Quantization of the

 crossing number of a knot diagram and quantities of the crossing points (joint work with Akio Kawauchi)Ayaka Shimizu (OCAMI)

Contents

* § 1. Warping degree
* § 2. Warping crossing polynomial
* §3. State sum
* § 4. Orientations of plane curves

§ 1. Warping degree

*Warping crossing point
*Warping degree

§ 1. Warping degree

$\left.\begin{array}{l}\text { D: an oriented knot diagram on } S^{2} \\ b: \text { a base point of } D\end{array}\right\} D_{b}$

§ 1. Warping degree

A crossing point p of D is a warping crossing point of D_{b} if we come to p as an under-crossing first when we go along D by starting from b.

§ 1. Warping degree

The warping degree $d\left(D_{b}\right)$ of D_{b} is the number of warping crossing points of D_{b}.

$d\left(D_{b}\right)=1$

$d\left(D_{a}\right)=2$

§ 2. Warping crossing polynomial

*Warping polynomial $W_{D}(t)$
*Warping crossing polynomial $X_{D}(t)$
§ 2. Warping crossing polynomial

The warping polynomial of D

$$
W_{D}(t)=\sum_{\substack{e: \text { an edge } \\ \text { of } D}} t^{d(e)}(d(e)=d(D b), b \in e)
$$

Reference: The warping polynomial of a knot diagram, A. Shimizu, arXiv:1109.5898
§ 2. Warping crossing polynomial

The warping crossing polynomial of D

$$
X_{D}(t)=\sum_{\substack{d(c) \\ \\ \text { c: a crossing } \\ \\ \text { point of } D}}^{d d(c)=d(D b), b \in e)}
$$

crossing weight
§ 2. Warping crossing polynomial

Proposition 1.
 $$
X_{D}(t)=\frac{W_{D}(t)}{1+t}
$$

Proof. since $\#\left(\xrightarrow[l]{k{ }^{k+1}}\right)=\#\left(\left.\frac{k+1}{} \right\rvert\, \xrightarrow{k}\right)$

$$
\begin{array}{r}
\text { and } \#(\xrightarrow[\mathrm{l}]{\mathrm{k}})=\#\left(\left.\frac{k+1}{\mathrm{l}} \right\rvert\, \rightarrow\right), \\
W_{D}(t)=\sum_{c} t^{d(c)}+\sum_{c} t^{d(c)+1}=(1+t) X_{D}(t),
\end{array}
$$

§ 2. Warping crossing polynomial

Proposition 2.

Let D be an oriented knot diagram with the crossing number $c(D) \geqq 1$. We have $X_{D}(1)=c(D)$.

§ 2. Warping crossing polynomial
Let D be an oriented knot diagram with $c(D)=n \geqq 1$.

Proposition 3.

-D: D with orientation reversed D^{*} : the mirror image of D

$$
X_{-D}(t)=X_{D *}(t)=t^{n-1} X_{D}\left(t^{-1}\right) .
$$

§ 2. Warping crossing polynomial

Proposition 4.

An oriented knot diagram D with $c(D)=n \geqq 1$ is alternating if and only if $X_{D}(t)=n t^{d}(d=0,1,2, \ldots)$.

§ 2. Warping crossing polynomial

Proposition 5.

An oriented knot diagram D with $c(D)=n \geqq 1$ is a one-bridge diagram if and only if $X_{D}(t)=1+t+t^{2}+\ldots+t^{n-1}$.

§ 3. State sum

*State sum

*Crossing change

knot projection

states
 for C

The state sum

$$
Y_{c}(t)=\sum_{\substack{\text { Dis state } \\ \text { forc }}} X_{D}(t) .
$$

Example.

$$
\begin{aligned}
Y_{\widehat{(B)}}(t) & =X_{\overparen{(Q)}}(t)+X_{(\overparen{\delta})}(t)+X_{(\mathscr{O}}(t)+\cdots+X_{(\overparen{O})}(t) \\
& =(4 t)+\left(1+\mathrm{t}+2 t^{2}\right)+\left(2 t+2 t^{2}\right)+\cdots+\left(4 t^{2}\right) \\
& =8+24 t+24 t^{2}+8 t^{3}=8(1+t)^{3}
\end{aligned}
$$

Theorem 6.

Let C be an oriented knot projection with n crossings ($n \geqq 1$). Then we have

$$
Y_{C}(t)=2 n(1+t)^{n-1} .
$$

Remark. $\quad Y_{-c}(t)=Y_{c}(t)$.

Lemma 7.

$$
\sum_{\substack{D: \text { a state } \\ \text { for } C}} W_{D}(t)=2 n(1+t)^{n}
$$

Proof of Lemma 7.

C: an oriented knot projection e : an edge of C

We can replace all the double points with crossing points so that e has m warping crossing points ($m=0,1, \ldots, n$) in $n C m$ ways.

Hence

$\sum_{\text {a state }} W_{D}(t)=2 n \times n C_{0}+2 n \times{ }_{n} C_{1} t+2 n \times n C_{2} t^{2}+\ldots+2 n \times n C_{n} t^{n}$
D: a state for C

$$
=2 n(1+t)^{n} .
$$

\square

Proposition 8.

Let D be an oriented knot diagram, and let D' be the diagram obtained from D by a crossing change. Then,

$$
X_{D}(t)=\frac{A+B}{1+t}, \quad X_{D}(t)=\frac{t A+t^{-1} B}{1+t}
$$

where A and B áre polynomials.

Corollary 9.

$\left|\operatorname{span} X_{D},(t)-\operatorname{span} X_{D}(t)\right| \leqq 2$.

$\operatorname{span} X_{D}(t)=0$

$\operatorname{span} X_{D},(t)=2$

§ 4. Orientations of plane curves

§ 4. Orientations

The warping degree $d(D)$
of D is the minimal degree of $X_{D}(t)$.
Theorem 10(S. 2010).
$d(D)+d(-D) \leqq c(D)+1$
" $=$ " $\Leftrightarrow D$ is alternating and $c(D) \geqq 1$.
Corollary 11.
Let D be an oriented alternating knot diagram with non-zero even crossings. Then $d(D) \neq d(-D)$.

Theorem 12.

Every based closed transversely intersected plane curve (knot projection) C_{b} on R^{2} has a canonical orientation.

§ 4. Orientations

Proof of Theorem 12.

(1) We apply C the checkerboard coloring such that the outer region is colored white. Then C can be lifted to a unique alternating knot diagram D as follows:

Example.

§ 4. Orientations

(2)•n:even

Give D the orientation such that $d(D)<d(-D)$. Thus, C is oriented.

$$
\begin{gathered}
X_{D}(t)=4 t \\
d(D)=1
\end{gathered}
$$

$X_{-D}(t)=4 t^{2}$
$\mathrm{d}(-\mathrm{D})=2$

§ 4. Orientations

- n:odd

From D, we can obtain an alternating diagram D' with even crossings as follows:

Example.

Then D^{\prime}, D, and C are oriented.

§ 4. Orientations

Corollary 13.

For every based oriented curve $C b$, there is no orientation-preserving, base-point preserving homeomorphism $\boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{2}$ sending Cb to -Cb .

Thank you!

