Every link has a (3,4)-diagram

Reiko Shinjo (Waseda University)

Complementary regions of a diagram

Assumptions

1) We do not consider diagrams

2) Diagrams are connected and reduced.

not reduced

Notations

D: a diagram of a link

 $p_n(D) := \# \text{ of } n\text{-sided regions of } D$

$$p_{\mathsf{odd}}(D) := \sum_{n : \mathsf{odd}} p_n(D)$$

Example

$$p_n(D) = \begin{cases} 2 & (n = 2) \\ 5 & (n = 3) \\ 1 & (n = 4) \end{cases}$$
 $p_{\text{odd}}(D) = 6$ 0 (otherwise)

Implication from Euler's formula

D: a link diagram (4-regular graph of S^2)

By Euler's formula v - e + f = 2, we have

$$2p_2(D) + p_3(D) =$$

 $8 + p_5(D) + 2p_6(D) + 3p_7(D) + \cdots$

Easy consequence

- 1) $p_2(D) \neq 0$ or $p_3(D) \neq 0$
- 2) $p_{\text{odd}}(D)$ is even.

Known results about 4-valent graphs in S²

$$D$$
: 4-regular simple graph on S^2 (link diagram s.t. $p_2(D) = 0$)

$$p_3 = 8 + p_5 + 2p_6 + 3p_7 + \cdots$$
 (*)

Theorem (Grunbaum 1969)

```
orall p_n \in N(n 
eq 4) satisfying (*), \exists p_4 \in N, \exists a knot diagram D s.t. p_n(D) = p_n \ (n > 3)
```

Theorem (Jeöng 1995)

$$orall p_n \in N(n
eq 4)$$
 satisfying $(*)$, $\exists p_4 \in N$, \exists a knot diagram D s.t. $p_n(D) = p_n \ (n \geq 3)$

Theorem (Enns 1982)

$$p_3=8,\; p_n=0\;(n\geq 5),\; \forall p_4\in N,$$
 $\exists \; \text{a link diagram}\; D$ s.t. $p_n(D)=p_n\;(n\geq 3)$

$(a_1,a_2,a_3,...)$ -diagram

 (a_1, a_2, a_3, \ldots) : a strictly increasing sequence of integers (finite/infinite, $a_1 \geq 2$)

Definition 1

 $D: (a_1, a_2, a_3, \ldots)$ -diagram

 \iff Each face of D is an a_n -gon for some n.

Example (diagrams of a figure eight knot)

(2,3,4)-diagram, (2,3,4,5)-diagram, ...

(2,3)-diagram

(3,4)-diagram

Theorem [A-S-T]

- 1) Every link has a (2,4,5)-diagram.
- 2) Every link has a (3,4,n)-diagram $(n \ge 5)$.

Proof of (1) (n=5)

L: link

D: diagram of L

Q(m,n): (3,4)-diagram of T

Main Theorem

Every link has a (3,4)-diagram.

Idea of the proof

Sketch proof

 $(\sigma_1, \sigma_2, \dots, \sigma_{p-1})^q$: toric braid of type (p, q)

toric braid of type(5,6)

quasitoric braid of type (5,6)

Theorem (Manturov 2002)

Every link can be represented as a closed quasitoric braid.

L: link

diagram of L represented as a closed quasitoric braid

 D^\prime : diagram of L obtaided from a closed quasitoric braid of type (p,q)

 D^\prime : diagram of L obtaided from a closed quasitoric braid of type (p,q)

Q(5,13)

Theorem (A-M-S)

(1) \exists infinitely many knots which have a (2, n)-diagram.

 $(n \not\equiv 0 \pmod{2})$

(2) \exists infinitely many knots which have a (3, n)-diagram.

 $(n \not\equiv 0 \pmod{3})$

Open problems

- Does every link have a (2,4,n)-diagram for some $n \geq 6$?
- Does every link have a S-diagram for some $S = (a_1, a_2, a_3)$ which does not contain 4?