Total Curvature of Graphs after Milnor and Euler

Sumio Yamada

Tohoku University

Tohoku Knot Seminar 2011

Definitions of Total Curvature

 Γ : piecewise-smooth embedded spatial finite graph in \mathbf{R}^3 .

Total Curvature

$$C(\Gamma) = \sum_{i=1}^{N} c(q_i) + \int_{\Gamma_{\text{reg}}} |k| ds$$

 Γ_{reg} : the smooth part, k: geodesic curvature vector $\{q_i\} = \Gamma \setminus \Gamma_{\text{reg}}$: the set of vertices on Γ.

Definitions of Total Curvature

 Γ : piecewise-smooth embedded spatial finite graph in \mathbf{R}^3 .

Total Curvature

$$C(\Gamma) = \sum_{i=1}^{N} c(q_i) + \int_{\Gamma_{\text{reg}}} |k| ds$$

 Γ_{reg} : the smooth part, k: geodesic curvature vector $\{q_i\} = \Gamma \setminus \Gamma_{\text{reg}}$: the set of vertices on Γ.

Theorem (Fenchel 1929, Milnor Fary 1950)

Let $c(q_i)$ be the external angle at q_i . Then $C(\Gamma) \ge 2\pi$ and "=" iff Γ is planar, convex. $C(\Gamma) \le 4\pi$ implies Γ is unknotted.

Variational Total Curvature (Allard-Almgren)

$$c(q) = \operatorname{vtc}(q) := \Big| \sum_{i=1}^{d} T_i \Big|$$

Variational Total Curvature (Allard-Almgren)

$$c(q) = \operatorname{vtc}(q) := \Big| \sum_{i=1}^{d} T_i \Big|$$

Maximal Total Curvature (Taniyama)

$$c(q) = \operatorname{tc}(q) := \sum_{1 \le i, j \le d} \operatorname{arccos}\langle T_i, -T_j \rangle$$

Variational Total Curvature (Allard-Almgren)

$$c(q) = \operatorname{vtc}(q) := \Big| \sum_{i=1}^{d} T_i \Big|$$

Maximal Total Curvature (Taniyama)

$$c(q) = \operatorname{tc}(q) := \sum_{1 \le i, j \le d} \operatorname{arccos}\langle T_i, -T_j \rangle$$

Cone Total Curvature (Gulliver-Y.)

$$c(q) = \operatorname{ctc}(q) := \sup_{e \in S^2} \sum_{i=1}^d \left(\frac{\pi}{2} - \operatorname{arccos}\langle T_i, e \rangle \right)$$

Net Total Curvature (Gulliver-Y.)

$$c(q) = \operatorname{ntc}(q) := \frac{1}{4} \int_{S^2} \left[\sum_{i=1}^d \chi_i(e) \right]^+ dA_{S^2}(e)$$

where $\chi_i = \mp 1$ on the hemispheres $HS^2(\pm T_1)$

Net Total Curvature (Gulliver-Y.)

$$c(q) = \text{ntc}(q) := \frac{1}{4} \int_{S^2} \left[\sum_{i=1}^d \chi_i(e) \right]^+ dA_{S^2}(e)$$

where $\chi_i = \mp 1$ on the hemispheres $HS^2(\pm T_1)$

Definition

Define net total curvature of Γ by

$$NTC(\Gamma) = \sum_{i=1}^{N} ntc(q_i) + \int_{\Gamma_{reg}} |k| ds$$

Crofton-like formula for NTC

Theorem 1 (Gulliver-Y.)

$$\mathrm{NTC}(\Gamma) = \frac{1}{2} \int_{\mathbb{S}^2} \mu(e) dA_{\mathbb{S}^2}(e)$$

where

$$\mu(e) = \sum_{q} \{ \text{nlm}^+(e,q) : q \text{ a vertex or a critical point of } \langle e, \cdot \rangle \}$$

and where

$$\operatorname{nlm}(e,q) = \frac{1}{2}[\operatorname{lmax}(\Gamma')(e,q) - \operatorname{lmin}(\Gamma')(e,q)].$$

▶ The value of μ is independent of the Euler circuit of the dounble cover Γ' of Γ .

- The value of μ is independent of the Euler circuit of the dounble cover Γ' of Γ.
- ► $nlm(e, q) = \frac{1}{2}[d^{-}(e, q) d^{+}(e, q)]$

- The value of μ is independent of the Euler circuit of the dounble cover Γ' of Γ.
- ► $nlm(e, q) = \frac{1}{2}[d^{-}(e, q) d^{+}(e, q)]$
- $\sum_{i=1}^{d} \chi_i(e) = d^-(e,q) d^+(e,q)$ which implies $ntc(q) = \frac{1}{2} \int_{S^2} [nlm(e,q)]^+ dA_{S^2}.$

- The value of μ is independent of the Euler circuit of the dounble cover Γ' of Γ.
- ► $nlm(e, q) = \frac{1}{2}[d^{-}(e, q) d^{+}(e, q)]$
- $\sum_{i=1}^{d} \chi_i(e) = d^-(e,q) d^+(e,q)$ which implies $ntc(q) = \frac{1}{2} \int_{S^2} [nlm(e,q)]^+ dA_{S^2}.$
- ▶ $\#\{p \in \Gamma : \langle e, p \rangle = s_0\} = 2 \sum_q \{\text{nlm}(e, q) : \langle e, q \rangle > s_0\}$ (cf. knot (Milnor))
- ▶ When $f: \Gamma \to \mathbb{R}^3$ not necessarily imbedding, NTC is defined using RHS of the formula. (cf. crossing can be dealt with.)

Crofton-like formula for Continuous Graphs

Theorem 2 (G.-Y.)

 Γ : continuous graph, embedded in \mathbf{R}^3 . Then

$$\mathrm{NTC}(\Gamma) = \frac{1}{2} \int_{S^2} \mu(e) dA_{S^2}(e)$$

where

$$NTC(\Gamma) = \sup_{P} NTC(P)$$

P: Γ-approximating polygonal graph and where

$$\mu(e) := \lim_{k \to \infty} \mu_{P_k}(e)$$

where P_k is a sequences of Γ -approximating graphs suitably refined for e.

Remark P' refines $P \Rightarrow NTC(P) \leq NTC(P')$.

Corollary (G.-Y.)

 Γ : continuous graph, with $NTC(\Gamma) < \infty$. Then Γ is tame, i.e. isotopic to a polyhedral graph.

Remark \exists tame graphs with NTC(Γ) = ∞ .

infimum realizing embeddings/immersions

Define

- (1)NTC($\{\Gamma\}$) = inf_{$f:\Gamma \to \mathbb{R}^3$} NTC(f) and (2)NTC($[\Gamma]$) = inf_{$f:\Gamma \to \mathbb{R}^3$} NTC(f) for an isotopy class $[\Gamma]$ of
- (2)NTC([I]) = $\inf_{f:\Gamma \to \mathbb{R}^3}$ NTC(f) for an isotopy class [I] of embeddings into \mathbb{R}^3 .

Theorem 3 (G.-Y.)

- (1) NTC($\{\Gamma\}$) is assumed by a mapping $f_0 : \Gamma \to \mathbf{R}$.
- (2) NTC($[\Gamma]$) is assumed by a mapping $f_1 : \Gamma \to \mathbf{R} \subset \mathbf{R}^3$ in the closure of the given isotopy class.
- (3) If $f_1: \Gamma \to \mathbf{R} \subset \mathbf{R}^3$ is in the closure of the given isotopy class with $\mathrm{NTC}(f_1) = \mathrm{NTC}([\Gamma])$, then for any $\delta > 0$ there is an embedding $f: \Gamma \to \mathbf{R}^3$ with $\mathrm{NTC}(f) \leq \mathrm{NTC}(f_1) + \delta$.

Trivalent Graphs

Define $B(f) := \frac{1}{2} \#\{\text{local extrema}\}\$ to be extended bridge number of $f: \Gamma \to \mathbb{R}^3$.

Theorem 4 (G.-Y.)

A trivalent Γ has $NTC(\Gamma) = \frac{1}{2}C(\Gamma')$ where Γ' is an Euler circuit of the double of Γ . Also we have $NTC(\{\Gamma\}) = \pi(2B(\{\Gamma\}) + \frac{k}{2})$ and $NTC([\Gamma]) = \pi(2B([\Gamma]) + \frac{k}{2})$.

Note a trivalent graph Γ with k vertices has $\chi(\Gamma) = -k/2$. **Example**: Γ^* the dual graph of one skelton of a triangulation of S^2 . Koebe-Andreev-Thurston says \exists a circle packing with the centers $= V(\Gamma^*)$. Then the circle-packing induced Γ^* has $B(\Gamma^*) = 1$ and $NTC(\Gamma^*) = \pi(2 - \chi(\Gamma^*))$.

Lowerbounds

List of Lower Bounds

NTC(
$$\{W_m\}$$
) = $\pi(2 + \lceil \frac{m}{2} \rceil)$
NTC($\{K_{2\ell}\}$) = $\pi\ell^2$
NTC($\{K_{2\ell+1}\}$) = $\pi\ell(\ell+1)$
NTC($\{K_{m,n}\}$) = $\pi\lceil \frac{mn}{2} \rceil$
NTC($\{\theta_m\}$) = $m\pi$. ($\theta_m \simeq K_{m,2}$)

Theorem 5 (G.-Y.)

 $f: \theta \to \mathbf{R}^3$ continuous embedding. Let $\Gamma = f(\theta)$

Then NTC(Γ) $\geq 3\pi$ with "=" iff Γ is planar, convex curve plus a straight chord.

And if NTC(Γ) < 4π , then Γ is standard.

Gulliver-Yamada arxiv:1101.2305.

To appear in Pacific Journal of Mathematics