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Table 1
Summary of the present calculations. B.E.: total binding energy. ρ(0): nucleon density at the center of the system. Rrms: root-mean-square
radius of the nucleon system. ν: width parameter of a Gaussian wave packet used in the calculation. β: deformation parameter for the nucleon
system. ppnK−† and 8BeK−†: AY’s results

B.E. [MeV] ΓK [MeV] ρ(0) [fm−3] Rrms [fm] ν [fm−2] β

3He 7.65 – 0.15 1.54 0.22 0.02
ppnK− 113 24 1.39 0.72 1.12 0.19
ppnK−† 116 20 1.10 0.97

8Be 46.7 – 0.13 2.38 0.21 0.60
8BeK− 159 43 0.76 1.42 0.52 0.55
8BeK−† 168 38 ∼ 0.85

Fig. 1. Calculated density contours of ppnK−. Comparison between (a) usual 3He and (b) 3HeK− is shown in the size of 5 by 5 fm. Individual
contributions of (c) proton, (d) neutron and (e) K− are given in the size of 3 by 3 fm.

24 MeV. The present result is very similar to the AY
prediction: BK = 108 MeV and ΓK = 20 MeV. We
have not considered the decay width from the non-
mesonic decay (K̄NN → ΛN/ΣN ), but according
to AY it is estimated to be about 12 MeV [1]. The
width of ppnK− remains still narrower than that of
Λ(1405), even when the non-mesonic decay is taken
into account.
Surprisingly, the central density (“uncorrelated den-

sity”) of the system amounts to 8.2-times the normal
density due to the shrinkage effect. Fig. 1(a) and (b)
shows a comparison between 3He and 3HeK−. In or-

der to see how the bound K̄ changes the nucleus in
more detail we show the calculated density distribu-
tions of the constituents in Fig. 1(c)–(e). Apparently,
the proton distribution is more compact than the neu-
tron distribution. This phenomenon is attributed to
the property of the K̄N interaction. Table 2 shows
how protons and a neutron in ppnK− contribute to
the kinetic energy and the expectation value of the
K̄N interaction, and also to each root-mean-square
radius. This table together with Fig. 1 can be inter-
preted as follows. Since the K−p interaction is much
stronger than theK−n one, the protons distribute com-
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Abstract

Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic
theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the e↵ective
Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy
hadrons from many di↵erent points of view. We emphasize the importance of the following topics:
(i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD
vacuum properties and hadron modifications in nuclear medium. We pick up three di↵erent groups of
heavy hadrons, quarkonia (J/ , ⌥), heavy-light mesons (D/D̄, B̄/B) and heavy baryons (⇤c, ⇤b). The
modifications of those hadrons in nuclear matter provide us with important information to investigate
the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not
only in nuclear matter with infinite volume, but also in atomic nuclei with finite baryon numbers, to
serve future experiments.
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1 Introduction

It is an important problem to understand hadron properties based on the fundamental theory of the strong

interaction, Quantum Chromodynamics (QCD). Due to the non-trivial features of the QCD dynamics at

low energies, the hadron physics shows us many interesting and even unexpected non-trivial phenomena.

The fact that hadronic phenomena are so rich implies that various studies from many di↵erent views are

useful and indispensable to reveal the nature of the hadron dynamics. Not only isolated hadrons but

also hadronic matter under extreme conditions of high temperature, of high baryon density, and of many

di↵erent flavors provide important hints to understand the hadron dynamics.

One of familiar forms of hadronic matter is the atomic nucleus, the composite system of protons and

neutrons. The nuclear physics has been developed so far, based on various phenomenological approaches

(shell models, collective models, and so on). Recently, ab-initio calculations are being realized such that

many-body nuclear problems are solved starting from the bare nucleon-nucleon interaction determined

phenomenologically with high precision [1–3]. Yet a large step forward has been made; the lattice QCD

has derived the nucleon-nucleon interaction [4, 5]. Thus the so far missing path from QCD to nucleus is

now being exploited.

Nevertheless, if we look at the problem, for instance, neutron stars, we confront with a di�culty in

explaining the so-called twice of the solar mass problem. Because of the high density environment in

2
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1. Charm nucleus

�Heavy mass of charm hadron

�Heavy Quark Symmetry (HQS)

mc=1.3 GeV and mb=4.7 GeV

Hadron spin = light quark spin x heavy quark spin
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H.Bando, “Flavor Nuclei”,  PTP Suppl. 81, 197 (1985)
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Y. Yamaguchi et al. / Nuclear Physics A 927 (2014) 110–118 115

Fig. 2. Energy levels of D̄(∗)NN , B(∗)NN and P
(∗)
Q NN with I = 1/2 and JP = 0− and 1− (solid lines). The complex

energies for resonances are given as Ere − iΓ /2, where Ere is a resonance energy and Γ /2 is a half decay width.
Thresholds (subthresholds) are denoted by dashed (dashed-dotted) lines.

The Gaussian ranges bn and BN are given by the form of geometric series as

bn = b1a
n−1, BN = B1A

N−1. (10)

For the sum of Eq. (7), we include all possible coupled channels to obtain solutions with
sufficiently good accuracy. For instance, we include orbital angular momentum of l1, l2 ! 2.
Furthermore, we consider two independent isospin states to form the total isospin I = 1/2. For
instance, we include the NN subsystems of I = 0 and 1 which are combined with the D̄(∗)

meson of I = 1/2 for the total I = 1/2.
By diagonalizing the total Hamiltonian using the three-body bases introduced above, we ob-

tain eigenenergies and coefficient C
(c)
nl1,Nl2,L,s12S,I12I

. We also calculate the poles for resonances
as complex eigenvalues by using the complex scaling method [41–44].

4. Numerical results

Let us present the results of D̄(∗)NN and B(∗)NN for JP = 0−. We obtain bound states both
of D̄(∗)NN and B(∗)NN with energy levels shown in Fig. 2. The bound state of D̄(∗)NN , whose
binding energy is −5.2 MeV, locates below the threshold of D̄N(1/2−) + N . Here D̄N(1/2−)

is the bound state of D̄(∗) and N with binding energy −1.6 MeV for JP = 1/2− and I = 0
as discussed in Refs. [14,15]. Therefore, the three-body state of D̄(∗)NN is more bound than
the two-body state of D̄(∗)N , as naturally expected. We also find the B(∗)NN state with the
binding energy −26.2 MeV. The B(∗)NN state is more bound than the D̄(∗)NN state, because
the mixing effect between PNN and P ∗NN is enhanced, when P and P ∗ mesons become more
degenerate.

Y. Yamaguchi, S.Y., A. Hosaka, Nucl. Phys. 
A927, 110 (2014)

S. Maeda, M. Oka, A. Yokota, E. Hiyama, 
Y-R. Liu, Pog. Ther. Exp. Phys. 2016, 023D02

PTEP 2013, 113D01 A. Yokota et al.
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corresponding binding energy of the J/ψ–deuteron system is B = 9.5 MeV. Thus, in Fig. 5, the
relation approaches B = 9.5 MeV when aeff approaches −∞.

The effective scattering length aeff may not correspond directly to that of the physical J/ψ–N
scattering. In fact, for J = 0, we find V (J=0,T =0)

eff = v0 − vs = veff(1/2), and then aeff is reduced to
aJ=1/2 for the J/ψ–N (J = 1/2) state. Similarly, for J = 2, we can associate aeff with aJ=3/2. In
contrast, for J = 1, there is no one-to-one correspondence between aeff and the physical scattering
length. This is just the scattering length given by the potential Eq. (20) or (22), which does not
correspond to a definite spin of the J/ψ–N system.

Figure 6 shows a close-up of the offset of the binding energies of the J/ψ–deuteron and ηc–
deuteron systems. The relation for the ηc–deuteron system (T = 0) is almost identical to that of
J/ψ–deuteron (T = 0), except for the large decay width of ηc, which is not taken into account here
but will be discussed later. We find that the critical value of the scattering length to have a J/ψ–
deuteron bound state is −0.95 fm. This is a much stronger attraction than the recent lattice QCD
results a ≃ −0.35 fm [15], which is equivalent to veff ≃ −16.7 MeV. So there is little possibility
of making a J/ψ–deuteron bound state according to the recent lattice QCD data. However, it is
interesting to see that the critical value of the depth of the effective potential to have a J/ψ–nucleus
bound state is reduced from −72.6 MeV (A = 1) to −33 MeV (A = 2). Thus we expect that the
situation may improve for A ≥ 3 or 4 and there may exist a J/ψ–nucleus bound state.
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B. Quasibound states in the variational approach

Now we investigate the same system in the variational
approach. We, first, adopt the HN1R potential for the nuclear
force. As a result of the variational calculation, we have found
that the total spin J = 1 system (INN = 0) is unbound with
respect to the "∗

cN threshold. A bound state of the spin J = 0
system (INN = 1) is found at

B ∼ 225 MeV,

measured from the DNN threshold (∼3745 MeV). This
corresponds to the total energy of the three-body system as

MB ∼ 3520 MeV.

We also examine the Minnesota force and Av18 potential.
The results are summarized in Table I, together with the
contributions from the individual terms in Eq. (18).

As seen in the Table I, the DNN system in the J = 0
channel is bound below the "∗

cN threshold (B ∼ 209 MeV)

TABLE I. Results of the energy compositions in the variational
calculation for the ground state of the DNN system with total isospin
I = 1/2 (range parameter as = 0.4 fm). Terms bound and unbound
are defined with respect to the "∗

cN threshold. All the numbers are
given in MeV.

HN1R J = 0 Minnesota Av18
J = 1 J = 0 J = 0

Unbound Bound Bound Bound
B 208 225 251 209
MB 3537 3520 3494 3536
#πYcN — 26 38 22
Ekin 338 352 438 335
V (NN ) 0 −2 19 −5
V (DN ) −546 −575 −708 −540
Tnuc 113 126 162 117
ENN 113 124 181 113
P (odd) 75.0% 14.4% 7.4% 18.9%

for all the NN potentials employed.1 A large kinetic energy of
the deeply bound system is overcome by the strong attraction
of the DN potential, while the NN potential adds a small
correction. Comparing the results with three different nuclear
forces, we find that the binding energy is smaller when the
NN potential has a harder repulsive core (see Appendix A).

In the J = 1 channel, the ground-state energy is obtained
slightly above the "∗

cN threshold. The fact that the J = 1
channel is unbound is confirmed by changing the parameter µ
in the trial wave function, which controls the size of the total
system [30]. By increasing the system size, the total energy
gradually approaches the "∗

cN threshold. This indicates that
the lowest-energy state is indeed a two-body scattering state
of the "∗

cN channel. A large fraction of the odd component
in this channel (∼75%) is realized to enhance the INN = 1
component which has larger fraction of the IDN = 0 than the
INN = 0 component. In fact, pure |(DN )I=0N⟩ state can be
decomposed into INN = 0 and INN = 1 components with the
ratio 1:3. Since the INN = 1 state is the odd state in J = 1
(SNN = 1) channel, the 75% fraction of the odd component
indicates that the DN pair forms the "∗

c . We also examine
the J = 1 channel with the Minnesota force. Although the
repulsive core is soft in this case, no bound "∗

cN is found.
Using the imaginary part of the DN potential, we evaluate

the mesonic decay width of the quasibound state in the J =
0 channel, #πYcN . The results are 20–40 MeV as shown in
Table I. This corresponds to the result of FCA without the
D absorption, where the width is less than 10 MeV. Note,
however, that, in the variational approach, we have evaluated
the width perturbatively, while in the FCA the evaluation is
done nonperturbatively. In this sense, #πYcN obtained in the
variational approach can only be regarded as an estimation of
the mesonic decay width.

C. Structure of the DN N quasibound state

To further investigate the structure of the DNN systems,
we calculate the expectation values of various distances of the
obtained wave function. The results of the root-mean-square
radii and the relative distances are shown in Table II. Except
for the Av18 case where the wave function spreads due to
the weaker binding, the size of the DNN bound state in the
J = 0 channel is smaller than the K̄NN system, in which the
NN and K̄N distances are RNN ∼ 2.2 fm and RK̄N ∼ 1.9 fm.
It is, on the other hand, acceptable to use the reduced size
of Eq. (10) for the NN distribution in the FCA calculation,
given the uncertainty that arises from the choice of the NN
interaction. The large relative distances in the J = 1 channel
also reflect the nature of the scattering state in this channel.

In view of the different values of RNN obtained from the
use of different NN potentials (see Table II) and the different
binding obtained in each case (see Table I), we redo the
calculations in the FCA changing the NN form factor of
Eq. (10). We find a change in the binding from RNN = 2.62 fm
to 1.55 fm of 10 MeV (more bound) versus 16 MeV in

1Av18 case is almost at the "∗
cN threshold, but we confirm that the

wave function is localized as we will see in Sec. V C.

044004-10
M. Bayer, C. W. Xiao, T. Hyodo, A. Dote, M. Oka, 
E. Oset, Phys. Rev. C86, 044004 (2012)
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2. D and D* mesons in nuclear medium
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3. Kondo effect
Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964)) 

Log T/TK
(quantum) TK: Kondo temperature

Impurity atom with spin ½
with Ta�Ta interaction

electron

metal

T1, ..., Tn^2-1: generators of SU(n)
(n=2 for spin ½)

impurity
spin

electron
spin

“Kondo bound state”
binding energy ~ TK

T2

(e-e- scattering)
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2
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(degenerate state)

Loop effect
(particle-hole creation)

Non-Abelian int.
(SU(n) symmetry)

Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964)) 
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3. Kondo effect
Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964)) 
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Ds/Ds* D/D*
(cs) (cu,cd)

Short-distance
repulsion No Yes

Electric charge
(Coulomb-assisted bound state) -1 0, -1
Long life-time of
vector-meson < 1.9 MeV < 2.1 MeV,

0.834 MeV
Non-Abelian
interaction spin spin+isospin
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1  Interaction of Ds (Ds*) meson and 
nucleon

2

emission, the decay width is very small due to the close
thresholds [33].

4. There is no isospin effect for the D̄(∗)
s meson due

to isospin 0. This is complementary to the case of
the D̄(∗) meson with isospin 1/2, where both isospin-
independent interaction and isospin-dependent inter-
action contribute simultaneously.

By using these similarities and differences of D̄(∗)
s and

D̄(∗) mesons, we can study the properties the Kondo ef-
fect for the Q̄q mesons in nuclear matter in multiple per-
spectives. For example, it was shown that the Kondo
effect induced by the isospin-exchange interaction for the

D̄(∗)
s meson and the nucleon can exist in nuclear matter

and in atomic nuclei [7, 10]. This is complementary to
the Kondo effect induced by the spin-exchange interac-

tion. We may consider the charge-conjugate state D(∗)
s

and D(∗) mesons as well. In this case, however, we have
to consider additional channels such as DsN → KΛc,
which should be covered elsewhere. The difference of
the properties between the D̄(∗)

s (D̄(∗)) meson and the

D(∗)
s (D(∗)) meson arises essentially from the breaking

of charge conjugation at finite baryon number density.

The study of D(∗)
s and D(∗) mesons is not covered in the

present study.
The paper is organized as the following. In Sec. II, we

introduce the interaction Lagrangian for the D̄(∗)
s me-

son and the nucleon based on HQS. In Sec. III, adopting
the perturbative approach, we present that the effective

interaction between a D̄(∗)
s meson and a nucleon in nu-

clear matter becomes enhanced at the low-energy scale
in infrared region, whose scale of singularity is given by
the Kondo scale. Then, in Sec. IV, we proceed to inves-
tigate the physical meaning of the Kondo scale beyond
the perturbation. We consider the mean-field approxi-
mation and show that the Kondo scale is in fact related
to the mixing strength between the D̄(∗)

s meson and the
nucleon, leading to the non-trivial behavior of the spec-
tral function of the impurity particle in nuclear matter.
We find that HQS plays the significantly important role
to realize the Kondo effect as the result of the mixing
of the D̄s meson and the D̄∗

s meson in nuclear matter.
The final section is devoted for the conclusion and the
outlook.

II. INTERACTION MODEL

As the effective interaction between the nucleon (ψ)

and the D̄(∗)
s meson (P (∗)

sv ), we introduce the point-like
(contact) interaction whose Lagrangian is given in gen-
eral from chiral symmetry and HQS by

Lint =
1

2

∑

i

ci ψ̄ΓiψTrH̄svΓiHsv, (1)

with the coupling constants ci (i = 1, . . . , 5) for the Dirac
matrices Γ1 = 1, Γ2 = γµ, Γ3 = σµν , Γ4 = γµγ5, Γ5 = γ5.

The heavy-meson effective field is defined by [13, 14]

Hsv =
(
γµP ∗

svµ + iγ5Psv

) 1 + v/

2
, (2)

in the frame with four-velocity vµ for the vector-field P ∗
svµ

for (sQ̄)spin 1 (vµP ∗
svµ = 0) and the pseudoscalar-field Psv

for (sQ̄)spin 0. We define H̄sv = γ0H†
svγ

0. We consider

either proton or neutron for the nucleon, because D̄(∗)
s

meson is blind to the nucleon isospin.
We consider the non-relativistic limit for the nucleon

field and write ψ = (ϕ, 0)t with two-component spinor ϕ.
By defining cs = −(c1− c2) and ct = 2c3+ c4, we rewrite
Lint in the rest frame vµ = (1, 0⃗) as

Lint = csϕ
†ϕ
(
δijP ∗i†

sv P ∗j
sv + P †

svPsv

)

+ ict
∑

k

ϕ†σkϕ
(
ϵijkP ∗i†

sv P ∗j
sv −

(
P ∗k†
sv Psv−P †

svP
∗k
sv

))
,

(3)

with the Pauli matrices σk (k = 1, 2, 3) for spin. The
first (second) term in the right-hand-side gives the spin-
nonexchange (spin-exchange) interaction.

In terms of HQS, the D̄(∗)
s N state is classified to the

HQS singlet state or the HQS doublet state [34, 35]. The
HQS singlet channel is given by −(1/2)D̄sN(2S1/2) +

(
√
3/2)D̄∗

sN(2S1/2) and the HQS doublet channel is

given by (
√
3/2)D̄sN(2S1/2) + (1/2)D̄∗

sN(2S1/2) and
D̄∗

sN(4S3/2). The interaction Lagrangian in Eq. (3) gives
the couplings −cs − 3ct and −cs + ct for the HQS singlet
and doublet, respectively. Therefore, the ground state
for ct > 0 (ct < 0) in Eq. (3) should be the HQS singlet
(doublet) state. Notice that this is comparable with what
is expected in the D̄(∗)N system. The ground state of
D̄(∗)N is the HQS doublet, when the one-pion-exchange
potential is adopted [22–25].

III. KONDO SCALE

We consider the effective coupling for cs and ct in the
interaction (3) at low-energy scale in nuclear matter. For
this purpose, we apply the renormalization group equa-
tion in perturbation, assuming the small coupling con-
stants.

We set the zero point of the heavy meson energy at
the D̄∗

s meson mass. This is a reasonable setting when
the D̄∗

s meson is injected as a static particle with zero
momentum into nuclear matter. The mass position of
the D̄s meson is −δM . We introduce the Pvs and P ∗µ

vs
propagators with residual four-momentum kµ

i

2(v ·k + δM) + iη
,

iδij
2v ·k + iη

, (4)

for Pvs and P ∗i
vs (i = 1, 2, 3), respectively, with infinites-

imally small and positive number η > 0 [13, 14]. The
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(doublet) state. Notice that this is comparable with what
is expected in the D̄(∗)N system. The ground state of
D̄(∗)N is the HQS doublet, when the one-pion-exchange
potential is adopted [22–25].

III. KONDO SCALE

We consider the effective coupling for cs and ct in the
interaction (3) at low-energy scale in nuclear matter. For
this purpose, we apply the renormalization group equa-
tion in perturbation, assuming the small coupling con-
stants.

We set the zero point of the heavy meson energy at
the D̄∗

s meson mass. This is a reasonable setting when
the D̄∗

s meson is injected as a static particle with zero
momentum into nuclear matter. The mass position of
the D̄s meson is −δM . We introduce the Pvs and P ∗µ

vs
propagators with residual four-momentum kµ
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2(v ·k + δM) + iη
,

iδij
2v ·k + iη

, (4)

for Pvs and P ∗i
vs (i = 1, 2, 3), respectively, with infinites-

imally small and positive number η > 0 [13, 14]. The

2

emission, the decay width is very small due to the close
thresholds [33].

4. There is no isospin effect for the D̄(∗)
s meson due

to isospin 0. This is complementary to the case of
the D̄(∗) meson with isospin 1/2, where both isospin-
independent interaction and isospin-dependent inter-
action contribute simultaneously.

By using these similarities and differences of D̄(∗)
s and

D̄(∗) mesons, we can study the properties the Kondo ef-
fect for the Q̄q mesons in nuclear matter in multiple per-
spectives. For example, it was shown that the Kondo
effect induced by the isospin-exchange interaction for the

D̄(∗)
s meson and the nucleon can exist in nuclear matter

and in atomic nuclei [7, 10]. This is complementary to
the Kondo effect induced by the spin-exchange interac-

tion. We may consider the charge-conjugate state D(∗)
s

and D(∗) mesons as well. In this case, however, we have
to consider additional channels such as DsN → KΛc,
which should be covered elsewhere. The difference of
the properties between the D̄(∗)

s (D̄(∗)) meson and the

D(∗)
s (D(∗)) meson arises essentially from the breaking

of charge conjugation at finite baryon number density.

The study of D(∗)
s and D(∗) mesons is not covered in the

present study.
The paper is organized as the following. In Sec. II, we

introduce the interaction Lagrangian for the D̄(∗)
s me-

son and the nucleon based on HQS. In Sec. III, adopting
the perturbative approach, we present that the effective

interaction between a D̄(∗)
s meson and a nucleon in nu-

clear matter becomes enhanced at the low-energy scale
in infrared region, whose scale of singularity is given by
the Kondo scale. Then, in Sec. IV, we proceed to inves-
tigate the physical meaning of the Kondo scale beyond
the perturbation. We consider the mean-field approxi-
mation and show that the Kondo scale is in fact related
to the mixing strength between the D̄(∗)

s meson and the
nucleon, leading to the non-trivial behavior of the spec-
tral function of the impurity particle in nuclear matter.
We find that HQS plays the significantly important role
to realize the Kondo effect as the result of the mixing
of the D̄s meson and the D̄∗

s meson in nuclear matter.
The final section is devoted for the conclusion and the
outlook.

II. INTERACTION MODEL

As the effective interaction between the nucleon (ψ)

and the D̄(∗)
s meson (P (∗)

sv ), we introduce the point-like
(contact) interaction whose Lagrangian is given in gen-
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FIG. 1. The diagrams at nucleon one-loop level. The sin-
gle (double) solid line indicate the propagator of the nucleon

(D̄(∗)
s meson).

nucleon propagator with four-momentum pµ is given by

(p/+m)

(
i

p2−m2 + iη
−2πθ(p0)δ(p

2−m2)θ(kF−|p⃗ |)
)
,

(5)

with the nucleon mass m and the Fermi momentum
kF [36].
The coupling constants cs and ct in nuclear matter

are not the same as those in vacuum, but get modified
by the medium effect. Following the “poor man’s scaling
method” [37], we consider the change of the coupling con-
stants perturbatively by the renormalization group equa-
tion in nuclear matter as shown in Fig. 1. Considering
the nucleon one-loop diagram, we obtain the renormal-
ization group equations

d

dℓ
cs00(ℓ) = 0, (6)

d

dℓ
cs11(ℓ) = 0, (7)

d

dℓ
ct10(ℓ) =

mkF
2π2

ct10(ℓ)ct11(ℓ), (8)

d

dℓ
ct01(ℓ) =

mkF
2π2

ct01(ℓ)ct11(ℓ), (9)

d

dℓ
ct11(ℓ) =

mkF
2π2

ct11(ℓ)
2, (10)

with ℓ = − lnΛ/kF for the infrared momentum cut-
off parameter Λ below and above the Fermi surface
in the loop integrals. Here cs00, cs11, ct11, ct10 and
ct01 are the effective coupling constants for the ver-
tices of ϕ†ϕP †

svPsv, ϕ†ϕP ∗k†
sv P ∗k

sv , ϕ†σkϕ ϵijkP ∗i†
sv P j

sv,
ϕ†σkϕP ∗k†

sv Psv and ϕ†σkϕP †
svP

∗k
sv (summed over i, j, k)

at scale Λ. As the initial condition for the renormaliza-
tion group equations, we consider cs00(0) = cs11(0) = cs
and ct11(0) = ct10(0) = ct01(0) = ct at the initial en-
ergy scale ℓ ≃ 0 (Λ ≃ kF). As the solutions, we obtain
cs00(ℓ) = cs11(ℓ) = cs, hence the effective coupling con-
stants in cs-term remain unchanged in nuclear matter.
In contrast, we obtain

ct11(ℓ) = ct10(ℓ) = ct01(ℓ) =
ct

1−
mkF
2π2

ctℓ

, (11)

and hence the effective coupling constants in ct-term
changes drastically due to the singularity in the infrared
energy scale for ct > 0, before the momentum cutoff pa-
rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This

scale of singularity is given by

ΛK ≃ kF exp

(
− 2π2

mkFct

)
. (12)

Therefore, the spin-exchange term (ct-term) in Eq. (3)
becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
stant. The physical meaning of this result is interesting.
First, the D̄∗

s meson does not have any spin-flip process
in nuclear matter. Second, the mixing between the D̄∗

s
meson and the D̄s meson in nuclear matter does not oc-
cur, because the ct-term is only the mixing term. Third,
the D̄∗

s meson does not decay to the D̄s meson, because
the interaction process D̄∗

sN → D̄sN for the nucleon N
vanishes.

We leave a comment before closing this section. In
the above calculation, it is important that the D̄∗

s meson
mass is set to be at the Fermi surface. If the D̄s meson
mass is at the Fermi surface, the scattering of the D̄(∗)

s

meson and the nucleon is not affected by the infrared
singularity, and the Kondo effect does not occur. The
choice of the energy zero point can be changed arbitrary.
However, it will be shown in the next section that the

positions of the D̄(∗)
s meson masses will be determined

uniquely in the mean-field approach.

IV. MEAN-FIELD APPROACH

A. Hamiltonian with auxiliary fermion fields

Let us investigate the ground state of the system under
the Kondo effect for ct > 0. For this purpose, we intro-
duce the “auxiliary” fermion fields. The light-quark spin
is decoupled from the heavy-quark spin in HQS, because
the heavy-quark spin is independent of the interaction
in the heavy quark limit [13, 14]. Hence, it is useful to

replace the degrees of freedom from the D̄(∗)
s meson to

the light quark (s quark) in the D̄(∗)
s meson. We call

this light quark an auxiliary fermion, because this is no

Ds, Ds*

nucleon

nucleon (hole)
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FIG. 1. The diagrams at nucleon one-loop level. The sin-
gle (double) solid line indicate the propagator of the nucleon
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s meson).
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becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
stant. The physical meaning of this result is interesting.
First, the D̄∗

s meson does not have any spin-flip process
in nuclear matter. Second, the mixing between the D̄∗

s
meson and the D̄s meson in nuclear matter does not oc-
cur, because the ct-term is only the mixing term. Third,
the D̄∗

s meson does not decay to the D̄s meson, because
the interaction process D̄∗

sN → D̄sN for the nucleon N
vanishes.

We leave a comment before closing this section. In
the above calculation, it is important that the D̄∗

s meson
mass is set to be at the Fermi surface. If the D̄s meson
mass is at the Fermi surface, the scattering of the D̄(∗)

s

meson and the nucleon is not affected by the infrared
singularity, and the Kondo effect does not occur. The
choice of the energy zero point can be changed arbitrary.
However, it will be shown in the next section that the

positions of the D̄(∗)
s meson masses will be determined

uniquely in the mean-field approach.

IV. MEAN-FIELD APPROACH

A. Hamiltonian with auxiliary fermion fields

Let us investigate the ground state of the system under
the Kondo effect for ct > 0. For this purpose, we intro-
duce the “auxiliary” fermion fields. The light-quark spin
is decoupled from the heavy-quark spin in HQS, because
the heavy-quark spin is independent of the interaction
in the heavy quark limit [13, 14]. Hence, it is useful to

replace the degrees of freedom from the D̄(∗)
s meson to

the light quark (s quark) in the D̄(∗)
s meson. We call

this light quark an auxiliary fermion, because this is no
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tion group equations, we consider cs00(0) = cs11(0) = cs
and ct11(0) = ct10(0) = ct01(0) = ct at the initial en-
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and hence the effective coupling constants in ct-term
changes drastically due to the singularity in the infrared
energy scale for ct > 0, before the momentum cutoff pa-
rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This
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becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
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the above calculation, it is important that the D̄∗
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are not the same as those in vacuum, but get modified
by the medium effect. Following the “poor man’s scaling
method” [37], we consider the change of the coupling con-
stants perturbatively by the renormalization group equa-
tion in nuclear matter as shown in Fig. 1. Considering
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tion group equations, we consider cs00(0) = cs11(0) = cs
and ct11(0) = ct10(0) = ct01(0) = ct at the initial en-
ergy scale ℓ ≃ 0 (Λ ≃ kF). As the solutions, we obtain
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stants in cs-term remain unchanged in nuclear matter.
In contrast, we obtain

ct11(ℓ) = ct10(ℓ) = ct01(ℓ) =
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and hence the effective coupling constants in ct-term
changes drastically due to the singularity in the infrared
energy scale for ct > 0, before the momentum cutoff pa-
rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This

scale of singularity is given by

ΛK ≃ kF exp
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Therefore, the spin-exchange term (ct-term) in Eq. (3)
becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
stant. The physical meaning of this result is interesting.
First, the D̄∗

s meson does not have any spin-flip process
in nuclear matter. Second, the mixing between the D̄∗
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meson and the D̄s meson in nuclear matter does not oc-
cur, because the ct-term is only the mixing term. Third,
the D̄∗

s meson does not decay to the D̄s meson, because
the interaction process D̄∗

sN → D̄sN for the nucleon N
vanishes.

We leave a comment before closing this section. In
the above calculation, it is important that the D̄∗

s meson
mass is set to be at the Fermi surface. If the D̄s meson
mass is at the Fermi surface, the scattering of the D̄(∗)
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meson and the nucleon is not affected by the infrared
singularity, and the Kondo effect does not occur. The
choice of the energy zero point can be changed arbitrary.
However, it will be shown in the next section that the
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uniquely in the mean-field approach.
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with the nucleon mass m and the Fermi momentum
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are not the same as those in vacuum, but get modified
by the medium effect. Following the “poor man’s scaling
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tion group equations, we consider cs00(0) = cs11(0) = cs
and ct11(0) = ct10(0) = ct01(0) = ct at the initial en-
ergy scale ℓ ≃ 0 (Λ ≃ kF). As the solutions, we obtain
cs00(ℓ) = cs11(ℓ) = cs, hence the effective coupling con-
stants in cs-term remain unchanged in nuclear matter.
In contrast, we obtain
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and hence the effective coupling constants in ct-term
changes drastically due to the singularity in the infrared
energy scale for ct > 0, before the momentum cutoff pa-
rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This

scale of singularity is given by
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Therefore, the spin-exchange term (ct-term) in Eq. (3)
becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
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s meson does not have any spin-flip process
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by the medium effect. Following the “poor man’s scaling
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does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
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energy scale for ct > 0, before the momentum cutoff pa-
rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This

scale of singularity is given by

ΛK = kF exp

(
− 2π2

mkFct

)
. (12)

Therefore, the spin-exchange term (ct-term) in Eq. (3)
becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
stant. The physical meaning of this result is interesting.
First, the D̄∗

s meson does not have any spin-flip process
in nuclear matter. Second, the mixing between the D̄∗

s
meson and the D̄s meson in nuclear matter does not oc-
cur, because the ct-term is only the mixing term. Third,
the D̄∗

s meson does not decay to the D̄s meson, because
the interaction process D̄∗

sN → D̄sN for the nucleon N
vanishes.

We leave a comment before closing this section. In
the above calculation, it is important that the D̄∗

s meson
mass is set to be at the Fermi surface. If the D̄s meson
mass is at the Fermi surface, the scattering of the D̄(∗)

s

meson and the nucleon is not affected by the infrared
singularity, and the Kondo effect does not occur. The
choice of the energy zero point can be changed arbitrary.
However, it will be shown in the next section that the

positions of the D̄(∗)
s meson masses will be determined

uniquely in the mean-field approach.

IV. MEAN-FIELD APPROACH

A. Hamiltonian with auxiliary fermion fields

Let us investigate the ground state of the system under
the Kondo effect for ct > 0. For this purpose, we intro-
duce the “auxiliary” fermion fields. The light-quark spin
is decoupled from the heavy-quark spin in HQS, because
the heavy-quark spin is independent of the interaction
in the heavy quark limit [13, 14]. Hence, it is useful to

replace the degrees of freedom from the D̄(∗)
s meson to

the light quark (s quark) in the D̄(∗)
s meson. We call

this light quark an auxiliary fermion, because this is no

Kondo scale
(infrared singularity)

spin-nonexchange term
(fixed point cs*=cs)

spin-exchange term
(fixed point ct*=∞ for ct>0)

3. Kondo effect
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longer the free state but is confined in the finite region

inside the D̄(∗)
s meson.

We denote the auxiliary fermion field by ψi
σ which is

labeled by the light-quark spin σ =↑, ↓ and the heavy-
quark spin i = 1, 2. The labeling of the heavy-quark
spin is introduced to specify the spin state of the heavy
quark with which the auxiliary fermion is confined.2

Based on that P (∗)
sv is given by the direct product of

light-quark spin and heavy-quark spin and that the
light-quark spin is expressed by ψi

σ/2, we consider the

correspondence between P (∗)
sv and ψi

σ given by Psv ↔
−(ψ2

↑ − ψ1
↓)/2

√
2, P ∗+1

sv ↔ ψ1
↑/2, P

∗0
sv ↔ (ψ2

↑ + ψ1
↓)/2

√
2

and P ∗−1
sv ↔ ψ2

↓/2 for P ∗1
sv =

(
−P ∗+1

sv + P ∗−1
sv

)
/
√
2,

P ∗2
sv = i

(
−P ∗+1

sv − P ∗−1
sv

)
/
√
2 and P ∗3

sv = P ∗0
sv . The

heavy-quark spin does not play any role in the dynam-
ics, but only serves the labeling of i for the light-quark
spin. In the following, the impurity means this auxiliary

fermion instead of the D̄(∗)
s meson. From Eq. (3), we

consider only the ct-term as the relevant term with the
Kondo effect in the low-energy scattering, and give the
interaction Hamiltonian

Hint =
ct
4

∑

i,k

ϕ†σkϕψi†σkψi. (13)

We change the interaction Hamiltonian in the coordi-
nate space to the one in the momentum space by using
the Fourier transformation

ϕσ(x) =
1√
V

∑

k

e−ik·xϕkσ, (14)

ψi
σ(x) =

1√
V
√∑

k′

∑

k

e−ik·xψi
σ, (15)

with the system volume V . We introduce the normal-
ization factor 1/

√∑
k′ for ψi

σ. We assume that ψi
σ

is independent of the three-dimensional momentum k
as the heavy impurity does not propagate in space.3

From Eq. (15), we notice that the commutation relation{
ψi†
σ ,ψj

ρ

}
= δijδσρ is imposed from

{
ψi†
σ (x),ψj

ρ(y)
}

=

δijδσρδ(3)(x− y).
Importantly, because the auxiliary fermion (ψi

σ) is spa-

tially confined in the D̄(∗)
s meson, we introduce the con-

straint condition
∑

σ

ψi†
σ (x)ψi

σ(x) = niδ(3)(x), (16)

with ni the probability of existence of the auxiliary
fermion in the heavy-quark spin i state, satisfying n1 +
n2 = 1. The auxiliary fermion exists only at x = 0,

2 Here only the spin of the light quark is important, and the color
is not necessary.

3 We use the same notation ψi
σ both in the coordinate space and

in the momentum space.

where the location in the D̄(∗)
s meson is supposed to be

the original point. By using Eq. (15), we find that the
constraint condition (16) is expressed by

∑

σ

ψi†
σ ψ

i
σ = ni, (17)

in the momentum space.
Considering the ct-term, based on Hint (13), we obtain

the Hamiltonian in momentum space

Heff =
∑

k,σ

ε̃kϕ
†
kσϕkσ − Ct

4

∑

k1,k2,σ

ϕ†
k1σ

ϕk2σ

+ 2
Ct

4

∑

i,k1,k2,σ1,σ2

ϕ†
k1σ1

ϕk2σ2ψ
i†
σ2
ψi
σ1

+ v
(
ψ1†
↓ − ψ2†

↑

) (
ψ1
↓ − ψ2

↑
)
+ λ

(∑

i,σ

ψi†
σ ψ

i
σ − 1

)
,

(18)

with ε̃k = εk − µ (µ ≃ k2F/2m) and Ct = V ct. The term
proportional to v < 0 is for the HQS breaking, i.e. the
mass splitting δM = |2v| between D̄s and D̄∗

s mesons.
The zero point of the meson energy is set to be the D̄∗

s
meson mass. To obtain Eq. (18), we use the constraint
condition,

∑
i,σ ψ

i†
σ ψ

i
σ = 1, from Eq. (17) and add this

condition in the last term with the Lagrange multiplier λ.
We can consider the constraint condition in such a way
that the auxiliary fermion is confined on the hypersphere
S3 with unit radius.

B. Mean-field approximation

The mean-field approach has been known as a useful
method to investigate the ground state with the Kondo
effect in the condense matter physics [38–40] (see also
Refs. [4, 41]). We apply the mean-field approximation
for the four-point interaction of ϕ†ϕψ†ψ in Eq. (18) as

ϕ†
kρϕlσψ

i†
σ ψ

i
ρ ≃− ⟨ψi†

σ ϕlσ⟩ϕ†
kρψ

i
ρ − ψi†

σ ϕlσ⟨ϕ†
kρψ

i
ρ⟩

+ ⟨ψi†
σ ϕlσ⟩⟨ϕ†

kρψ
i
ρ⟩+ δkℓδρσψ

i†
σ ψ

i
σ. (19)

We define the “gap” function

∆i ≡ −2
Ct

4

∑

k,σ

⟨ψi†
σ ϕkσ⟩, (20)

as the spin-singlet condensate of the nucleon (ϕkσ) and
the auxiliary fermion (ψi

σ). The gap ∆i gives the mix-
ing between the nucleon and the auxiliary fermion in the
ground state.4 This quantity is obtained by minimiz-
ing the total energy as the variational calculation, or by

4 In terms of HQS, the gap (∆1,∆2) belongs to the HQS singlet,
because the light degrees of freedom except for the heavy quark,
i.e. the nucleon and the auxiliary fermion, form the spin-singlet.

auxiliary fermion
(σ: light-spin, i:heavy-quark spin)

∑

i,σ

ψi†
σ ψ

i
σ = 1

D̄(∗)
s ↔ ψi

σ

1

constraint 
condition

Boson-fermion correspondence
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= δijδσρ is imposed from
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straint condition
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the original point. By using Eq. (15), we find that the
constraint condition (16) is expressed by
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Considering the ct-term, based on Hint (13), we obtain
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with ε̃k = εk − µ (µ ≃ k2F/2m) and Ct = V ct. The term
proportional to v < 0 is for the HQS breaking, i.e. the
mass splitting δM = |2v| between D̄s and D̄∗

s mesons.
The zero point of the meson energy is set to be the D̄∗

s
meson mass. To obtain Eq. (18), we use the constraint
condition,
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i,σ ψ

i†
σ ψ

i
σ = 1, from Eq. (17) and add this

condition in the last term with the Lagrange multiplier λ.
We can consider the constraint condition in such a way
that the auxiliary fermion is confined on the hypersphere
S3 with unit radius.

B. Mean-field approximation

The mean-field approach has been known as a useful
method to investigate the ground state with the Kondo
effect in the condense matter physics [38–40] (see also
Refs. [4, 41]). We apply the mean-field approximation
for the four-point interaction of ϕ†ϕψ†ψ in Eq. (18) as

ϕ†
kρϕlσψ

i†
σ ψ

i
ρ ≃− ⟨ψi†

σ ϕlσ⟩ϕ†
kρψ

i
ρ − ψi†

σ ϕlσ⟨ϕ†
kρψ
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σ ϕlσ⟩⟨ϕ†

kρψ
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i†
σ ψ
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σ. (19)

We define the “gap” function

∆i ≡ −2
Ct
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∑

k,σ

⟨ψi†
σ ϕkσ⟩, (20)

as the spin-singlet condensate of the nucleon (ϕkσ) and
the auxiliary fermion (ψi

σ). The gap ∆i gives the mix-
ing between the nucleon and the auxiliary fermion in the
ground state.4 This quantity is obtained by minimiz-
ing the total energy as the variational calculation, or by

4 In terms of HQS, the gap (∆1,∆2) belongs to the HQS singlet,
because the light degrees of freedom except for the heavy quark,
i.e. the nucleon and the auxiliary fermion, form the spin-singlet.
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σ = 1, from Eq. (17) and add this

condition in the last term with the Lagrange multiplier λ.
We can consider the constraint condition in such a way
that the auxiliary fermion is confined on the hypersphere
S3 with unit radius.

B. Mean-field approximation

The mean-field approach has been known as a useful
method to investigate the ground state with the Kondo
effect in the condense matter physics [38–40] (see also
Refs. [4, 41]). We apply the mean-field approximation
for the four-point interaction of ϕ†ϕψ†ψ in Eq. (18) as

ϕ†
kρϕlσψ

i†
σ ψ

i
ρ ≃− ⟨ψi†

σ ϕlσ⟩ϕ†
kρψ

i
ρ − ψi†

σ ϕlσ⟨ϕ†
kρψ

i
ρ⟩

+ ⟨ψi†
σ ϕlσ⟩⟨ϕ†

kρψ
i
ρ⟩+ δkℓδρσψ

i†
σ ψ

i
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We define the “gap” function

∆i ≡ −2
Ct

4

∑

k,σ

⟨ψi†
σ ϕkσ⟩, (20)

as the spin-singlet condensate of the nucleon (ϕkσ) and
the auxiliary fermion (ψi

σ). The gap ∆i gives the mix-
ing between the nucleon and the auxiliary fermion in the
ground state.4 This quantity is obtained by minimiz-
ing the total energy as the variational calculation, or by

4 In terms of HQS, the gap (∆1,∆2) belongs to the HQS singlet,
because the light degrees of freedom except for the heavy quark,
i.e. the nucleon and the auxiliary fermion, form the spin-singlet.

5

solving the self-consistent equation.5 In the following, as
further approximation, we neglect the terms which are ir-
relevant to the direct coupling between the nucleon and
the impurity, and consider the simplified Hamiltonian

HMF′
eff =

∑

k,σ

ε̃kϕ
†
kσϕkσ

+
∑

i

{∑

k,σ

(
∆iϕ†

kσψ
i
σ +∆i†ψi†

σ ϕkσ

)
+

|∆i|2

2(Ct/4)

}

+ v
(
ψ1†
↓ − ψ2†

↑

) (
ψ1
↓ − ψ2

↑
)
+ λ

(∑

i,σ

ψi†
σ ψ

i
σ − 1

)
.

(21)

This simplification does not change the essence of the
discussion.

C. Thermodynamic potential

We discuss the gap by the variational calculation of
the total energy. For this purpose, we have to know the
energy induced by the interaction between the nucleon
and the impurity.
First of all, we consider the spectral function of the

impurity in nuclear matter. We define the Green’s func-
tion G(ω) by (ω + iη − ĥ)G(ω) = 1, where ĥ is defined
by HMF′

eff = φ†ĥφ+(|∆1|2 + |∆2|2)/2(Ct/4)−λ with φ =
(. . . ,ϕk↑, . . . ,ψ1

↑,ψ
2
↑, . . . ,ϕk↓, . . . ,ψ1

↓,ψ
2
↓)

t. The spectral
function relevant to the impurity is given by

ρ̄(ω) = − 1

π
ImTrG(ω)− 2

(
− 1

π
Im
∑

k

1

ω + iη − ε̃k

)

= − 1

π
Im

∑

a=1,2,3,4

1

ω + iη − ωa
, (22)

with

ω1 =
1

2
(d1 + d2) + v −

√
1

4
(d1 + d2)2 + v2 + λ, (23)

ω2 =
1

2
(d1 + d2) + v +

√
1

4
(d1 + d2)2 + v2 + λ, (24)

ω3 = d1 + d2 + λ, (25)

ω4 =λ, (26)

and di =
∑

k |∆i|2/(ω + iη − ε̃k) for i = 1, 2, where the
contribution from the free nucleon with spin factor two is
subtracted. In general, ωa (a = 1, 2, 3, 4) is the complex
number, ωa = ωR

a + iωI
a, with the real part (R) and the

5 The positivity of Ct > 0 is important to support the energy
balance of the system with the condensate (20). This will be seen
in the thermodynamic potential, Eqs. (27) and (28). In negative
case (Ct < 0), we will have to consider spin-triplet condensate.
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FIG. 2. A schematic figure of the spectral function of impuri-
ties for (i) v = 0, (ii) |v| ≪ δ and (iii) |v| ≫ δ for δ = δ1 + δ2.
Widths are indicated in the figure. There are degeneracies in
the delta-like peak and the broad peak, respectively, in (i).

imaginary part (I). The spectral function is the sum of
the Lorenzians with the pole position ωR

a and the width
ωI
a.
Using the spectral function (22), we obtain the ther-

modynamic potential (cf. Refs. [4, 40, 41])

Ω(λ;∆1,∆2)

= − 1

β

∫ D

−D
ln(1 + e−βω)ρ̄(ω)dω +

|∆1|2 + |∆2|2

2(Ct/4)
− λ,

(27)

where the cutoff scale D (≃ k2F/2m) is introduced below
and above the Fermi surface (ω = 0) to regularize the
integral. At zero temperature (β → ∞), regarding D
large, we approximately obtain

Ω(λ;∆1,∆2)

≃ 1

π

∑

a

(
ωI
a − ωR

a arctan
ωI
a

ωR
a

− ωI
a

2
ln

(ωR
a )

2 + (ωI
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We will consider only the imaginary part of di for sim-
plicity. The values of ∆i and λ are obtained by the sta-
tionary conditions: ∂Ω/∂∆i = 0 and ∂Ω/∂λ = 0. In the
following, we define δi = bV |∆i|2 with b = mkF/2π and
δ = δ1 + δ2 for convenient notations.

We comment that it is a subtle problem which is the
larger scale, the gap ∆i (or δ) or the HQS breaking scale
|v|. In the following, therefore, we consider the three case
(i) v = 0 (HQS limit), (ii) |v| ≪ δ (small HQS breaking)
and (iii) |v| ≫ δ (large HQS breaking).

Before presenting the result, we show the sketch of the
spectral function (22) in Fig. 2. In the HQS limit (i),
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solving the self-consistent equation.5 In the following, as
further approximation, we neglect the terms which are ir-
relevant to the direct coupling between the nucleon and
the impurity, and consider the simplified Hamiltonian
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eff =
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σ − 1

)
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(21)

This simplification does not change the essence of the
discussion.

C. Thermodynamic potential

We discuss the gap by the variational calculation of
the total energy. For this purpose, we have to know the
energy induced by the interaction between the nucleon
and the impurity.
First of all, we consider the spectral function of the

impurity in nuclear matter. We define the Green’s func-
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by HMF′
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↓,ψ
2
↓)

t. The spectral
function relevant to the impurity is given by
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π
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= − 1
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Im
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ω + iη − ωa
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with

ω1 =
1

2
(d1 + d2) + v −

√
1

4
(d1 + d2)2 + v2 + λ, (23)

ω2 =
1

2
(d1 + d2) + v +

√
1

4
(d1 + d2)2 + v2 + λ, (24)

ω3 = d1 + d2 + λ, (25)

ω4 =λ, (26)

and di =
∑

k |∆i|2/(ω + iη − ε̃k) for i = 1, 2, where the
contribution from the free nucleon with spin factor two is
subtracted. In general, ωa (a = 1, 2, 3, 4) is the complex
number, ωa = ωR

a + iωI
a, with the real part (R) and the

5 The positivity of Ct > 0 is important to support the energy
balance of the system with the condensate (20). This will be seen
in the thermodynamic potential, Eqs. (27) and (28). In negative
case (Ct < 0), we will have to consider spin-triplet condensate.
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FIG. 2. A schematic figure of the spectral function of impuri-
ties for (i) v = 0, (ii) |v| ≪ δ and (iii) |v| ≫ δ for δ = δ1 + δ2.
Widths are indicated in the figure. There are degeneracies in
the delta-like peak and the broad peak, respectively, in (i).

imaginary part (I). The spectral function is the sum of
the Lorenzians with the pole position ωR

a and the width
ωI
a.
Using the spectral function (22), we obtain the ther-

modynamic potential (cf. Refs. [4, 40, 41])

Ω(λ;∆1,∆2)

= − 1

β

∫ D

−D
ln(1 + e−βω)ρ̄(ω)dω +

|∆1|2 + |∆2|2

2(Ct/4)
− λ,

(27)

where the cutoff scale D (≃ k2F/2m) is introduced below
and above the Fermi surface (ω = 0) to regularize the
integral. At zero temperature (β → ∞), regarding D
large, we approximately obtain

Ω(λ;∆1,∆2)

≃ 1

π

∑

a

(
ωI
a − ωR

a arctan
ωI
a

ωR
a

− ωI
a

2
ln

(ωR
a )

2 + (ωI
a)

2

D2

)

+
|∆1|2 + |∆2|2

2(Ct/4)
− λ. (28)

We will consider only the imaginary part of di for sim-
plicity. The values of ∆i and λ are obtained by the sta-
tionary conditions: ∂Ω/∂∆i = 0 and ∂Ω/∂λ = 0. In the
following, we define δi = bV |∆i|2 with b = mkF/2π and
δ = δ1 + δ2 for convenient notations.

We comment that it is a subtle problem which is the
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FIG. 1. The diagrams at nucleon one-loop level. The sin-
gle (double) solid line indicate the propagator of the nucleon

(D̄(∗)
s meson).

nucleon propagator with four-momentum pµ is given by

(p/+m)

(
i

p2−m2 + iη
−2πθ(p0)δ(p

2−m2)θ(kF−|p⃗ |)
)
,

(5)

with the nucleon mass m and the Fermi momentum
kF [36].
The coupling constants cs and ct in nuclear matter

are not the same as those in vacuum, but get modified
by the medium effect. Following the “poor man’s scaling
method” [37], we consider the change of the coupling con-
stants perturbatively by the renormalization group equa-
tion in nuclear matter as shown in Fig. 1. Considering
the nucleon one-loop diagram, we obtain the renormal-
ization group equations

d

dℓ
cs00(ℓ) = 0, (6)

d

dℓ
cs11(ℓ) = 0, (7)

d

dℓ
ct10(ℓ) =

mkF
2π2

ct10(ℓ)ct11(ℓ), (8)

d

dℓ
ct01(ℓ) =

mkF
2π2

ct01(ℓ)ct11(ℓ), (9)

d

dℓ
ct11(ℓ) =

mkF
2π2

ct11(ℓ)
2, (10)

with ℓ = − lnΛ/kF for the infrared momentum cut-
off parameter Λ below and above the Fermi surface
in the loop integrals. Here cs00, cs11, ct11, ct10 and
ct01 are the effective coupling constants for the ver-
tices of ϕ†ϕP †

svPsv, ϕ†ϕP ∗k†
sv P ∗k

sv , ϕ†σkϕ ϵijkP ∗i†
sv P j

sv,
ϕ†σkϕP ∗k†

sv Psv and ϕ†σkϕP †
svP

∗k
sv (summed over i, j, k)

at scale Λ. As the initial condition for the renormaliza-
tion group equations, we consider cs00(0) = cs11(0) = cs
and ct11(0) = ct10(0) = ct01(0) ≃ ct at the initial en-
ergy scale ℓ ≃ 0 (Λ ≃ kF). As the solutions, we obtain
cs00(ℓ) = cs11(ℓ) ≃ cs, hence the effective coupling con-
stants in cs-term remain unchanged in nuclear matter.
In contrast, we obtain

ct11(ℓ) = ct10(ℓ) = ct01(ℓ) =
ct

1−
mkF
2π2

ctℓ

, (11)

and hence the effective coupling constants in ct-term
changes drastically due to the singularity in the infrared
energy scale for ct > 0, before the momentum cutoff pa-
rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This

scale of singularity is given by

ΛK = kF exp

(
− 2π2

mkFct

)
. (12)

Therefore, the spin-exchange term (ct-term) in Eq. (3)
becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
stant. The physical meaning of this result is interesting.
First, the D̄∗

s meson does not have any spin-flip process
in nuclear matter. Second, the mixing between the D̄∗

s
meson and the D̄s meson in nuclear matter does not oc-
cur, because the ct-term is only the mixing term. Third,
the D̄∗

s meson does not decay to the D̄s meson, because
the interaction process D̄∗

sN → D̄sN for the nucleon N
vanishes.

We leave a comment before closing this section. In
the above calculation, it is important that the D̄∗

s meson
mass is set to be at the Fermi surface. If the D̄s meson
mass is at the Fermi surface, the scattering of the D̄(∗)

s

meson and the nucleon is not affected by the infrared
singularity, and the Kondo effect does not occur. The
choice of the energy zero point can be changed arbitrary.
However, it will be shown in the next section that the

positions of the D̄(∗)
s meson masses will be determined

uniquely in the mean-field approach.

IV. MEAN-FIELD APPROACH

A. Hamiltonian with auxiliary fermion fields

Let us investigate the ground state of the system under
the Kondo effect for ct > 0. For this purpose, we intro-
duce the “auxiliary” fermion fields. The light-quark spin
is decoupled from the heavy-quark spin in HQS, because
the heavy-quark spin is independent of the interaction
in the heavy quark limit [13, 14]. Hence, it is useful to

replace the degrees of freedom from the D̄(∗)
s meson to

the light quark (s quark) in the D̄(∗)
s meson. We call

this light quark an auxiliary fermion, because this is no
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we have two delta-like peaks (width 0) and two broad
resonances (width δ) at ω = 0. In the small HQS break-
ing (ii), we have a delta-like peak and a broad resonance
(width δ) at ω = ∓v/2 (v < 0), respectively. In the large
HQS breaking (iii), we have a semi-broad peak (width
δ/2) at ω = 2v, and three peaks, i.e. a delta-like peak,
a semi-broad peak (width δ/2) and a broad peak (width
δ), at ω = 0.
In case (i), the formation of the mixing state between

the nucleon (ϕkσ) and the auxiliary fermion (ψi
σ) is re-

alized by the superpositions of the heavy quark sectors
i = 1, 2. From Eq. (21), the combination of ψ1

σ and
ψ2
σ, i.e. ∝ ∆1ψ1

σ + ∆2ψ2
σ, couples to the nucleon, while

the orthogonal field, ∝ −∆2ψ1
σ +∆1ψ2

σ, does not couple
to the nucleon and stays free from the interaction. The
former and the latter modes correspond to the broad res-
onance and the delta-like peak, respectively. In case (ii),
the peak positions become split as the HQS breaking is
added perturbatively. In case (iii), it is reasonable that
there is one state at ω = 2v and three states at ω = 0,
whose energy positions are in correspondence to the D̄s

and D̄∗
s meson masses. Interestingly, the widths of the

latter three peaks at ω = 0 are different.
In any case, it is important that the “gap” ∆i (or δ)

is related to the width of the peak, not to the position.
Thus, the gap is the quantity for the “fluctuation” of the
energy position of the impurity. This can be understood
by the definition of the gap ∆i in Eq. (20), because ∆i

gives the mixing between the nucleon and the auxiliary
fermion in the ground state. The resonant states with
finite widths can be identified to the “Kondo resonance”
generated by the mixing between the nucleon and the
impurity [4].
For the cases (i), (ii) and (iii), the gap and the ther-

modynamic potential can be given in the following.
(i) v = 0. We obtain λ = 0 and

δ =
1

2
D exp

(
− 2π2

mkFct

)
. (29)

The thermodynamic potential is

Ω(λ;∆1,∆2) = − 2

π
D exp

(
− 2π2

mkFct

)
. (30)

(ii) |v| ≪ δ. We calculate the quantities up to O(v), and
obtain λ ≃ −v/2 and

δ ≃ 1

2
D exp

(
− 2π2

mkFct

)
. (31)

There is no additional term for the gap at O(v), but it
appears at O(v2). The thermodynamic potential is

Ω(λ;∆1,∆2) ≃ − 2

π
D exp

(
− 2π2

mkFct

)
+

v

2
. (32)

(iii) |v| ≫ δ. We calculate only the leading order of large
|v|, and obtain λ ≃ 0 and

δ ≃ 1

2

D4/3

(−v)1/3
exp

(
− 8π2

3mkFct

)
. (33)

The thermodynamic potential is

Ω(λ;∆1,∆2) ≃ − 3D4/3

2π(−v)1/3
exp

(
− 8π2

3mkFct

)
. (34)

In case (iii), the HQS breaking scale |v| appears in a non-
trivial manner in the gap as well as in the thermodynamic
potential. We remember that there is one semi-broad
resonance at ω = 2v in Fig. 2(iii). Naively, we may expect
that the Kondo resonance at ω = 2v should vanish for the
large |2v| limit, because the interaction for the D̄s meson
and the nucleon N is supplied by the process D̄sN →
D̄∗

sN → D̄sN with an intermediate virtual D̄∗
s state, and

this mixing should be suppressed for large |v|. This is
indeed the case. However, as long as the mass splitting
|2v| is kept to be large but finite, there still exists the
mixing between the D̄s meson and the nucleon, provided
the width as well as the binding energy become smaller
by the factor (−D/v)1/3 and by the coefficient in the
exponential as shown in Eqs. (33) and (34), respectively.

In all the cases (i), (ii) and (iii), the nontrivial vac-
uum structure with a finite gap is realized as the ground
state. Such state is more stable than normal state be-
cause the thermodynamic potential is negative. It is im-
portant also that the scale of this non-trivial vacuum is
closely related to the Kondo scale ΛK in Eq. (12), be-
cause the ct-dependence in δ and Ω for (i), (ii) and (iii)
is expressed by powers of ΛK. This suggests that the in-
frared singularity appeared in the perturbative analysis
with the renormalization group equation is strongly re-
lated to the gap (20), i.e. the mixing between the nucleon
and the auxiliary fermion, in the ground state.

So far, we have considered the D̄∗
s meson energy at

the Fermi surface (ω = 0), and have obtained the spec-
tral functions in Fig. 2. We may consider similarly the
case that the D̄s meson energy is at the Fermi surface by
shifting the energy level upward uniformly by a constant
value −2v. Even in this case, we obtain the same spectral
functions as in Fig. 2(iii), namely a semi-broad peak at
ω = 2v and three different (delta-like, semi-broad, broad)
peaks at ω = 0, provided that the total energy is shifted
by the constant value −2v. This results suggests that the
realization of the overlapping between the energy position
of the D̄∗

s meson and the Fermi surface is energetically
most favored for the ground state. In the mean-field ap-
proach, therefore, the energy position of the D̄∗

s meson is
chosen automatically to minimize the total energy of the
system with the Kondo effect. This is consistent with the
discussion in the perturbative approach.

Finally, we compare the present result with the
“triplet-singlet Kondo effect” in the condensed matter
physics, which can be realized in quantum dot sys-
tems [40, 43–45]. It is known that the spin-triplet im-
purities in metal induces no Kondo effect, namely no
enhancement of the effective coupling at the low-energy
scattering, when higher order loops are included in the
renormalization group equation (the “underscreening” ef-
fect) [42]. However, the situation is different when the
spin-singlet impurity exists in the energy region near the
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(ii) |v| ≪ δ. We calculate the quantities up to O(v), and
obtain λ ≃ −v/2 and

δ ≃ 1

2
D exp

(
− 2π2

mkFct

)
. (31)

There is no additional term for the gap at O(v), but it
appears at O(v2). The thermodynamic potential is

Ω(λ;∆1,∆2) ≃ − 2

π
D exp

(
− 2π2

mkFct

)
+

v

2
. (32)

(iii) |v| ≫ δ. We calculate only the leading order of large
|v|, and obtain λ ≃ 0 and

δ ≃ 1

2

D4/3

(−v)1/3
exp

(
− 8π2

3mkFct

)
. (33)

The thermodynamic potential is

Ω(λ;∆1,∆2) ≃ − 3D4/3

2π(−v)1/3
exp

(
− 8π2

3mkFct

)
. (34)

In case (iii), the HQS breaking scale |v| appears in a non-
trivial manner in the gap as well as in the thermodynamic
potential. We remember that there is one semi-broad
resonance at ω = 2v in Fig. 2(iii). Naively, we may expect
that the Kondo resonance at ω = 2v should vanish for the
large |2v| limit, because the interaction for the D̄s meson
and the nucleon N is supplied by the process D̄sN →
D̄∗

sN → D̄sN with an intermediate virtual D̄∗
s state, and

this mixing should be suppressed for large |v|. This is
indeed the case. However, as long as the mass splitting
|2v| is kept to be large but finite, there still exists the
mixing between the D̄s meson and the nucleon, provided
the width as well as the binding energy become smaller
by the factor (−D/v)1/3 and by the coefficient in the
exponential as shown in Eqs. (33) and (34), respectively.

In all the cases (i), (ii) and (iii), the nontrivial vac-
uum structure with a finite gap is realized as the ground
state. Such state is more stable than normal state be-
cause the thermodynamic potential is negative. It is im-
portant also that the scale of this non-trivial vacuum is
closely related to the Kondo scale ΛK in Eq. (12), be-
cause the ct-dependence in δ and Ω for (i), (ii) and (iii)
is expressed by powers of ΛK. This suggests that the in-
frared singularity appeared in the perturbative analysis
with the renormalization group equation is strongly re-
lated to the gap (20), i.e. the mixing between the nucleon
and the auxiliary fermion, in the ground state.

So far, we have considered the D̄∗
s meson energy at

the Fermi surface (ω = 0), and have obtained the spec-
tral functions in Fig. 2. We may consider similarly the
case that the D̄s meson energy is at the Fermi surface by
shifting the energy level upward uniformly by a constant
value −2v. Even in this case, we obtain the same spectral
functions as in Fig. 2(iii), namely a semi-broad peak at
ω = 2v and three different (delta-like, semi-broad, broad)
peaks at ω = 0, provided that the total energy is shifted
by the constant value −2v. This results suggests that the
realization of the overlapping between the energy position
of the D̄∗

s meson and the Fermi surface is energetically
most favored for the ground state. In the mean-field ap-
proach, therefore, the energy position of the D̄∗

s meson is
chosen automatically to minimize the total energy of the
system with the Kondo effect. This is consistent with the
discussion in the perturbative approach.

Finally, we compare the present result with the
“triplet-singlet Kondo effect” in the condensed matter
physics, which can be realized in quantum dot sys-
tems [40, 43–45]. It is known that the spin-triplet im-
purities in metal induces no Kondo effect, namely no
enhancement of the effective coupling at the low-energy
scattering, when higher order loops are included in the
renormalization group equation (the “underscreening” ef-
fect) [42]. However, the situation is different when the
spin-singlet impurity exists in the energy region near the

“gap” δ: width of resonance
“Heavy hadron”

Kondo resonance
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