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§1. Warping degree 



D: an oriented knot diagram on S2 

b: a base point of D Db  }  
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A crossing point p of D is a warping 
crossing point of Db if we come to p as an 
under-crossing first when we go along D 
by starting from b.  

§1. Warping degree 



The warping degree d(Db) of Db is the 
number of warping crossing points of Db. 
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§2. Warping crossing polynomial 

Warping polynomial WD(t) 

 

Warping crossing polynomial XD(t) 



The warping polynomial of D 
 

WD(t)= Σ t          (d(e)=d(Db), b∈e) 
d(e) 

 e: an edge  
      of D 

Reference: The warping polynomial of a knot diagram, 
A. Shimizu, arXiv:1109.5898 
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The warping crossing polynomial of D 
 

XD(t)= Σ t          (d(c)=d(Db), b∈e) 

d(c) 

 c: a crossing  
     point of D 

crossing 

     weight 

§2. Warping crossing polynomial 



Proposition 1.  
XD(t)=  

WD(t)  

1+t  

Proof. 

Since   #(          )=#(           )   

and    #(          )=#(           ),   

WD(t)= Σ t    + Σ  t      =(1+t)XD(t). d(c) d(c)+1 

c c 

k+1 k+1 

k+1 

k k 

k 

□ 
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Proposition 2.  

Let D be an oriented knot diagram with the 

crossing number c(D)≧1. We have XD(1)=c(D).   
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Proposition 3.  
knot diagram with c(D)=n≧1.  

-D: D with orientation reversed  

D*: the mirror image of D 

X-D(t)=XD*(t)=tn-1XD(t-1). 

Let D be an oriented 
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An oriented knot diagram D with c(D)=n≧1 is 

alternating if and only if XD(t)=nt   (d=0,1,2,…).   

Proposition 4.  

d 
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Proposition 5.  

An oriented knot diagram D with c(D)=n≧1 is 
a one-bridge diagram if and only if 
XD(t)=1+t+t  +…+t    . 2 n-1 
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§3. State sum   

State sum 

 

Crossing change 



knot 
projection 

states 
for C 
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§3. State sum 



The state sum 

         YC(t)= Σ XD(t). 
 D: a state  
      for C 

Example. 

§3. State sum 



Theorem 6.  

Let C be an oriented knot projection with 
n crossings (n≧1). Then we have 

                            YC(t)=2n(1+t)n-1. 

Lemma  7.  

 Σ WD(t)=2n(1+t)n. 
 D: a state  
      for C 

§3. State sum 

Remark.     Y-C(t)=YC(t) .   



Proof of Lemma 7.  

We can replace all the double points with crossing points so 
that e has m warping crossing points (m=0,1,…,n) in nCm ways. 

Hence   

   Σ WD(t)=2n×nC0+2n×nC1t+2n×nC2t2+…+2n×nCntn 

                  =2n(1+t)n. 

C: an oriented  knot projection 

e: an edge of C 

 D: a state  
      for C 

§3. State sum 

□  



Proposition 8.  

Let D be an oriented knot diagram, and let D’ 
be the diagram obtained from D by a 
crossing change. Then,  

XD(t)= XD’(t)= 
A+B tA+t-1B 
1+t     , 1+t      , 

where A and B are polynomials.   
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Corollary 9.  

| span XD’(t)-span XD(t) |≦2. 

§3. State sum 

span XD(t) =0 span XD’(t) =2 



§4. Orientations of 

plane curves 



The warping degree d(D)  

of D is the minimal degree of XD(t). 

               d(D)+d(-D)≦c(D)+1 
“=“⇔D is alternating and c(D)≧1. 

Theorem 10(S. 2010). 

Corollary 11. 

Let D be an oriented alternating knot diagram 
with non-zero even crossings. Then d(D)≠d(-D). 
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Theorem 12. 

Every based closed transversely 
intersected plane curve (knot 
projection) Cb on R2 has a 
canonical orientation.  
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Proof of Theorem 12. 

①We apply C the checkerboard coloring 
such that the outer region is colored white. 
Then C can be lifted to a unique alternating 
knot diagram D as follows:  

Example. 
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②・n:even 

Give D the orientation such that d(D)<d(-D). 
Thus, C is oriented.   

§4. Orientations 

XD(t)=4t X-D(t)=4t2 

d(D)=1 d(-D)=2 



  ・n:odd 
From D, we can obtain an alternating 
diagram D’ with even crossings as follows: 

  Example. 

Then D’, D, and C are oriented.       □ 
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§4. Orientations 

Corollary 13.  

For every based oriented curve Cb, there 
is no orientation-preserving, base-point 
preserving homeomorphism R2 →R2 
sending Cb to –Cb.   



Thank you! 


