indices ↵ and �. Then we perform the mean-field approx-
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where we have neglected the term of the second or-
der with respect to fluctuation. The expectation value,
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i), is evaluated by using the ground
state wave function.
Physically, the mean field h ̄i
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i should be directly
related to the formation of a bound state of a light quark
“hole” and a heavy quark. This is analogous to the
formation of a � meson in association with the quark-
antiquark (q̄q) condensate in vacuum [28–31].
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k/|~k|. Notice that �i
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of the gap, we finally find the mean-field Lagrangian in
the momentum space (vµ = (1,~0)):
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where we have added the term with the Lagrange mul-
tiplier � to include the constraint on the number con-
servation of the heavy quarks. This constraint is nec-
essary because the heavy quark number density should
be conserved on average in the mean field (3) (see
Refs. [20, 21, 23]). Note that � can be regarded as the en-
ergy cost for putting a heavy quark into a quark matter

2

h ̄ i is finite and thus the QCD Kondo e↵ect is at work.
Although the results in this analysis are obtained with
heavy quarks uniformly distributed in the whole space,
one can translate them into those of a droplet through
the “energy gain” per a single heavy quark.

Lagrangian.—We consider a model having the current-
current interaction with the color exchange between a
light (massless) quark ( ) and a heavy quark ( ) with
mass m

Q

[28–31]:
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) with �

a being the Gell-Mann
matrices and N
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= 3 in QCD. The coupling strength G

c

is taken to be positive so that the interaction produces
attraction in the color anti-triplet channel mimicking the
one-gluon-exchange interaction. We consider N

f

flavors
for light quarks:  = ( 1

, . . . , 

Nf )t. For simplicity,
flavor indices are not explicitly written for the fields  i

(i = 1, . . . , N
f

) and we assume that they have the com-
mon chemical potential µ. We note that L is invariant
under both the chiral symmetry for light quarks and the
heavy-quark spin symmetry for heavy quarks.

We can simplify the Lagrangian (1) in the heavy quark
limit [32, 33]: We separate the heavy quark momentum
p

µ into the on-mass-shell part m
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µ and the o↵-mass-
shell part k

µ as p

µ = m
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v
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µ with v

µ being the
four-velocity of the heavy quark (vµv

µ

= 1). The energy
scale of kµ should be much smaller than m

Q

. We focus
on the dynamics concerning the residual momentum k

µ.
Namely, we replace  by the e↵ective field  
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suppose that the heavy quarks are distributed uniformly

in space, and the density is su�ciently large so that the
averaged distance between heavy quarks is smaller than
the coherence length for the QCD Kondo e↵ect ' 1/|�|,
which will be explained later. Due to the uniformity of

the heavy quark distribution, the ground state does not
break the translational invariance in contrast to the case
with a single heavy quark impurity. In addition, as men-
tioned before, we assume that all the heavy quarks are
static and do not propagate in space.
Mean-field approximation.— It has been known within

the perturbative renormalization group analysis [13] that
the model (1) exhibits the QCD Kondo e↵ect for a single
impurity case. We treat here the same model in a non-
perturbative way when the impurities are homogeneously
distributed. As commented before, we consider the color-
singlet correlation between a light quark with flavor i and
a heavy impurity h ̄i

↵

 
v�

i (and its conjugate) which is
associated with the instabilities in the QCD Kondo ef-
fect. Notice that the mean-fields are matrices with Dirac
indices ↵ and �. Then we perform the mean-field approx-
imation in the Lagrangian (1) (represented with respect
to the e↵ective heavy impurity field  

v

):
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where we have neglected the term of the second or-
der with respect to fluctuation. The expectation value,
h ̄i
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v�

i (or h ̄
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i), is evaluated by using the ground
state wave function.
Physically, the mean field h ̄i
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v�

i should be directly
related to the formation of a bound state of a light quark
“hole” and a heavy quark. This is analogous to the
formation of a � meson in association with the quark-
antiquark (q̄q) condensate in vacuum [28–31].
Let us define the gap function as
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with a scalar

(complex) parameter �i and k̂ = ~

k/|~k|. Notice that �i

is independent of momentum, which reflects the transla-
tional invariance of the ground state. Plugging this form
of the gap, we finally find the mean-field Lagrangian in
the momentum space (vµ = (1,~0)):
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where we have added the term with the Lagrange mul-
tiplier � to include the constraint on the number con-
servation of the heavy quarks. This constraint is nec-
essary because the heavy quark number density should
be conserved on average in the mean field (3) (see
Refs. [20, 21, 23]). Note that � can be regarded as the en-
ergy cost for putting a heavy quark into a quark matter
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h ̄ i is finite and thus the QCD Kondo e↵ect is at work.
Although the results in this analysis are obtained with
heavy quarks uniformly distributed in the whole space,
one can translate them into those of a droplet through
the “energy gain” per a single heavy quark.

Lagrangian.—We consider a model having the current-
current interaction with the color exchange between a
light (massless) quark ( ) and a heavy quark ( ) with
mass m

Q

[28–31]:
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where G
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/2 (a = 1, . . . , N2
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� 1) are
the generators of SU(N
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) with �

a being the Gell-Mann
matrices and N

c

= 3 in QCD. The coupling strength G

c

is taken to be positive so that the interaction produces
attraction in the color anti-triplet channel mimicking the
one-gluon-exchange interaction. We consider N

f

flavors
for light quarks:  = ( 1

, . . . , 

Nf )t. For simplicity,
flavor indices are not explicitly written for the fields  i

(i = 1, . . . , N
f

) and we assume that they have the com-
mon chemical potential µ. We note that L is invariant
under both the chiral symmetry for light quarks and the
heavy-quark spin symmetry for heavy quarks.

We can simplify the Lagrangian (1) in the heavy quark
limit [32, 33]: We separate the heavy quark momentum
p

µ into the on-mass-shell part m

Q

v

µ and the o↵-mass-
shell part k

µ as p

µ = m

Q

v

µ + k

µ with v

µ being the
four-velocity of the heavy quark (vµv

µ

= 1). The energy
scale of kµ should be much smaller than m

Q

. We focus
on the dynamics concerning the residual momentum k

µ.
Namely, we replace  by the e↵ective field  

v

having the
momentum k

µ as  !  
v

= 1
2 (1+v/)eimQv·x . Concern-

ing the four-point interaction, we use the Fierz transfor-
mation,
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(T a)
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(T a)
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= (1/2)�
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� (1/2N
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,
for the color part. It is important to use the Fierz
transformation only for the SU(N

c

) generator, not for
Dirac matrices. Below, we consider the static limit for
the impurity motion v

µ = (1,~0 ) and use the relation
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.
As for the heavy quark number density, we consider

the condition,  †
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), with the three-dimensional delta func-
tion �

(3)(~x) and ~x
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being the position of the impurity
i.

P
i

indicates average over the whole space. Thus,
n

Q

is the averaged number density of impurities. When
we consider the impurity distribution in space, we tend
to suppose that a single heavy quark exists like a single
point in space. In contrast, for the present analysis, we
suppose that the heavy quarks are distributed uniformly

in space, and the density is su�ciently large so that the
averaged distance between heavy quarks is smaller than
the coherence length for the QCD Kondo e↵ect ' 1/|�|,
which will be explained later. Due to the uniformity of

the heavy quark distribution, the ground state does not
break the translational invariance in contrast to the case
with a single heavy quark impurity. In addition, as men-
tioned before, we assume that all the heavy quarks are
static and do not propagate in space.
Mean-field approximation.— It has been known within

the perturbative renormalization group analysis [13] that
the model (1) exhibits the QCD Kondo e↵ect for a single
impurity case. We treat here the same model in a non-
perturbative way when the impurities are homogeneously
distributed. As commented before, we consider the color-
singlet correlation between a light quark with flavor i and
a heavy impurity h ̄i

↵

 
v�

i (and its conjugate) which is
associated with the instabilities in the QCD Kondo ef-
fect. Notice that the mean-fields are matrices with Dirac
indices ↵ and �. Then we perform the mean-field approx-
imation in the Lagrangian (1) (represented with respect
to the e↵ective heavy impurity field  

v

):

( ̄i

↵

 
v�

)( ̄
v�

 

i

�

) ! h ̄i

↵

 
v�

i ̄
v�

 

i

�

+ h ̄
v�

 

i

�

i ̄i

↵

 
v�

�h ̄i

↵

 
v�

ih ̄
v�

 

i

�

i, (2)

where we have neglected the term of the second or-
der with respect to fluctuation. The expectation value,
h ̄i
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i (or h ̄
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i), is evaluated by using the ground
state wave function.
Physically, the mean field h ̄i

↵

 
v�

i should be directly
related to the formation of a bound state of a light quark
“hole” and a heavy quark. This is analogous to the
formation of a � meson in association with the quark-
antiquark (q̄q) condensate in vacuum [28–31].
Let us define the gap function as
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whose Dirac structure is further parametrized in momen-
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with a scalar

(complex) parameter �i and k̂ = ~

k/|~k|. Notice that �i

is independent of momentum, which reflects the transla-
tional invariance of the ground state. Plugging this form
of the gap, we finally find the mean-field Lagrangian in
the momentum space (vµ = (1,~0)):
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where we have added the term with the Lagrange mul-
tiplier � to include the constraint on the number con-
servation of the heavy quarks. This constraint is nec-
essary because the heavy quark number density should
be conserved on average in the mean field (3) (see
Refs. [20, 21, 23]). Note that � can be regarded as the en-
ergy cost for putting a heavy quark into a quark matter

2

h ̄ i is finite and thus the QCD Kondo e↵ect is at work.
Although the results in this analysis are obtained with
heavy quarks uniformly distributed in the whole space,
one can translate them into those of a droplet through
the “energy gain” per a single heavy quark.

Lagrangian.—We consider a model having the current-
current interaction with the color exchange between a
light (massless) quark ( ) and a heavy quark ( ) with
mass m

Q

[28–31]:
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/2 (a = 1, . . . , N2
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� 1) are
the generators of SU(N
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) with �

a being the Gell-Mann
matrices and N

c

= 3 in QCD. The coupling strength G

c

is taken to be positive so that the interaction produces
attraction in the color anti-triplet channel mimicking the
one-gluon-exchange interaction. We consider N

f

flavors
for light quarks:  = ( 1

, . . . , 

Nf )t. For simplicity,
flavor indices are not explicitly written for the fields  i

(i = 1, . . . , N
f

) and we assume that they have the com-
mon chemical potential µ. We note that L is invariant
under both the chiral symmetry for light quarks and the
heavy-quark spin symmetry for heavy quarks.

We can simplify the Lagrangian (1) in the heavy quark
limit [32, 33]: We separate the heavy quark momentum
p

µ into the on-mass-shell part m

Q

v

µ and the o↵-mass-
shell part k

µ as p

µ = m

Q

v

µ + k

µ with v

µ being the
four-velocity of the heavy quark (vµv

µ

= 1). The energy
scale of kµ should be much smaller than m

Q

. We focus
on the dynamics concerning the residual momentum k

µ.
Namely, we replace  by the e↵ective field  

v

having the
momentum k

µ as  !  
v

= 1
2 (1+v/)eimQv·x . Concern-

ing the four-point interaction, we use the Fierz transfor-
mation,
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(T a)
kl

= (1/2)�
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,
for the color part. It is important to use the Fierz
transformation only for the SU(N

c

) generator, not for
Dirac matrices. Below, we consider the static limit for
the impurity motion v

µ = (1,~0 ) and use the relation
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As for the heavy quark number density, we consider
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v

(x) 
v

(x) =
P

i

�

(3)(~x � ~x

i

) ! n

Q

⌘P
i

�

(3)(~x � ~x

i

), with the three-dimensional delta func-
tion �

(3)(~x) and ~x
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being the position of the impurity
i.

P
i

indicates average over the whole space. Thus,
n

Q

is the averaged number density of impurities. When
we consider the impurity distribution in space, we tend
to suppose that a single heavy quark exists like a single
point in space. In contrast, for the present analysis, we
suppose that the heavy quarks are distributed uniformly

in space, and the density is su�ciently large so that the
averaged distance between heavy quarks is smaller than
the coherence length for the QCD Kondo e↵ect ' 1/|�|,
which will be explained later. Due to the uniformity of

the heavy quark distribution, the ground state does not
break the translational invariance in contrast to the case
with a single heavy quark impurity. In addition, as men-
tioned before, we assume that all the heavy quarks are
static and do not propagate in space.
Mean-field approximation.— It has been known within

the perturbative renormalization group analysis [13] that
the model (1) exhibits the QCD Kondo e↵ect for a single
impurity case. We treat here the same model in a non-
perturbative way when the impurities are homogeneously
distributed. As commented before, we consider the color-
singlet correlation between a light quark with flavor i and
a heavy impurity h ̄i

↵

 
v�

i (and its conjugate) which is
associated with the instabilities in the QCD Kondo ef-
fect. Notice that the mean-fields are matrices with Dirac
indices ↵ and �. Then we perform the mean-field approx-
imation in the Lagrangian (1) (represented with respect
to the e↵ective heavy impurity field  
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where we have neglected the term of the second or-
der with respect to fluctuation. The expectation value,
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i (or h ̄
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i), is evaluated by using the ground
state wave function.
Physically, the mean field h ̄i
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i should be directly
related to the formation of a bound state of a light quark
“hole” and a heavy quark. This is analogous to the
formation of a � meson in association with the quark-
antiquark (q̄q) condensate in vacuum [28–31].
Let us define the gap function as
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where we have added the term with the Lagrange mul-
tiplier � to include the constraint on the number con-
servation of the heavy quarks. This constraint is nec-
essary because the heavy quark number density should
be conserved on average in the mean field (3) (see
Refs. [20, 21, 23]). Note that � can be regarded as the en-
ergy cost for putting a heavy quark into a quark matter
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h ̄ i is finite and thus the QCD Kondo e↵ect is at work.
Although the results in this analysis are obtained with
heavy quarks uniformly distributed in the whole space,
one can translate them into those of a droplet through
the “energy gain” per a single heavy quark.

Lagrangian.—We consider a model having the current-
current interaction with the color exchange between a
light (massless) quark ( ) and a heavy quark ( ) with
mass m
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) and we assume that they have the com-
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. We focus
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�

kl

,
for the color part. It is important to use the Fierz
transformation only for the SU(N

c

) generator, not for
Dirac matrices. Below, we consider the static limit for
the impurity motion v

µ = (1,~0 ) and use the relation
 ̄

v
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.
As for the heavy quark number density, we consider

the condition,  †
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(x) 
v

(x) =
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), with the three-dimensional delta func-
tion �

(3)(~x) and ~x

i

being the position of the impurity
i.

P
i

indicates average over the whole space. Thus,
n

Q

is the averaged number density of impurities. When
we consider the impurity distribution in space, we tend
to suppose that a single heavy quark exists like a single
point in space. In contrast, for the present analysis, we
suppose that the heavy quarks are distributed uniformly

in space, and the density is su�ciently large so that the
averaged distance between heavy quarks is smaller than
the coherence length for the QCD Kondo e↵ect ' 1/|�|,
which will be explained later. Due to the uniformity of

the heavy quark distribution, the ground state does not
break the translational invariance in contrast to the case
with a single heavy quark impurity. In addition, as men-
tioned before, we assume that all the heavy quarks are
static and do not propagate in space.
Mean-field approximation.— It has been known within

the perturbative renormalization group analysis [13] that
the model (1) exhibits the QCD Kondo e↵ect for a single
impurity case. We treat here the same model in a non-
perturbative way when the impurities are homogeneously
distributed. As commented before, we consider the color-
singlet correlation between a light quark with flavor i and
a heavy impurity h ̄i

↵

 
v�

i (and its conjugate) which is
associated with the instabilities in the QCD Kondo ef-
fect. Notice that the mean-fields are matrices with Dirac
indices ↵ and �. Then we perform the mean-field approx-
imation in the Lagrangian (1) (represented with respect
to the e↵ective heavy impurity field  

v

):
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where we have neglected the term of the second or-
der with respect to fluctuation. The expectation value,
h ̄i
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v�

i (or h ̄
v�

 

i

�

i), is evaluated by using the ground
state wave function.
Physically, the mean field h ̄i

↵

 
v�

i should be directly
related to the formation of a bound state of a light quark
“hole” and a heavy quark. This is analogous to the
formation of a � meson in association with the quark-
antiquark (q̄q) condensate in vacuum [28–31].
Let us define the gap function as
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with a scalar

(complex) parameter �i and k̂ = ~

k/|~k|. Notice that �i

is independent of momentum, which reflects the transla-
tional invariance of the ground state. Plugging this form
of the gap, we finally find the mean-field Lagrangian in
the momentum space (vµ = (1,~0)):
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where we have added the term with the Lagrange mul-
tiplier � to include the constraint on the number con-
servation of the heavy quarks. This constraint is nec-
essary because the heavy quark number density should
be conserved on average in the mean field (3) (see
Refs. [20, 21, 23]). Note that � can be regarded as the en-
ergy cost for putting a heavy quark into a quark matter

↓
Lagrange multiplier for heavy quark density nQ

�Mean-field: mixing between light quark and heavy quark

2

h ̄ i is finite and thus the QCD Kondo e↵ect is at work.
Although the results in this analysis are obtained with
heavy quarks uniformly distributed in the whole space,
one can translate them into those of a droplet through
the “energy gain” per a single heavy quark.

Lagrangian.—We consider a model having the current-
current interaction with the color exchange between a
light (massless) quark ( ) and a heavy quark ( ) with
mass m

Q

[28–31]:

L =  ̄i@/ + µ  ̄�

0
 +  ̄i@/ �m
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where G

c

> 0 and T

a = �

a

/2 (a = 1, . . . , N2
c

� 1) are
the generators of SU(N

c

) with �

a being the Gell-Mann
matrices and N

c

= 3 in QCD. The coupling strength G

c

is taken to be positive so that the interaction produces
attraction in the color anti-triplet channel mimicking the
one-gluon-exchange interaction. We consider N

f

flavors
for light quarks:  = ( 1

, . . . , 

Nf )t. For simplicity,
flavor indices are not explicitly written for the fields  i

(i = 1, . . . , N
f

) and we assume that they have the com-
mon chemical potential µ. We note that L is invariant
under both the chiral symmetry for light quarks and the
heavy-quark spin symmetry for heavy quarks.

We can simplify the Lagrangian (1) in the heavy quark
limit [32, 33]: We separate the heavy quark momentum
p

µ into the on-mass-shell part m

Q

v

µ and the o↵-mass-
shell part k

µ as p

µ = m

Q

v

µ + k

µ with v

µ being the
four-velocity of the heavy quark (vµv

µ

= 1). The energy
scale of kµ should be much smaller than m

Q

. We focus
on the dynamics concerning the residual momentum k

µ.
Namely, we replace  by the e↵ective field  

v

having the
momentum k

µ as  !  
v

= 1
2 (1+v/)eimQv·x . Concern-

ing the four-point interaction, we use the Fierz transfor-
mation,

P
a

(T a)
ij

(T a)
kl

= (1/2)�
il

�

kj

� (1/2N
c

)�
ij

�

kl

,
for the color part. It is important to use the Fierz
transformation only for the SU(N

c

) generator, not for
Dirac matrices. Below, we consider the static limit for
the impurity motion v

µ = (1,~0 ) and use the relation
 ̄

v

 
v

=  †
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v

.
As for the heavy quark number density, we consider

the condition,  †
v
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(x) =
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i
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) ! n
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⌘P
i

�

(3)(~x � ~x

i

), with the three-dimensional delta func-
tion �

(3)(~x) and ~x

i

being the position of the impurity
i.

P
i

indicates average over the whole space. Thus,
n

Q

is the averaged number density of impurities. When
we consider the impurity distribution in space, we tend
to suppose that a single heavy quark exists like a single
point in space. In contrast, for the present analysis, we
suppose that the heavy quarks are distributed uniformly

in space, and the density is su�ciently large so that the
averaged distance between heavy quarks is smaller than
the coherence length for the QCD Kondo e↵ect ' 1/|�|,
which will be explained later. Due to the uniformity of

the heavy quark distribution, the ground state does not
break the translational invariance in contrast to the case
with a single heavy quark impurity. In addition, as men-
tioned before, we assume that all the heavy quarks are
static and do not propagate in space.
Mean-field approximation.— It has been known within

the perturbative renormalization group analysis [13] that
the model (1) exhibits the QCD Kondo e↵ect for a single
impurity case. We treat here the same model in a non-
perturbative way when the impurities are homogeneously
distributed. As commented before, we consider the color-
singlet correlation between a light quark with flavor i and
a heavy impurity h ̄i

↵

 
v�

i (and its conjugate) which is
associated with the instabilities in the QCD Kondo ef-
fect. Notice that the mean-fields are matrices with Dirac
indices ↵ and �. Then we perform the mean-field approx-
imation in the Lagrangian (1) (represented with respect
to the e↵ective heavy impurity field  

v

):
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where we have neglected the term of the second or-
der with respect to fluctuation. The expectation value,
h ̄i

↵

 
v�

i (or h ̄
v�

 

i

�

i), is evaluated by using the ground
state wave function.
Physically, the mean field h ̄i

↵

 
v�

i should be directly
related to the formation of a bound state of a light quark
“hole” and a heavy quark. This is analogous to the
formation of a � meson in association with the quark-
antiquark (q̄q) condensate in vacuum [28–31].
Let us define the gap function as
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i, (3)

whose Dirac structure is further parametrized in momen-

tum space as �i
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= �i

⇣
1+�0

2 (1� k̂ ·~�)
⌘

�↵

with a scalar

(complex) parameter �i and k̂ = ~

k/|~k|. Notice that �i

is independent of momentum, which reflects the transla-
tional invariance of the ground state. Plugging this form
of the gap, we finally find the mean-field Lagrangian in
the momentum space (vµ = (1,~0)):

LMF=  ̄(k/+ µ �

0) +  ̄
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where we have added the term with the Lagrange mul-
tiplier � to include the constraint on the number con-
servation of the heavy quarks. This constraint is nec-
essary because the heavy quark number density should
be conserved on average in the mean field (3) (see
Refs. [20, 21, 23]). Note that � can be regarded as the en-
ergy cost for putting a heavy quark into a quark matter

i=light flavor; α,β,γ,δ=Dirac indices
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h ̄ i is finite and thus the QCD Kondo e↵ect is at work.
Although the results in this analysis are obtained with
heavy quarks uniformly distributed in the whole space,
one can translate them into those of a droplet through
the “energy gain” per a single heavy quark.

Lagrangian.—We consider a model having the current-
current interaction with the color exchange between a
light (massless) quark ( ) and a heavy quark ( ) with
mass m

Q

[28–31]:

L =  ̄i@/ + µ  ̄�

0
 +  ̄i@/ �m

Q

 ̄ 

�G

c

X

a

�
 ̄�

µ

T

a

 

� �
 ̄�

µ

T

a 
�
, (1)

where G

c

> 0 and T

a = �

a

/2 (a = 1, . . . , N2
c

� 1) are
the generators of SU(N

c

) with �

a being the Gell-Mann
matrices and N

c

= 3 in QCD. The coupling strength G

c

is taken to be positive so that the interaction produces
attraction in the color anti-triplet channel mimicking the
one-gluon-exchange interaction. We consider N

f

flavors
for light quarks:  = ( 1

, . . . , 

Nf )t. For simplicity,
flavor indices are not explicitly written for the fields  i

(i = 1, . . . , N
f

) and we assume that they have the com-
mon chemical potential µ. We note that L is invariant
under both the chiral symmetry for light quarks and the
heavy-quark spin symmetry for heavy quarks.

We can simplify the Lagrangian (1) in the heavy quark
limit [32, 33]: We separate the heavy quark momentum
p

µ into the on-mass-shell part m

Q

v

µ and the o↵-mass-
shell part k

µ as p

µ = m

Q

v

µ + k

µ with v

µ being the
four-velocity of the heavy quark (vµv

µ

= 1). The energy
scale of kµ should be much smaller than m

Q

. We focus
on the dynamics concerning the residual momentum k

µ.
Namely, we replace  by the e↵ective field  

v

having the
momentum k

µ as  !  
v

= 1
2 (1+v/)eimQv·x . Concern-

ing the four-point interaction, we use the Fierz transfor-
mation,

P
a

(T a)
ij

(T a)
kl

= (1/2)�
il

�

kj

� (1/2N
c

)�
ij

�

kl

,
for the color part. It is important to use the Fierz
transformation only for the SU(N

c

) generator, not for
Dirac matrices. Below, we consider the static limit for
the impurity motion v

µ = (1,~0 ) and use the relation
 ̄

v

 
v

=  †
v

 
v

.
As for the heavy quark number density, we consider

the condition,  †
v

(x) 
v

(x) =
P

i

�

(3)(~x � ~x

i

) ! n
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⌘P
i

�

(3)(~x � ~x

i

), with the three-dimensional delta func-
tion �

(3)(~x) and ~x

i

being the position of the impurity
i.

P
i

indicates average over the whole space. Thus,
n

Q

is the averaged number density of impurities. When
we consider the impurity distribution in space, we tend
to suppose that a single heavy quark exists like a single
point in space. In contrast, for the present analysis, we
suppose that the heavy quarks are distributed uniformly

in space, and the density is su�ciently large so that the
averaged distance between heavy quarks is smaller than
the coherence length for the QCD Kondo e↵ect ' 1/|�|,
which will be explained later. Due to the uniformity of

the heavy quark distribution, the ground state does not
break the translational invariance in contrast to the case
with a single heavy quark impurity. In addition, as men-
tioned before, we assume that all the heavy quarks are
static and do not propagate in space.
Mean-field approximation.— It has been known within

the perturbative renormalization group analysis [13] that
the model (1) exhibits the QCD Kondo e↵ect for a single
impurity case. We treat here the same model in a non-
perturbative way when the impurities are homogeneously
distributed. As commented before, we consider the color-
singlet correlation between a light quark with flavor i and
a heavy impurity h ̄i

↵

 
v�

i (and its conjugate) which is
associated with the instabilities in the QCD Kondo ef-
fect. Notice that the mean-fields are matrices with Dirac
indices ↵ and �. Then we perform the mean-field approx-
imation in the Lagrangian (1) (represented with respect
to the e↵ective heavy impurity field  

v

):
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where we have neglected the term of the second or-
der with respect to fluctuation. The expectation value,
h ̄i

↵

 
v�

i (or h ̄
v�

 

i

�

i), is evaluated by using the ground
state wave function.
Physically, the mean field h ̄i

↵

 
v�

i should be directly
related to the formation of a bound state of a light quark
“hole” and a heavy quark. This is analogous to the
formation of a � meson in association with the quark-
antiquark (q̄q) condensate in vacuum [28–31].
Let us define the gap function as
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i, (3)

whose Dirac structure is further parametrized in momen-

tum space as �i
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= �i

⇣
1+�0

2 (1� k̂ ·~�)
⌘

�↵

with a scalar

(complex) parameter �i and k̂ = ~

k/|~k|. Notice that �i

is independent of momentum, which reflects the transla-
tional invariance of the ground state. Plugging this form
of the gap, we finally find the mean-field Lagrangian in
the momentum space (vµ = (1,~0)):
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where we have added the term with the Lagrange mul-
tiplier � to include the constraint on the number con-
servation of the heavy quarks. This constraint is nec-
essary because the heavy quark number density should
be conserved on average in the mean field (3) (see
Refs. [20, 21, 23]). Note that � can be regarded as the en-
ergy cost for putting a heavy quark into a quark matter
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h ̄ i is finite and thus the QCD Kondo e↵ect is at work.
Although the results in this analysis are obtained with
heavy quarks uniformly distributed in the whole space,
one can translate them into those of a droplet through
the “energy gain” per a single heavy quark.

Lagrangian.—We consider a model having the current-
current interaction with the color exchange between a
light (massless) quark ( ) and a heavy quark ( ) with
mass m

Q

[28–31]:

L =  ̄i@/ + µ  ̄�

0
 +  ̄i@/ �m
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µ
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, (1)

where G

c

> 0 and T

a = �

a

/2 (a = 1, . . . , N2
c

� 1) are
the generators of SU(N

c

) with �

a being the Gell-Mann
matrices and N

c

= 3 in QCD. The coupling strength G

c

is taken to be positive so that the interaction produces
attraction in the color anti-triplet channel mimicking the
one-gluon-exchange interaction. We consider N

f

flavors
for light quarks:  = ( 1

, . . . , 

Nf )t. For simplicity,
flavor indices are not explicitly written for the fields  i

(i = 1, . . . , N
f

) and we assume that they have the com-
mon chemical potential µ. We note that L is invariant
under both the chiral symmetry for light quarks and the
heavy-quark spin symmetry for heavy quarks.

We can simplify the Lagrangian (1) in the heavy quark
limit [32, 33]: We separate the heavy quark momentum
p

µ into the on-mass-shell part m

Q

v

µ and the o↵-mass-
shell part k

µ as p

µ = m

Q

v

µ + k

µ with v

µ being the
four-velocity of the heavy quark (vµv

µ

= 1). The energy
scale of kµ should be much smaller than m

Q

. We focus
on the dynamics concerning the residual momentum k

µ.
Namely, we replace  by the e↵ective field  

v

having the
momentum k

µ as  !  
v

= 1
2 (1+v/)eimQv·x . Concern-

ing the four-point interaction, we use the Fierz transfor-
mation,
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(T a)
ij
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kl

= (1/2)�
il
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kj

� (1/2N
c

)�
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kl

,
for the color part. It is important to use the Fierz
transformation only for the SU(N

c

) generator, not for
Dirac matrices. Below, we consider the static limit for
the impurity motion v

µ = (1,~0 ) and use the relation
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.
As for the heavy quark number density, we consider

the condition,  †
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), with the three-dimensional delta func-
tion �

(3)(~x) and ~x

i

being the position of the impurity
i.

P
i

indicates average over the whole space. Thus,
n

Q

is the averaged number density of impurities. When
we consider the impurity distribution in space, we tend
to suppose that a single heavy quark exists like a single
point in space. In contrast, for the present analysis, we
suppose that the heavy quarks are distributed uniformly

in space, and the density is su�ciently large so that the
averaged distance between heavy quarks is smaller than
the coherence length for the QCD Kondo e↵ect ' 1/|�|,
which will be explained later. Due to the uniformity of

the heavy quark distribution, the ground state does not
break the translational invariance in contrast to the case
with a single heavy quark impurity. In addition, as men-
tioned before, we assume that all the heavy quarks are
static and do not propagate in space.
Mean-field approximation.— It has been known within

the perturbative renormalization group analysis [13] that
the model (1) exhibits the QCD Kondo e↵ect for a single
impurity case. We treat here the same model in a non-
perturbative way when the impurities are homogeneously
distributed. As commented before, we consider the color-
singlet correlation between a light quark with flavor i and
a heavy impurity h ̄i

↵

 
v�

i (and its conjugate) which is
associated with the instabilities in the QCD Kondo ef-
fect. Notice that the mean-fields are matrices with Dirac
indices ↵ and �. Then we perform the mean-field approx-
imation in the Lagrangian (1) (represented with respect
to the e↵ective heavy impurity field  

v

):
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where we have neglected the term of the second or-
der with respect to fluctuation. The expectation value,
h ̄i
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i (or h ̄
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i
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i), is evaluated by using the ground
state wave function.
Physically, the mean field h ̄i

↵

 
v�

i should be directly
related to the formation of a bound state of a light quark
“hole” and a heavy quark. This is analogous to the
formation of a � meson in association with the quark-
antiquark (q̄q) condensate in vacuum [28–31].
Let us define the gap function as
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k/|~k|. Notice that �i

is independent of momentum, which reflects the transla-
tional invariance of the ground state. Plugging this form
of the gap, we finally find the mean-field Lagrangian in
the momentum space (vµ = (1,~0)):
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where we have added the term with the Lagrange mul-
tiplier � to include the constraint on the number con-
servation of the heavy quarks. This constraint is nec-
essary because the heavy quark number density should
be conserved on average in the mean field (3) (see
Refs. [20, 21, 23]). Note that � can be regarded as the en-
ergy cost for putting a heavy quark into a quark matter
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h ̄ i is finite and thus the QCD Kondo e↵ect is at work.
Although the results in this analysis are obtained with
heavy quarks uniformly distributed in the whole space,
one can translate them into those of a droplet through
the “energy gain” per a single heavy quark.

Lagrangian.—We consider a model having the current-
current interaction with the color exchange between a
light (massless) quark ( ) and a heavy quark ( ) with
mass m

Q

[28–31]:
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) and we assume that they have the com-
mon chemical potential µ. We note that L is invariant
under both the chiral symmetry for light quarks and the
heavy-quark spin symmetry for heavy quarks.

We can simplify the Lagrangian (1) in the heavy quark
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µ and the o↵-mass-
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µ as p
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µ with v

µ being the
four-velocity of the heavy quark (vµv
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= 1). The energy
scale of kµ should be much smaller than m
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. We focus
on the dynamics concerning the residual momentum k

µ.
Namely, we replace  by the e↵ective field  
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momentum k
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Dirac matrices. Below, we consider the static limit for
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break the translational invariance in contrast to the case
with a single heavy quark impurity. In addition, as men-
tioned before, we assume that all the heavy quarks are
static and do not propagate in space.
Mean-field approximation.— It has been known within

the perturbative renormalization group analysis [13] that
the model (1) exhibits the QCD Kondo e↵ect for a single
impurity case. We treat here the same model in a non-
perturbative way when the impurities are homogeneously
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where we have added the term with the Lagrange mul-
tiplier � to include the constraint on the number con-
servation of the heavy quarks. This constraint is nec-
essary because the heavy quark number density should
be conserved on average in the mean field (3) (see
Refs. [20, 21, 23]). Note that � can be regarded as the en-
ergy cost for putting a heavy quark into a quark matter
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where we have added the term with the Lagrange mul-
tiplier � to include the constraint on the number con-
servation of the heavy quarks. This constraint is nec-
essary because the heavy quark number density should
be conserved on average in the mean field (3) (see
Refs. [20, 21, 23]). Note that � can be regarded as the en-
ergy cost for putting a heavy quark into a quark matter
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FIG. 1. Dispersion relations of quark E±(k) with finite gap
for positive (left) and negative (right) values of �. The gray
band indicates the region of the integrals, 0 < k < ⇤.

similar to the chemical potential. Since the mean-field
Lagrangian allows for mixing between the fields  and
 

v

, we diagonalize it by the Bogoliubov-like transforma-
tion to find the following energy-momentum dispersion
relations for spin up
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where k = |~k | and numbers in the brackets indicate the
number of degeneracy. Here we assume �i = � from
light flavor symmetry. We obtain the same result for spin
down. The relations (5) and (7) are given by the linear
combination of  and  

v

. Notice that the mixing takes
place only between a positive energy light quark and a
heavy quark impurity. The dispersions should possess in-
formation about the properties of the ground state in the
single-particle picture in the mean-field approximation.
In Fig. 1 we show the schematic picture of the disper-
sions (5) for positive (left) and negative (right) values of
�. Because we consider high density states, we neglect
the negative-energy component (7). By using Eqs. (5)
and (6), we analyze the thermodynamic potential of the
ground state.

It is important to note that the three-dimensional mo-
mentum of a light quark, k, is a conserved quantity be-
cause the present mean fields maintain the translational
invariance of the ground state. This is the case as long
as the uniform density distribution of the heavy quark is
considered.

In the numerical calculation, we adopt the three di-
mensional momentum cuto↵ because the Lorentz sym-
metry is violated at finite density. We use the parameter
values from the usual Nambu–Jona-Lasinio (NJL) model
for N

f

= 2: G
c

= (9/2)2.0/⇤2 and ⇤ = 0.65 GeV. They
are determined so as to reproduce the quark condensate
and the pion decay constant in vacuum [30, 31]. We as-
sume that the interaction between a light quark and a
heavy quark has the same strength of the coupling.

Thermodynamic potential.—Thermodynamic poten-
tial computed from the dispersion relations (5) and (6)

FIG. 2. The gap |�| as a function of µ and � at T = 0 GeV.
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with f(T, µ,�; k) ⌘ ���1 ln[(1 + e��E+(k))(1 +
e��E�(k))(1 + e��E(k))Nf�1] and � = 1/T being the in-
verse temperature. The factor two in the coe�cient of
the integral comes from the sum of right- and left-handed
light quarks. We introduce ⇤ to make the integral finite.
The value of |�| is determined by the minimum

of ⌦(T, µ,�;�) or the solution to the gap equation:
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The analysis is analogous to that in the color supercon-
ductivity with the NJL-type model [19, 34].
Results.— Let us consider the case of zero tempera-

ture (T = 0). Before presenting numerical results, it is
instructive to investigate the approximate analytic solu-
tion for the gap at � ' 0. From Eq. (8), we obtain the
gap equation
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a small |�|. The latter solution gives the most stable
state. Importantly, the finite gap always exists for any
small coupling constant G

c

> 0. It is also interesting
to notice that the gap contains the exponential factor
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which is common with the factor

appearing in the Kondo scale [13], and thus increases
with increasing coupling strength.
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i

= �k � µ [i = 1, · · · , N
f

], (7)

where k = |~k | and numbers in the brackets indicate the
number of degeneracy. Here we assume �i = � from
light flavor symmetry. We obtain the same result for spin
down. The relations (5) and (7) are given by the linear
combination of  and  

v

. Notice that the mixing takes
place only between a positive energy light quark and a
heavy quark impurity. The dispersions should possess in-
formation about the properties of the ground state in the
single-particle picture in the mean-field approximation.
In Fig. 1 we show the schematic picture of the disper-
sions (5) for positive (left) and negative (right) values of
�. Because we consider high density states, we neglect
the negative-energy component (7). By using Eqs. (5)
and (6), we analyze the thermodynamic potential of the
ground state.

It is important to note that the three-dimensional mo-
mentum of a light quark, k, is a conserved quantity be-
cause the present mean fields maintain the translational
invariance of the ground state. This is the case as long
as the uniform density distribution of the heavy quark is
considered.

In the numerical calculation, we adopt the three di-
mensional momentum cuto↵ because the Lorentz sym-
metry is violated at finite density. We use the parameter
values from the usual Nambu–Jona-Lasinio (NJL) model
for N

f

= 2: G
c

= (9/2)2.0/⇤2 and ⇤ = 0.65 GeV. They
are determined so as to reproduce the quark condensate
and the pion decay constant in vacuum [30, 31]. We as-
sume that the interaction between a light quark and a
heavy quark has the same strength of the coupling.

Thermodynamic potential.—Thermodynamic poten-
tial computed from the dispersion relations (5) and (6)

FIG. 2. The gap |�| as a function of µ and � at T = 0 GeV.

reads

⌦(T, µ,�;�)

= 2N
c

Z ⇤

0
f(T, µ,�; k)

k

2dk

2⇡2
+

8N
f

G

c

|�|2 � �n

Q

, (8)

with f(T, µ,�; k) ⌘ ���1 ln[(1 + e��E+(k))(1 +
e��E�(k))(1 + e��E(k))Nf�1] and � = 1/T being the in-
verse temperature. The factor two in the coe�cient of
the integral comes from the sum of right- and left-handed
light quarks. We introduce ⇤ to make the integral finite.
The value of |�| is determined by the minimum

of ⌦(T, µ,�;�) or the solution to the gap equation:
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tively: � @
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The analysis is analogous to that in the color supercon-
ductivity with the NJL-type model [19, 34].
Results.— Let us consider the case of zero tempera-

ture (T = 0). Before presenting numerical results, it is
instructive to investigate the approximate analytic solu-
tion for the gap at � ' 0. From Eq. (8), we obtain the
gap equation

� =
1

2
N

c

G

c

Z ⇤

0

�p
(k � µ)2 + 8N

f

|�|2
k

2dk

2⇡2
. (9)

This gives two solutions: |�| = 0 and

|�| ' ↵

s
µ(⇤� µ)

2N
f

exp

✓
� 2⇡2

N

c

µ

2
G

c

◆
, (10)

where ↵ is a factor independent of G

c

and is approx-
imately given by ↵ = exp

�
(⇤2 + 2⇤µ� 6µ2)/4µ2

�
for
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FIG. 1. Dispersion relations of quark E±(k) with finite gap
for positive (left) and negative (right) values of �. The gray
band indicates the region of the integrals, 0 < k < ⇤.

similar to the chemical potential. Since the mean-field
Lagrangian allows for mixing between the fields  and
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, we diagonalize it by the Bogoliubov-like transforma-
tion to find the following energy-momentum dispersion
relations for spin up
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i

= �k � µ [i = 1, · · · , N
f

], (7)

where k = |~k | and numbers in the brackets indicate the
number of degeneracy. Here we assume �i = � from
light flavor symmetry. We obtain the same result for spin
down. The relations (5) and (7) are given by the linear
combination of  and  

v

. Notice that the mixing takes
place only between a positive energy light quark and a
heavy quark impurity. The dispersions should possess in-
formation about the properties of the ground state in the
single-particle picture in the mean-field approximation.
In Fig. 1 we show the schematic picture of the disper-
sions (5) for positive (left) and negative (right) values of
�. Because we consider high density states, we neglect
the negative-energy component (7). By using Eqs. (5)
and (6), we analyze the thermodynamic potential of the
ground state.

It is important to note that the three-dimensional mo-
mentum of a light quark, k, is a conserved quantity be-
cause the present mean fields maintain the translational
invariance of the ground state. This is the case as long
as the uniform density distribution of the heavy quark is
considered.

In the numerical calculation, we adopt the three di-
mensional momentum cuto↵ because the Lorentz sym-
metry is violated at finite density. We use the parameter
values from the usual Nambu–Jona-Lasinio (NJL) model
for N

f

= 2: G
c

= (9/2)2.0/⇤2 and ⇤ = 0.65 GeV. They
are determined so as to reproduce the quark condensate
and the pion decay constant in vacuum [30, 31]. We as-
sume that the interaction between a light quark and a
heavy quark has the same strength of the coupling.

Thermodynamic potential.—Thermodynamic poten-
tial computed from the dispersion relations (5) and (6)

FIG. 2. The gap |�| as a function of µ and � at T = 0 GeV.
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band indicates the region of the integrals, 0 < k < ⇤.
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. Notice that the mixing takes
place only between a positive energy light quark and a
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In Fig. 1 we show the schematic picture of the disper-
sions (5) for positive (left) and negative (right) values of
�. Because we consider high density states, we neglect
the negative-energy component (7). By using Eqs. (5)
and (6), we analyze the thermodynamic potential of the
ground state.

It is important to note that the three-dimensional mo-
mentum of a light quark, k, is a conserved quantity be-
cause the present mean fields maintain the translational
invariance of the ground state. This is the case as long
as the uniform density distribution of the heavy quark is
considered.

In the numerical calculation, we adopt the three di-
mensional momentum cuto↵ because the Lorentz sym-
metry is violated at finite density. We use the parameter
values from the usual Nambu–Jona-Lasinio (NJL) model
for N
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= 2: G
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= (9/2)2.0/⇤2 and ⇤ = 0.65 GeV. They
are determined so as to reproduce the quark condensate
and the pion decay constant in vacuum [30, 31]. We as-
sume that the interaction between a light quark and a
heavy quark has the same strength of the coupling.

Thermodynamic potential.—Thermodynamic poten-
tial computed from the dispersion relations (5) and (6)
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e��E�(k))(1 + e��E(k))Nf�1] and � = 1/T being the in-
verse temperature. The factor two in the coe�cient of
the integral comes from the sum of right- and left-handed
light quarks. We introduce ⇤ to make the integral finite.
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FIG. 1. Dispersion relations of quark E±(k) with finite gap
for positive (left) and negative (right) values of �. The gray
band indicates the region of the integrals, 0 < k < ⇤.

similar to the chemical potential. Since the mean-field
Lagrangian allows for mixing between the fields  and
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, we diagonalize it by the Bogoliubov-like transforma-
tion to find the following energy-momentum dispersion
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where k = |~k | and numbers in the brackets indicate the
number of degeneracy. Here we assume �i = � from
light flavor symmetry. We obtain the same result for spin
down. The relations (5) and (7) are given by the linear
combination of  and  

v

. Notice that the mixing takes
place only between a positive energy light quark and a
heavy quark impurity. The dispersions should possess in-
formation about the properties of the ground state in the
single-particle picture in the mean-field approximation.
In Fig. 1 we show the schematic picture of the disper-
sions (5) for positive (left) and negative (right) values of
�. Because we consider high density states, we neglect
the negative-energy component (7). By using Eqs. (5)
and (6), we analyze the thermodynamic potential of the
ground state.

It is important to note that the three-dimensional mo-
mentum of a light quark, k, is a conserved quantity be-
cause the present mean fields maintain the translational
invariance of the ground state. This is the case as long
as the uniform density distribution of the heavy quark is
considered.

In the numerical calculation, we adopt the three di-
mensional momentum cuto↵ because the Lorentz sym-
metry is violated at finite density. We use the parameter
values from the usual Nambu–Jona-Lasinio (NJL) model
for N

f

= 2: G
c

= (9/2)2.0/⇤2 and ⇤ = 0.65 GeV. They
are determined so as to reproduce the quark condensate
and the pion decay constant in vacuum [30, 31]. We as-
sume that the interaction between a light quark and a
heavy quark has the same strength of the coupling.

Thermodynamic potential.—Thermodynamic poten-
tial computed from the dispersion relations (5) and (6)
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e��E�(k))(1 + e��E(k))Nf�1] and � = 1/T being the in-
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FIG. 1. Dispersion relations of quark E±(k) with finite gap
for positive (left) and negative (right) values of �. The gray
band indicates the region of the integrals, 0 < k < ⇤.
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where k = |~k | and numbers in the brackets indicate the
number of degeneracy. Here we assume �i = � from
light flavor symmetry. We obtain the same result for spin
down. The relations (5) and (7) are given by the linear
combination of  and  
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. Notice that the mixing takes
place only between a positive energy light quark and a
heavy quark impurity. The dispersions should possess in-
formation about the properties of the ground state in the
single-particle picture in the mean-field approximation.
In Fig. 1 we show the schematic picture of the disper-
sions (5) for positive (left) and negative (right) values of
�. Because we consider high density states, we neglect
the negative-energy component (7). By using Eqs. (5)
and (6), we analyze the thermodynamic potential of the
ground state.

It is important to note that the three-dimensional mo-
mentum of a light quark, k, is a conserved quantity be-
cause the present mean fields maintain the translational
invariance of the ground state. This is the case as long
as the uniform density distribution of the heavy quark is
considered.

In the numerical calculation, we adopt the three di-
mensional momentum cuto↵ because the Lorentz sym-
metry is violated at finite density. We use the parameter
values from the usual Nambu–Jona-Lasinio (NJL) model
for N
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= (9/2)2.0/⇤2 and ⇤ = 0.65 GeV. They
are determined so as to reproduce the quark condensate
and the pion decay constant in vacuum [30, 31]. We as-
sume that the interaction between a light quark and a
heavy quark has the same strength of the coupling.

Thermodynamic potential.—Thermodynamic poten-
tial computed from the dispersion relations (5) and (6)
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FIG. 1. Dispersion relations of quark E±(k) with finite gap
for positive (left) and negative (right) values of �. The gray
band indicates the region of the integrals, 0 < k < ⇤.
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number of degeneracy. Here we assume �i = � from
light flavor symmetry. We obtain the same result for spin
down. The relations (5) and (7) are given by the linear
combination of  and  
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. Notice that the mixing takes
place only between a positive energy light quark and a
heavy quark impurity. The dispersions should possess in-
formation about the properties of the ground state in the
single-particle picture in the mean-field approximation.
In Fig. 1 we show the schematic picture of the disper-
sions (5) for positive (left) and negative (right) values of
�. Because we consider high density states, we neglect
the negative-energy component (7). By using Eqs. (5)
and (6), we analyze the thermodynamic potential of the
ground state.

It is important to note that the three-dimensional mo-
mentum of a light quark, k, is a conserved quantity be-
cause the present mean fields maintain the translational
invariance of the ground state. This is the case as long
as the uniform density distribution of the heavy quark is
considered.

In the numerical calculation, we adopt the three di-
mensional momentum cuto↵ because the Lorentz sym-
metry is violated at finite density. We use the parameter
values from the usual Nambu–Jona-Lasinio (NJL) model
for N
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= (9/2)2.0/⇤2 and ⇤ = 0.65 GeV. They
are determined so as to reproduce the quark condensate
and the pion decay constant in vacuum [30, 31]. We as-
sume that the interaction between a light quark and a
heavy quark has the same strength of the coupling.

Thermodynamic potential.—Thermodynamic poten-
tial computed from the dispersion relations (5) and (6)
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a small |�|. The latter solution gives the most stable
state. Importantly, the finite gap always exists for any
small coupling constant G
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> 0. It is also interesting
to notice that the gap contains the exponential factor
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FIG. 1. Dispersion relations of quark E±(k) with finite gap
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band indicates the region of the integrals, 0 < k < ⇤.
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FIG. 2. The gap |�| as a function of µ and � at T = 0 GeV.
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FIG. 3. The number density of light quark nq and heavy
quark nQ as functions of µ and � at T = 0 GeV.

The gap equation @

@�⇤⌦(T = 0, µ,�;�) = 0 for finite
values of µ and � must be solved numerically. We con-
sider N

f

= 2 in the following. The result for the gap
|�| as a function of µ and � is shown in Fig. 2, which
essentially corresponds to the phase diagram on the µ-�
plane. We find that |�| increases as µ increases. This
is reasonable because the Fermi surface area, and thus
the density of states at the Fermi surface, becomes larger
with the increasing Fermi momentum. We have checked
that the analytic solution (10) is relatively a good ap-
proximation to the numerical result at least for � ' 0
GeV. For example, Eq. (10) gives |�| = 0.026 GeV at
µ = 0.5 GeV, which is approximately consistent with the
full numerical result, |�| = 0.028 GeV. The existence of a
finite gap indicates that the ground state of the matter is
not the normal phase but the one with mixing between a
light quark and a heavy quark, which we call the “Kondo
phase”.

In Fig. 3, the number densities of light quarks and
heavy quarks, n

q

and n

Q

, are shown. They are not
control parameters but must be dynamically determined
through the thermodynamical potential. For µ = 0.5
GeV, we obtain n

q

= 3.5 fm�3 and n

Q

= 1.8 fm�3 at
� = 0.01 GeV, and n

q

= 3.4 fm�3 and n

Q

= 2.0 fm�3 at
� = �0.01 GeV.

The thermodynamic potentials ⌦(T, µ,�;�) at finite
temperatures (T 6= 0) are plotted as functions of |�|
in Fig. 4. Fixing µ = 0.5 GeV and � ' 0 GeV, we
have |�| = 0.028 GeV at T = 0 GeV. The gap decreases
with increasing temperature, e.g. |�| = 0.024 GeV at
T = 0.01 GeV, and it becomes zero at T = 0.017 GeV.

FIG. 4. The thermodynamic potential ⌦(T, µ,�;�) as a func-
tion of |�| with µ = 0.5 GeV and � ' 0 GeV for several
temperatures.

Discussions.— The system prefers to form a finite gap
when the crossing point (E, k) = (�,� + µ) of the two
original dispersions, E = k � µ, E = �, is close to the
Fermi surface (see Fig. 1). This is because a finite gap re-
duces the total energy most e↵ectively when two new dis-
persions E±(k) are asymmetrically involved in the Fermi
sea. This expectation is indeed confirmed in the numer-
ical result. Figure 2 shows that when � becomes posi-
tively/negatively large, the gap |�| becomes small.

The results for |�|, n
q

, and n

Q

have a similar structure
with a sudden change in the positive � region (though it
is faint for n

q

). Figures 2 and 3 show that the (uniform)
gap is formed when the heavy quark density is high. This
is reasonable because an uniform condensate will be re-
alized when the correlation/coherence length ` ⇠ 1/|�|
is much longer than the averaged inter-heavy-quark dis-

tance d ⇠ 1/n1/3
Q

. When n

Q

is small enough, it becomes
di�cult to maintain a spatially uniform gap. Therefore
there is a close correlation between the behaviors of |�|
and n

Q

.

So far, we have assumed the uniformity of heavy quark
distribution as an ideal situation. As we mentioned in
the Introduction, what we expect in reality is the pres-
ence of droplets with finite volumes in which heavy im-
purities are gathered at relatively high densities. One
can re-interpret the obtained results by defining the en-
ergy gain per a single heavy quark. Such quantity can
be used to estimate the energy gain of a droplet if its
spatial size is much larger than the coherence length
`. In the present scheme, the energy gain per single
heavy quark can be estimated as �⌦(T, µ,�;�)/n

Q

with
�⌦(T, µ,�;�) = ⌦(T, µ,�;�)�⌦(T, µ,�; 0) as shown as
a function of µ at � ' 0 GeV and T = 0 GeV in Fig. 5. As
a numerical value, we obtain �⌦(T, µ,�;�)/n

Q

= �0.016
GeV at µ = 0.5 GeV, � ' 0 GeV and T = 0 GeV.

Summary and outlook.—We discussed the QCD Kondo
e↵ect in the quark matter with heavy quarks as impurity
particles. We introduced the color exchange interaction
and applied the mean-field approximation to the conden-
sate composed of a light quark and a heavy quark as the
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ence of droplets with finite volumes in which heavy im-
purities are gathered at relatively high densities. One
can re-interpret the obtained results by defining the en-
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3. Case of single heavy quark

軽いクォークの運動量を p⃗として、p̂ = p⃗/|p⃗ |である。最後の式のように、∆1
δαのDiracの脚α, δについては

Dirac行列として factorizeすることができる。ギャプの大きさを表す量としてはスカラー量∆1
ℓ を考える。フ

レーバー対称性を考慮して、∆1
ℓ = ∆1とする。平均場近似において、ラグランジアンは (ψ,Ψv)の bilinearと

して表されるので、エネルギー固有値および系全体のエネルギー（熱力学的ポテンシャル）Ω1(λ,∆1)を求め
ることができる。ただし、λと∆1は変数なので、Ω1(λ,∆1)の停留条件 ∂

∂λΩ1(λ,∆1) =
∂

∂∆∗
1
Ω1(λ,∆1) = 0

から決定される。

3.1.2 熱力学的ポテンシャル

重いクォークの熱力学的ポテンシャルは

Ω1(λ,∆1) = − 1

β

∫ +∞

−∞
ln

(
1 + e−βω

)
2Ncρ1(ω)dω +

8Nf |∆1|2

Gc
V − λ (3)

で与えられる。ここで ρ1(ω)は重いクォークの状態数密度であり、

ρ1(ω) = − 1

π
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∑

q⃗

2Nf |∆1|2

ω+ + µ− q
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⎠ (4)

where ω+ = ω+ iη with η an infinitely small and positive number. Eq. (3)の被積分関数において係数 2Nc

はスピンとカラーの自由度を表す。V は系全体の体積である。Eq. (4)において、軽いクォークのコヒーレ
ントな重ね合わせられた１状態が重いクォークに結合していることに注意する。
熱力学的ポテンシャル (3)を次のように解析する。ω積分においてカットオフ Λを導入して積分範囲を

[−Λ,Λ]とする。このカットオフは点相互作用を考えていることに由来するものである。低温極限として温
度０を考えると（β → ∞）、Eq. (3)は

Ω0
1(λ, δ1) ≃ 2Nc

π

(
−δ1 + λ arctan

δ1
λ

+
δ1
2

ln
λ2 + δ21

Λ2

)
+

8π

µ2Gc
δ1 − λ (5)

となる。状態数密度 (4)において実部を無視して虚部のみを残す近似を行って
∑

q⃗

2Nf |∆1|2

ω+ + µ− q
≃ − iNf

π
µ2|∆1|2V ≡ −iδ1 (6)

とする。q = |q⃗ |である。このとき、Eq. (4)は

ρ1(ω) =
1

π

δ1
(ω − λ1)2 + δ21

(7)

となって、エネルギー位置 ω = λと幅 Γ1 = 2δ1 をもつローレンツ型の共鳴状態を記述する。
Ω0

1(λ,∆1)の停留条件より、δ1 と λは

δ1 = Λ sin

(
π

2Nc

)
exp

(
− 4π2

Nc µ2Gc

)
(8)

および λ = δ1/ tan(π/2Nc)となる。これを元の Eq. (5)に代入すると
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1 = −2Nc

π
Λ sin
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π

2Nc

)
exp

(
− 4π2

Nc µ2Gc

)
(9)

となる。
カラーカレント相互作用 (Eq. (1))のパラメーターとして、結合定数およびカットオフをGc = (9/2)2.0/Λ2

と Λ = 0.65 GeV とする。これは、Nambu–Jona-Lasinioモデルにおいて、真空中のクォーク凝縮やパイオ
ン崩壊定数を再現するように与えられる。このパラメータ値を用いて、δ1 および Ω0

1 の数値結果を Fig. 1

と Fig. 2に示す (Nf = 2)。µ = 0.5 GeVのとき、δ1 = 0.027 GeV（λ = 0.048 GeV）および Ω0
1 = −0.052

GeVである。したがって、カラー１重項の近藤クラウドの束縛エネルギーは 52 MeVである。
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3.1.2 熱力学的ポテンシャル

重いクォークの熱力学的ポテンシャルは

Ω1(λ,∆1) = − 1

β

∫ +∞

−∞
ln

(
1 + e−βω

)
2Ncρ1(ω)dω +

8Nf |∆1|2

Gc
V − λ (3)

で与えられる。ここで ρ1(ω)は重いクォークの状態数密度であり、

ρ1(ω) = − 1

π
Im

∂

∂ω
ln

⎛

⎝ω+ − λ−
∑

q⃗

2Nf |∆1|2

ω+ + µ− q

⎞

⎠ (4)

where ω+ = ω+ iη with η an infinitely small and positive number. Eq. (3)の被積分関数において係数 2Nc

はスピンとカラーの自由度を表す。V は系全体の体積である。Eq. (4)において、軽いクォークのコヒーレ
ントな重ね合わせられた１状態が重いクォークに結合していることに注意する。
熱力学的ポテンシャル (3)を次のように解析する。ω積分においてカットオフ Λを導入して積分範囲を

[−Λ,Λ]とする。このカットオフは点相互作用を考えていることに由来するものである。低温極限として温
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となって、エネルギー位置 ω = λと幅 Γ1 = 2δ1 をもつローレンツ型の共鳴状態を記述する。
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カラーカレント相互作用 (Eq. (1))のパラメーターとして、結合定数およびカットオフをGc = (9/2)2.0/Λ2

と Λ = 0.65 GeV とする。これは、Nambu–Jona-Lasinioモデルにおいて、真空中のクォーク凝縮やパイオ
ン崩壊定数を再現するように与えられる。このパラメータ値を用いて、δ1 および Ω0

1 の数値結果を Fig. 1

と Fig. 2に示す (Nf = 2)。µ = 0.5 GeVのとき、δ1 = 0.027 GeV（λ = 0.048 GeV）および Ω0
1 = −0.052

GeVである。したがって、カラー１重項の近藤クラウドの束縛エネルギーは 52 MeVである。
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Figure 3: The spectral functions ρ1 (solid curve) and ρ3̄ (dashed curve) as functions of ω. A scale factor

0.1 is multiplied to ρ3̄.

上記の議論は large Nc において期待される結果とコンシステントである。large Nc においてはカラー
シングレット凝縮のみが残って、カラー非シングレット凝縮は消えるべきである。実際に Eq. (8)および
Eq. (16)において’t Hooft極限（クォークとグルーオンの結合定数 gについて、g2Nc ∼ GcNc = const.と
して large Nc）を考えると、Eq. (16)は Eq. (8)に比べて ∼ e−Nc で小さくなることがわかる。その結果、
熱力学的ポテンシャル (9)および (17)について、前者は一定値に近づくのに対して後者は 0に近づく。し
たがって、カラー１重項の凝縮がカラー反３重項よりも優勢であることが large Nc からも裏付けられる。

3.4 状態数密度
近藤クラウドにおける重いクォークの状態数密度 (4)（カラー１重項）と (12)（カラー反３重項）を Fig. 3

に示す。Eq. (13)は近藤クラウド形成には関与しないので考えない。クォーク物質の重いクォークの基底状
態としてカラー１重項の近藤クラウドが実現される。近藤クラウドは軽いクォークのホール成分を纏うこ
とによって、λおよび Γ1 = 2δ1 (cf. Eq. (8))それぞれによって与えられる（質量以外の）エネルギーと幅
の共鳴状態として存在する。用いられたパラメーターの値によると、カラー１重項の近藤クラウドはエネ
ルギー位置 λ = 48 MeVにおいて幅 Γ1 = 54 MeVをもつローレンツ型の共鳴状態である。

4 議論：近藤クラウドによる散乱断面積
近藤クラウドの存在は軽いクォークと重いクォークの散乱に影響を及ぼす。近藤クラウドとの散乱による軽
いクォークの平均自由行程を評価する。基底状態において実現されるチャンネルとしてカラー１重項を考
える。
カラー１重項の散乱位相差は ∆δ(ω) = π

∫ ω
−Λ ρ1(ω

′)dω′ によって与えられる。結果を Fig. 4 に示す。
共鳴位置において ∆δ = π/2を横切っていることがわかる。散乱振幅は f(ω) = ei∆δ(ω) sin∆δ(ω)/k with

k = µ+ ωであり、散乱断面積は σ(ω) = 4π|f(ω)|2 である。結果を Fig. 5に示す。共鳴に対応して散乱断
面積が大きくなることがわかる。
低温極限（温度０）のクォーク物質について、フェルミ面上のエネルギー ω ≃ 0をもつ軽いクォークが

散乱過程に最も寄与する。ω = 0における散乱断面積を Fig. 5に示す。散乱断面積 σと化学ポテンシャル
µに対して、散乱による平均自由行程 τ を τ ≃ (σ nq/Nf )−1 と評価する。ここで nq = µ3/πは軽いクォー
クの数密度（スピン, 軽いフレーバー, カラーの自由度も含む）である（Nf = 2）。ただし、軽いクォーク
についてはコヒーレントに重ね合わされた状態を考えるので、１フレーバーあたりの数密度（nq/Nf）が寄
与することに注意する。得られた平均自由行程は τ ≃ 1.3− 0.91 fm for µ = 0.3− 0.5 GeVである。これは
軽いクォークの平均的な粒子間距離 ℓ ≃ n−1/3

q = 0.96− 0.58 fm for µ = 0.3− 0.5 GeVと同じオーダーの
大きさであり、軽いクォークは近藤クラウドの影響を強く受けることがわかる。
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Figure 3: The spectral functions ρ1 (solid curve) and ρ3̄ (dashed curve) as functions of ω. A scale factor

0.1 is multiplied to ρ3̄.
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Figure 3: The spectral functions ρ1 (solid curve) and ρ3̄ (dashed curve) as functions of ω. A scale factor
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して large Nc）を考えると、Eq. (16)は Eq. (8)に比べて ∼ e−Nc で小さくなることがわかる。その結果、
熱力学的ポテンシャル (9)および (17)について、前者は一定値に近づくのに対して後者は 0に近づく。し
たがって、カラー１重項の凝縮がカラー反３重項よりも優勢であることが large Nc からも裏付けられる。

3.4 状態数密度
近藤クラウドにおける重いクォークの状態数密度 (4)（カラー１重項）と (12)（カラー反３重項）を Fig. 3

に示す。Eq. (13)は近藤クラウド形成には関与しないので考えない。クォーク物質の重いクォークの基底状
態としてカラー１重項の近藤クラウドが実現される。近藤クラウドは軽いクォークのホール成分を纏うこ
とによって、λおよび Γ1 = 2δ1 (cf. Eq. (8))それぞれによって与えられる（質量以外の）エネルギーと幅
の共鳴状態として存在する。用いられたパラメーターの値によると、カラー１重項の近藤クラウドはエネ
ルギー位置 λ = 48 MeVにおいて幅 Γ1 = 54 MeVをもつローレンツ型の共鳴状態である。

4 議論：近藤クラウドによる散乱断面積
近藤クラウドの存在は軽いクォークと重いクォークの散乱に影響を及ぼす。近藤クラウドとの散乱による軽
いクォークの平均自由行程を評価する。基底状態において実現されるチャンネルとしてカラー１重項を考
える。
カラー１重項の散乱位相差は ∆δ(ω) = π

∫ ω
−Λ ρ1(ω

′)dω′ によって与えられる。結果を Fig. 4 に示す。
共鳴位置において ∆δ = π/2を横切っていることがわかる。散乱振幅は f(ω) = ei∆δ(ω) sin∆δ(ω)/k with

k = µ+ ωであり、散乱断面積は σ(ω) = 4π|f(ω)|2 である。結果を Fig. 5に示す。共鳴に対応して散乱断
面積が大きくなることがわかる。
低温極限（温度０）のクォーク物質について、フェルミ面上のエネルギー ω ≃ 0をもつ軽いクォークが

散乱過程に最も寄与する。ω = 0における散乱断面積を Fig. 5に示す。散乱断面積 σと化学ポテンシャル
µに対して、散乱による平均自由行程 τ を τ ≃ (σ nq/Nf )−1 と評価する。ここで nq = µ3/πは軽いクォー
クの数密度（スピン, 軽いフレーバー, カラーの自由度も含む）である（Nf = 2）。ただし、軽いクォーク
についてはコヒーレントに重ね合わされた状態を考えるので、１フレーバーあたりの数密度（nq/Nf）が寄
与することに注意する。得られた平均自由行程は τ ≃ 1.3− 0.91 fm for µ = 0.3− 0.5 GeVである。これは
軽いクォークの平均的な粒子間距離 ℓ ≃ n−1/3

q = 0.96− 0.58 fm for µ = 0.3− 0.5 GeVと同じオーダーの
大きさであり、軽いクォークは近藤クラウドの影響を強く受けることがわかる。
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Figure 3: The spectral functions ρ1 (solid curve) and ρ3̄ (dashed curve) as functions of ω. A scale factor

0.1 is multiplied to ρ3̄.
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Conclusion of Part 1

Future works:
1. Application to realistic Ds/Ds* meson-nucleon interaction.
2. Application to other heavy hadrons.
3. Observables and reactions for experiments.
4. etc.

�We apply the renormalization group equation
and find fixed point at the Kondo scale.

�We study the Kondo effect of Ds/Ds* meson
in nuclear matter. 

� The Kondo scale is relevant to the width of the 
Kondo resonance as mixing of Ds/Ds* meson and
nucleon in the ground state.

Ds/Ds* meson in nuclear matter 
x HQS interaction 

= “Kondo resonance”



Conclusion of Part 2

�We study Kondo effect by color exchange
for charm quark in quark matter.

� The color-current interaction is considered.

� It leads to a nontrivial ground state with 
mixing between light quark and heavy 
quark (“Kondo phase”).

Future prospects:
1. Realization in QCD phase diagram.
2. Observables in experiments.
3. Comparison to condensed matter physics. etc.
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