Quantization of the crossing number of a knot diagram and quantities of the crossing points (joint work with Akio Kawauchi)

Ayaka Shimizu (OCAMI)

Contents

* § 1. Warping degree

- * § 2. Warping crossing polynomial
- * § 3. State sum
- * § 4. Orientations of plane curves

§ 1. Warping degree

*Warping crossing point

*Warping degree

D: an oriented knot diagram on S² } b: a base point of D

A crossing point *p* of *D* is a warping crossing point of *D*^b if we come to *p* as an under-crossing first when we go along *D* by starting from *b*.

The warping degree $d(D_b)$ of D_b is the number of warping crossing points of D_b .

*Warping polynomial $W_D(t)$

*Warping crossing polynomial $X_D(t)$

The warping polynomial of D

$$W_{D}(t) = \sum_{\substack{e: \text{ an edge} \\ of D}} t^{d(e)} (d(e) = d(Db), b \in e)$$

Reference: The warping polynomial of a knot diagram, A. Shimizu, arXiv:1109.5898

The warping crossing polynomial of D

$$X_{D}(t) = \sum_{c \in a} t^{d(c)} (d(c) = d(D_{b}), b \in C$$

c: a crossing point of D

$$(d(c)=d(D_b), b \in e)$$

 $d(D_b)=1$ E D $X_{E}(t) = 1 + t + t^{2}$ $X_D(t) = 3t$

crossing weight

Proposition 1. $X_D(t) = \frac{W_D(t)}{1+t}$

Proof. Since $\#\left(\frac{k}{l} \xrightarrow{k+1}\right) = \#\left(\frac{k+1}{l} \xrightarrow{k}\right)$ and $\#\left(\frac{k}{l} \xrightarrow{k}\right) = \#\left(\frac{k+1}{l} \xrightarrow{k}\right)$, $W_D(t) = \sum_{c} t^{d(c)} + \sum_{c} t^{d(c)+1} = (1+t)X_D(t)$.

Proposition 2.

Let D be an oriented knot diagram with the crossing number $c(D) \ge 1$. We have $X_D(1)=c(D)$.

Let D be an oriented knot diagram with $c(D)=n \ge 1$.

Proposition 3.

-D: D with orientation reversed

D*: the mirror image of D $X_{-D}(t)=X_{D*}(t)=t^{n-1}X_{D}(t^{-1}).$

-D 0 $X_D(t) = 2t + t^2 + t^3$ $X_{-D}(t) = 1 + t + 2t^2$

Proposition **4**.

An oriented knot diagram D with $c(D)=n \ge 1$ is alternating if and only if $X_D(t)=nt^d$ (d=0,1,2,...).

Proposition 5.

An oriented knot diagram D with $c(D)=n \ge 1$ is a one-bridge diagram if and only if $X_D(t)=1+t+t^2+...+t^{n-1}$.

D E $X_F(t) = 1 + t + t^2 + t^3$ $X_D(t) = 1$ $X_{F}(t) = 1 + t + t^{2}$

*State sum

*Crossing change

knot projection

states for C

§ 3. State sum

The state sum

$$Y_{C}(t) = \sum_{\substack{D: a \text{ state} \\ \text{for } C}} X_{D}(t).$$

Example.

 $Y_{\textcircled{O}}(t) = X_{\textcircled{O}}(t) + X_{\textcircled{O}}(t) + X_{\textcircled{O}}(t) + \cdots + X_{\textcircled{O}}(t)$ = (4t)+(1+t+2t²)+(2t+2t²)+...+(4t²) = 8+24t+24t²+8t³=8(1+t)³

<u>Theorem 6.</u>

Let C be an oriented knot projection with $n \operatorname{crossings}(n \ge 1)$. Then we have $Y_{c}(t)=2n(1+t)^{n-1}$.

Remark. $Y_{-c}(t)=Y_{c}(t)$.

Proof of Lemma 7.

C: an oriented knot projection e: an edge of C

We can replace all the double points with crossing points so that *e* has *m* warping crossing points (m=0,1,...,n) in nCm ways.

 $\sum_{\substack{D: \text{ a state}\\ \text{for } C}} W_D(t) = 2n \times nC_0 + 2n \times nC_1 t + 2n \times nC_2 t^2 + \dots + 2n \times nC_n t^n$

§ 3. State sum

Proposition 8.

Let D be an oriented knot diagram, and let D' be the diagram obtained from D by a crossing change. Then,

 $X_{D}(t) = \frac{A+B}{1+t}, \qquad X_{D'}(t) = \frac{tA+t^{-1}B}{1+t}$ where A and B are polynomials.

Corollary 9.

$$| \operatorname{span} X_{D'}(t) \operatorname{span} X_{D}(t) | \leq 2.$$

§ 4. Orientations of plane curves

The warping degree d(D)of D is the minimal degree of $X_D(t)$.

Theorem 10(S. 2010).

 $d(D)+d(-D) \leq c(D)+1$ "="\Limits D is alternating and $c(D) \geq 1$.

Corollary 11.

Let D be an oriented alternating knot diagram with non-zero even crossings. Then $d(D)\neq d(-D)$.

Theorem 12.

Every based closed transversely intersected plane curve (knot projection) C_b on **R**² has a canonical orientation.

Proof of Theorem 12.

①We apply C the checkerboard coloring such that the outer region is colored white. Then C can be lifted to a unique alternating knot diagram D as follows:

Give D the orientation such that d(D) < d(-D). Thus, C is oriented.

d(D)=1

 $X_{-D}(t)=4t^{2}$ d(-D)=2

n:odd From D, we can obtain an alternating diagram D' with even crossings as follows:

Corollary 13.

For every based oriented curve C_b, there is no orientation-preserving, base-point preserving homeomorphism $\mathbf{R}^2 \rightarrow \mathbf{R}^2$ sending C_b to $-C_b$.

Thank you!