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Theorem (Fenchel 1929, Milnor Fary 1950)
Let c(qi) be the external angle at g;.

Then C(I') > 2z and “=" iff I is planar, convex.
C(T") < 4rimplies I is unknotted.
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Cone Total Curvature (Gulliver-Y.)

d
c(q) = cte(q) := sup Z (g — arccos(T;, e))

eeS? i=1
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Generalizations

Net Total Curvature (Gulliver-Y.)

ela) = me(@) = 7 | [ZX, )| oAse(e)

where y; = ¥1 on the hemispheres HS?(+Ty)

Definition
Define net total curvature of I' by

N
NTC(IN) = ntc(q; +f |k|ds
(N =) nte(q) -

i=1



Crofton-like formula for NTC

Theorem 1 (Gulliver-Y.)

’
NTC(T) = f u(e)dAg: (e)
2 Js2
where
u(e) = Z{nlm*(e, q) : g a vertex or a critical point of (e, -)}
q

and where

nlm(e, q) = %[lmax(r’)(e, q) — Imin(I"")(e, q)].
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Comments for RHS of the formula

» The value of u is independent of the Euler circuit of the
dounble cover " of T'.

> nlm(e, q) = [d"(e.q) - d* (e, q)]

> S xi(e) = d (e,q) - d*(e,q)
which implies
nte(q) = %ﬁsz [nlm(e, )] T dAgz.

» #{p el :(e,p)= s} =2%4{nlm(e,q): e, q) > so}
(cf. knot (Milnor))

» When f : I — RS not necessarily imbedding, NTC is defined
using RHS of the formula. (cf. crossing can be dealt with.)



Crofton-like formula for Continuous Graphs

Theorem 2 (G.-Y.)
I': continuous graph, embedded in R3. Then

NTC(T) = fs u(e)oAs:(e)

where
NTC(I') = sup NTC(P)
P

P : I'-approximating polygonal graph and where

u(e) = Jim up,(e)

where Py is a sequences of [-approximating graphs suitably
refined for e.

Remark P’ refines P = NTC(P) < NTC(P’).



Corollary (G.-Y.)

I': continuous graph, with NTC(I') < co. Then T is tame, i.e.
isotopic to a polyhedral graph.

Remark 3 tame graphs with NTC(I") = co.



infimum realizing embeddings/immersions

Define

(1)NTC({}) = inf,.r_gs NTC(f) and

(2)NTC([']) = inft.r_,gs NTC(f) for an isotopy class [I'] of
embeddings into R3.

Theorem 3 (G.-Y.)

(1) NTC({I'}) is assumed by a mapping fy : [ — R.

(2) NTC([I]) is assumed by a mapping f; : I — R c R® in the
closure of the given isotopy class.

(3) If f; : T — R c R%is in the closure of the given isotopy class
with NTC(f;) = NTC([l']), then for any 6 > 0 there is an
embedding f : I — R® with NTC(f) < NTC(f;) + 6.



Trivalent Graphs

Define B(f) := } #{local extrema} to be extended bridge number
of f: T — RS

Theorem 4 (G.-Y.)

A trivalent I has NTC(I') = 1§C(F’) where [ is an Euler circuit of
the double of I'. Also we have NTC({I'}) = n(2B({I'}) + ¥) and
NTC([]) = =(2B([r]) + £).

Note a trivalent graph I with k vertices has x(I') = —k/2.
Example: ' the dual graph of one skelton of a triangulation of S2.
Koebe-Andreev-Thurston says 3 a circle packing with the centers
= V(I'"). Then the circle-packing induced ' has B(I'*) = 1 and
NTC(I™) = n(2 — x(I)).



Lowerbounds

List of Lower Bounds

NTC({Wn}) = 7T(2 +131)

NTC({KQ[}) = 7T€

NTC({Kars1}) = ml(£ + 1)

NTC({Km n}) = ﬂfm”1

NTC({0m}) = mr. (Om = Kin.2)

Theorem 5 (G.-Y.)

f : & — R3 continuous embedding. Let ' = f(6)

Then NTC(I") > 37 with “="iff I is planar, convex curve plus a

straight chord.
And if NTC(I) < 4n, then I is standard.
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