Seifert fibered surgeries with distinct primitive/Seifert positions

Kimihiko Motegi

joint with

Mario Eudave-Muñoz and Katura Miyazaki

Let (K, m) be a *Seifert surgery*, a pair of a knot $K \subset S^3$ and an integer m such that K(m) is a Seifert fiber space.

 $\gamma = m \mu + \lambda \leftrightarrow m$

Let (K, m) be a *Seifert surgery*, a pair of a knot $K \subset S^3$ and an integer m such that K(m) is a Seifert fiber space.

For many Seifert surgeries (K, m), K can be "nicely" embedded in a genus 2 Heegaard surface of S^3 ; we call such a nice position a primitive/Seifert position.

Let (K, m) be a *Seifert surgery*, a pair of a knot $K \subset S^3$ and an integer m such that K(m) is a Seifert fiber space.

For many Seifert surgeries (K, m), K can be "nicely" embedded in a genus 2 Heegaard surface of S^3 ; we call such a nice position a primitive/Seifert position.

Question

• Does every Seifert surgery (K, m) have a primitive/Seifert position?.

Let (K, m) be a *Seifert surgery*, a pair of a knot $K \subset S^3$ and an integer m such that K(m) is a Seifert fiber space.

For many Seifert surgeries (K, m), K can be "nicely" embedded in a genus 2 Heegaard surface of S^3 ; we call such a nice position a primitive/Seifert position.

Question

- Does every Seifert surgery (K, m) have a primitive/Seifert position?.
- If (K, m) has such a position, then is it unique?

Let K be a knot contained in a genus 2 Heegaard surface F which splits S^3 into two genus 2 handlebodies H and H', i.e. $S^3 = H \cup_F H'$.

Let H[K] be a manifold obtained from H by attaching a 2-handle to H along K.

Let H[K] be a manifold obtained from H by attaching a 2-handle to H along K.

Let H'[K] be a manifold obtained from H' by attaching a 2-handle to H' along K.

Let H[K] be a manifold obtained from H by attaching a 2-handle to H along K.

Let H'[K] be a manifold obtained from H' by attaching a 2-handle to H' along K.

Suppose:

H[K] is a solid torus $\leftrightarrow K$ is primitive w.r.t. Hand H'[K] is a solid torus $\leftrightarrow K$ is primitive w.r.t. H'.

Kimihiko Motegi joint with Mario Eudave-M Seifert fibered surgeries with distinct primitive

Then by performing Dehn surgery on K along the surface slope m, we obtain a 3-manifold $K(m) = H[K] \cup H'[K]$, which is a lens space.

This construction is called primitive/primitive construction [Berge].

Then by performing Dehn surgery on K along the surface slope m, we obtain a 3-manifold $K(m) = H[K] \cup H'[K]$, which is a lens space.

This construction is called primitive/primitive construction [Berge]. We say that (K, m) has a primitive/primitive position (F, K, m) (K,m) is a lens surgery

 \Rightarrow

 \Rightarrow

(K,m) has a primitive/primitive position

(K,m) belongs to Berge's list of lens surgeries

(K,m) is a lens surgery

 \Rightarrow

- (K,m) has a primitive/primitive position
- \Rightarrow **YES** [Berge], [Greene]
- (K,m) belongs to Berge's list of lens surgeries

(K,m) is a lens surgery

 \Rightarrow open

- (K,m) has a primitive/primitive position
- \Rightarrow **YES** [Berge], [Greene]
- (K,m) belongs to Berge's list of lens surgeries

• Does every lens surgery (K, m) have a primitive/primitive position?

- Does every lens surgery (K,m) have a primitive/primitive position?
- \bullet If a lens surgery (K,m) has a primitive/primitive position, then is such a position unique?

• Does every lens surgery (K,m) have a primitive/primitive position?

 \bullet If a lens surgery (K,m) has a primitive/primitive position, then is such a position unique?

Berge announces that primitive/primitive position for a lens surgery (K, m) is "essentially" unique.

Suppose:

H[K] is a solid torus $\leftrightarrow K$ is primitive w.r.t. Hand H'[K] is a Seifert fiber space $\leftrightarrow K$ is Seifert w.r.t. H'. Then by performing Dehn surgery on K along the surface slope m, we obtain a 3-manifold $K(m) = H[K] \cup H'[K]$, which is a Seifert fiber space or a connected sum of lens spaces.

This construction is called primitive/Seifert construction [Dean]

Then by performing Dehn surgery on K along the surface slope m, we obtain a 3-manifold $K(m) = H[K] \cup H'[K]$, which is a Seifert fiber space or a connected sum of lens spaces.

This construction is called primitive/Seifert construction [Dean] We say that (K, m) has a primitive/Seifert position (F, K, m)

• Does every lens surgery (K,m) have a primitive/Seifert position?

- Does every lens surgery (K,m) have a primitive/Seifert position?
- If a Seifert surgery (K, m) has a primitive/Seifert position, then is such a position unique?

Existence problem

There are infinitely many Seifert surgeries each of which does not have a primitive/Seifert position.

- [Mattman-Miyazaki-M], [Deruelle-Miyazaki-M], [Teragaito]

Existence problem

There are infinitely many Seifert surgeries each of which does not have a primitive/Seifert position.

- [Mattman-Miyazaki-M], [Deruelle-Miyazaki-M], [Teragaito]

The simplest example is (P(-3,3,5),1).

Existence problem

There are infinitely many Seifert surgeries each of which does not have a primitive/Seifert position.

- [Mattman-Miyazaki-M], [Deruelle-Miyazaki-M], [Teragaito]

The simplest example is (P(-3,3,5),1).

Idea: If a Seifert surgery (K, m) has a primitive/Seifert position, then K is strongly invertible.

On the contrary, knots in the above examples are not strongly invertible.

If a Seifert surgery (K, m) has a primitive/Seifert position, then is such a position unique?

If a Seifert surgery (K, m) has a primitive/Seifert position, then is such a position unique?

Let (K, m) be a Seifert surgery which has primitive/Seifert positions (F_1, K_1, m) and (F_2, K_2, m) ; F_i is a genus 2 Heegaard surface and $K_i \subset F$ is isotopic to K in S^3 .

If a Seifert surgery (K, m) has a primitive/Seifert position, then is such a position unique?

Let (K, m) be a Seifert surgery which has primitive/Seifert positions (F_1, K_1, m) and (F_2, K_2, m) ; F_i is a genus 2 Heegaard surface and $K_i \subset F$ is isotopic to K in S^3 .

We say that two primitive/Seifert positions (F_1, K_1, m) and (F_2, K_2, m) are the same if there is an orientation preserving diffeomorphism f of S^3 satisfying $f(F_1) = F_2$ and $f(K_1) = K_2$.

If a Seifert surgery (K, m) has a primitive/Seifert position, then is such a position unique?

Let (K, m) be a Seifert surgery which has primitive/Seifert positions (F_1, K_1, m) and (F_2, K_2, m) ; F_i is a genus 2 Heegaard surface and $K_i \subset F$ is isotopic to K in S^3 .

We say that two primitive/Seifert positions (F_1, K_1, m) and (F_2, K_2, m) are the same if there is an orientation preserving diffeomorphism f of S^3 satisfying $f(F_1) = F_2$ and $f(K_1) = K_2$.

In other words, there exists an element f in Goeritz group sending K_1 to $K_2; \label{eq:K2}$

If a Seifert surgery (K, m) has a primitive/Seifert position, then is such a position unique?

Let (K, m) be a Seifert surgery which has primitive/Seifert positions (F_1, K_1, m) and (F_2, K_2, m) ; F_i is a genus 2 Heegaard surface and $K_i \subset F$ is isotopic to K in S^3 .

We say that two primitive/Seifert positions (F_1, K_1, m) and (F_2, K_2, m) are the same if there is an orientation preserving diffeomorphism f of S^3 satisfying $f(F_1) = F_2$ and $f(K_1) = K_2$.

In other words, there exists an element f in Goeritz group sending K_1 to K_2 ;

otherwise they are distinct.

Twisted torus knots

Dean introduced twisted torus knots, which are naturally embedded in a genus 2 Heegaard surface.

Twisted torus knots

Dean introduced twisted torus knots, which are naturally embedded in a genus 2 Heegaard surface.

There are infinitely many twisted torus knots in primitive/Seifert positions.

Guntel's family

Recently Guntel gave an infinite family of Seifert surgeries having distinct primitive/Seifert positions.

Guntel's family

Recently Guntel gave an infinite family of Seifert surgeries having distinct primitive/Seifert positions.

Idea (along an example):

(1) Among Dean's twisted torus knots Guntel finds a pair of twisted torus knots K(17, 5, 2, -1), K(18, 5, 3, -1) in primitive/Seifert positions, which have the same surface slope 81 and also the same resulting Seifert fiber space $S^2(2, 3, 5)$.

Their Seifert parts are distinct, hence their primitive/Seifert positions are also distinct.

Guntel's family

Recently Guntel gave an infinite family of Seifert surgeries having distinct primitive/Seifert positions.

Idea (along an example):

(1) Among Dean's twisted torus knots Guntel finds a pair of twisted torus knots K(17, 5, 2, -1), K(18, 5, 3, -1) in primitive/Seifert positions, which have the same surface slope 81 and also the same resulting Seifert fiber space $S^2(2, 3, 5)$.

Their Seifert parts are distinct, hence their primitive/Seifert positions are also distinct.

(2) Prove that K(17, 5, 2, -1) and K(18, 5, 3, -1) are actually isotopic in S^3 using conjugacy of elements in the braid group.

Montesinos trick

 $\mathcal{B}(A, B, C)$

 $\mathcal{B}(A, B, C) \cup R(\infty)$

Suppose that A = R(l), B = R(m, -l), C = R(-n, 2, m - 1, 2, 0).

Then $\mathcal{B}(A, B, C) \cup R(\infty)$ is a trivial knot in S^3 .

 $p: S^3 \to S^3$: two-fold branched covering branched along $\mathcal{B}(A, B, C) \cup R(\infty)$. $K = K(l, m, n) = p^{-1}(\kappa)$ is a knot in S^3 (upstairs).

 $\mathcal{B}(A, B, C) \cup R(\mathbf{0})$ is a Montesinos link with three rational tangles.

DIAGRAM. Montesinos trick

Since $\mathcal{B}(A, B, C) \cup R(0)$ is a Montesinos link, $K(\gamma_0)$ is a Seifert fiber space.

 $\tau_{\infty} = \mathcal{B}(A, B, C) \cup R(\infty)$

S: 2-sphere bounding 3-balls Q_1 and Q_2 . $(Q_i, Q_i \cap \tau_{\infty})$ is a 3-string trivial tangle.

 $\tau_{\infty} = \mathcal{B}(A, B, C) \cup R(\infty)$

S: 2-sphere bounding 3-balls Q_1 and Q_2 . $(Q_i, Q_i \cap \tau_{\infty})$ is a 3-string trivial tangle.

$$\Rightarrow S^3 = \widetilde{Q_1} \cup_{\widetilde{S}} \widetilde{Q_2}, \quad K \subset \widetilde{S}.$$

 \overline{S} is a genus two Heegaard surface carrying K.

Kimihiko Motegi joint with Mario Eudave-M Seifert fibered surgeries with distinct primitive

Primitive/Seifert postion

 $\tau_{\infty} = \mathcal{B}(A, B, C) \mathsf{U} \mathsf{R}(\infty)$

 (\widetilde{S}, K, m) is a primitive/Seifert position of (K, m).

 $\tau_{\infty} = \mathcal{B}(A, B, C) \cup R(\infty)$

S': 2-sphere bounding 3-balls Q'_1 and Q'_2 . $(Q'_i, Q'_i \cap \tau_{\infty})$ is a 3-string trivial tangle.

 $\tau_{\infty} = \mathcal{B}(A, B, C) \cup R(\infty)$

S': 2-sphere bounding 3-balls Q'_1 and Q'_2 . $(Q'_i, Q'_i \cap \tau_{\infty})$ is a 3-string trivial tangle.

$$\Rightarrow S^3 = \widetilde{Q'_1} \cup_{\widetilde{S'}} \widetilde{Q'_2}, \quad K \subset \widetilde{S}.$$

 $\widetilde{S'}$ is a genus two Heegaard surface carrying K.

Kimihiko Motegi joint with Mario Eudave-M Seifert fibered surgeries with distinct primitive

Primitive/Seifert postion

 $\tau_{\infty} = \mathcal{B}(A, B, C) \cup R(\infty)$

 (\widetilde{S}', K, m) is a primitive/Seifert position of (K, m).

Now we have two primitive/Seifert positions:

$$(\widetilde{S}, K, m)$$
 and (\widetilde{S}', K, m) .

Now we have two primitive/Seifert positions:

$$(\widetilde{S},K,m)$$
 and (\widetilde{S}',K,m) .

We need to show that they are distinct .

Let (F, K, m) be a primitive/Seifert position for (K, m).

Let (F, K, m) be a primitive/Seifert position for (K, m).

Assume:

K is primitive w.r.t. V, i.e. V[K] is a solid torus

K is Seifert w.r.t. W, i.e. W[K] is a Seifert fiber space $D^2(p,q)$.

Let (F, K, m) be a primitive/Seifert position for (K, m).

Assume:

K is primitive w.r.t. V, i.e. $\boldsymbol{V}[K]$ is a solid torus

K is Seifert w.r.t. W, i.e. W[K] is a Seifert fiber space $D^2(p,q)$.

Define: $i(F, K, m) = \{p, q\}$

Let (F, K, m) be a primitive/Seifert position for (K, m).

Assume:

K is primitive w.r.t. V, i.e. V[K] is a solid torus

K is Seifert w.r.t. W, i.e. W[K] is a Seifert fiber space $D^2(p,q)$.

Define: $i(F, K, m) = \{p, q\}$

Lemma

Two primitive/Seifert positions (F_1, K_1, m) and (F_2, K_2, m) for a Seifert fibered surgery (K, m) are the same \Rightarrow $i(F_1, K_1, m) = i(F_2, K_2, m).$

Proof:

$$D^{2}(p,q) \cong D^{2}(p',q') \implies \{p, q\} = \{p', q'\} \\ \implies i(F_{1}, K_{1}, m) = i(F_{2}, K_{2}, m)$$

Kimihiko Motegi joint with Mario Eudave-M Seifert fibered surgeries with distinct primitive

Hence (\tilde{S}, K, m) and (\tilde{S}', K, m) are distinct primitive/Seifert positions for (K, m).

Twisted torus knots K(p, q, p + q, n)

Choose twisted torus knots K(p,q,p+q,n) ($|p+q| \neq 1$).

Theorem

- $K(p,q,p+q,n)(pq+n(p+q)^2)$ is a Seifert fiber space $S^2(|p|, |q|, |n|)$.
- ② For each relatively prime integers p, q and n (|n| ≥ 2), K(p, q, p + q, n) has distinct primitive/Seifert positions.

Since we can choose K(p,q,p+q,n) so that $S^3 - K(p,q,p+q,n)$ has an arbitrarily large volume, we have:

Corollary

For any r > 0, there is a Seifert surgery (K, m) on a hyperbolic knot K such that

(K,m) has two distinct primitive/Seifert positions, and

lleft Vol(K) > r.

Questions

Suppose: (K,m) has more than one primitive/Seifert position

• Can we explain such a phenomenon geometrically?

Questions

Suppose: (K,m) has more than one primitive/Seifert position

• Can we explain such a phenomenon geometrically?

• How many such positions can it have?

Questions

Suppose: (K,m) has more than one primitive/Seifert position

• Can we explain such a phenomenon geometrically?

- How many such positions can it have?
- At most three?

