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Abstract

A topological model of prion proteins (PrP¢, PrP>¢) which
we call a prion-tangle is proposed to explain some tangle
properties of prion proteins. We show that two splitted
prion-tangles can be changed into a non-split prion-
tangle with the given prion-tangles contained by a one-
crossing change.

We also determine for every n>1 that the minimal
crossing number of n-string non-split prion-tangles is
2n or 2n-2, respectively, according to whether or not
we count the assumption that the loop system is a
trivial link.
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1. Introduction
Prion Precursor Protein
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From:
K. Yamanouchi & J. Tateishi Editors, Slow Virus Infection and Prion (in
Japanese), Kindaishuppan Co. Ltd. (1995) .
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Some points of S. B. Prusiner’s theory are:

(1) By losing the N-terminal region, Prion precursor
protein changes into Cellular PrP (PrP¢) or Scrapie PrP
(PrP>¢), and a-helices change into B-sheets.

(2) The linear structures of PrP¢and PrP>3¢ are the same,
so that the conformations of PrP° and PrP3¢ may differ.
(3) There is one S-S combination.

@2Z. Huang et al., Proposed three-dimensional Structure for the
cellular prion protein, Proc. Natl. Acad. Sci. USA, 91(1994),
7139-7143.

@ K. Basler et al., Scrapie and cellular PrP isoforms are encoded
by the same chromosomal gene, Cell 46(1986), 417-428.



Definition. A prion-string is a spatial graph
K=I(K)Ua(K) inthe upper half space H3
consisting of SS-loop 4K) and GPI-tail o(K)
joining the SS-vertex in [(K) with the
GPl-anchor in 0H3.

o(K)




Definition.

A prion-tangle is the union T=K, UK, U ... UK
of finitely many, mutually disjoint prion-strings
K. (i=1,2,...,r).

Our problem is to explain by a knot theoretical
approach how a prion-tangle is entangled?



In this topological model, we suppose in PrP>¢
that the GPI-tails of some prion-strings happened
to pass through S-S combination parts of some
prion-strings or pass through some GPl-anchor’s
of some prion-strings.




We are interested in a one-crossing change,
where there are three types of entanglements.
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Non-split prion-tangles obtained
by a one-crossing change



By a one-crossing change of type lll, we can
easily change the SS-loop system /T) into a

non-split link.

=

We assume (unless otherwise mentioned) that
the SS-loop system ¢(T) forms a trivial link
because this assumption is always satisfied
except one-crossing changes of type Il .



Addition Property on Prion-tangles.

Any n-string prion-tangle T separated into two
prion-tangles T,,T, by H2in H3 is changed into a
non-split prion-tangle T by a certain one-crossing
change of type I, Il or lll on any pair in {K.), a(K:)
(i=1,2,...,n) of T, where we can have that T' O T,,T,
and {T") is a trivial link except any one-crossing

change on any pair of distinct SS-loops making
always (T’) a non-trivial link.



In our topological model, we regard

Cellular PrP’s = trivial prion-tangles,
Scrapie PrP’s = non-split prion-tangles.

The addition property of prion-tangles supports :
a conformal difference of PrP‘and PrP*¢
and also explains a mysterious fact:

s PrP3¢ + t PrP¢ - (s+t) PrP>¢,



2. Some basics on a spatial graph

A finite graph I is a collection of a finite number of
vertices and edges.

WVA

A spatial graph of I is the image G=Gr of I' by
a topological embedding into R3, where we disregard
the vertices of degree 2.

WVA N Q\\fj\@




A diagram D of a spatial graph G is the image

of G by the projection of R3to a plane together
with the upper-lower crossing information on
every double point.




Definition.

Spatial graphs G and G' are equivalent if any
diagram D of G is deformed into any diagram
D’ of G’ by a finite sequence of the generalized

Reidemeister moves:







For a finite graph G and an open edge a of it, let
G-a be the spatial graph obtained from G by
removing a.

Definition. A spatial graph G* is almost identical
to a spatial graph G if G* # G and 3 a graph-
isomorphism f : G'-G such that G™-a" = G-a

for any open edges a’, a with f(a’)= a.




Definition.

A spatial graph A is an n-string bouquet if

A\ is the union of an n-component link ¢ with
components ¢ (i=1,2,...,n) and n simple arcs «,
joining a point v and a point p, of ¢ (i=1,2,...,n).




Definition.

A spatial graph G is split if G is equivalent
to a vertex sum of two spatial graphs as in
the following picture:
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K. Taniyama’s creterion to non-splitting

®Every connected spatial graph G without any
cutting vertex is non-split.

Definition. A disk D in R3is essential for G if
either 9D N G= dD D {at least two vertices of G}
or 9D N G= 0D D {at most one vertex of G } and
int(D) meets G transversely in at least one point.




Definition. A spatial graph G' is an essential

quotient of a spatial graph G if d a sequence of
spatial graphs G, (i=0,1,2,..., m) such that G,=G,
G'=G,_, and G; is obtained from G, ; by contraction

along an essential disk D, for G, for V'i.

Theorem(Taniyama). If an essential quotient G'

of a spatial graph G is non-split, then the spatial

graph G is non-split.
@® K.Taniyama, Irreducibility of spatial graphs, JKTR 11(2002),
121--124.



BASIC THEOREM.

Let A be an n-string bouquet obtained from an
n-string bouquet A’ by a one-crossing change on
any pair of arcs or loops. Then 3 ee-many
non-split n-string bouquets A* which are almost
identical to A and obtained from A’ by a certain
one-crossing change on the same pair of arcs or
loops.

N\ /
Here, a crossing change: /\ - /\

@ A. Kawauchi, Osaka J. Math. 26(1989),743-758.
@ A. Kawauchi, Knots 90,Walter de Gruyter, 1992, 465-476.




3. Changing a prion-tangle into a
prion-bouquet

:> The prion-bouquet
N\; induced from T

A prion-tangle T



Definition. Prion-tangles T and T’ are equivalent
if the prion-graphs A;and A, induced from T

and T’ are equivalent.

For example,

=g
S0 - QLS



@ Every prion-string with ¢K) a trivial knot is
equivalent to a trivial prion-string.



Rotaxsane Property

‘. A. Harada; J. Li; M. Kamachi, The molecular necklace: a
rotaxane containing many threaded a-cyclodextrins, Nature
356(1992), 325-327

%—————é —2
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@ If we assume a “rotaxane property”, then

a “knotted” prion-string can arise.



In fact, if we assume that the SS-loop cannot
pass through a “knotted tangle part” and the
cell surface, then we have a “knotted prion-
string” with a trivial SS-loop:




Definition. A prion-tangle T is split if the
induced prion-bouquet A;is split.

Definition.

A prion-tangle T* is almost identical to a
prion-tangle T if the induced prion-graph
A\; « is almost identical to the induced
prion-graph A;.




BASIC THEOREM implies:

THEOREM A.
Let T be an n(>1)-string prion-tangle obtained
from an n-string prion-tangle T’ by a one-crossing

change on a pair of GPI-tails or SS-loops.

Then 3 eo-many non-split n-string prion-tangles
T" which are almost identical to T and obtained
from T’ by a certain one-crossing change on the
same pair of GPI-tails or SS-loops.



The case T’=T implies:

Addition Property on Prion-tangles.

Any prion-tangle T separated into two prion-
subtangles by an upper-half plane in H3 is
changed into a non-split prion-tangle T* by a
certain one-crossing change of type |, Il or lli
on any pair in the GPI-tails or SS-loops of T.
The loop system {T*) is taken a trivial link
except the case of a one-crossing change on
any pair of distinct SS-loops making necessarily
/{T*) a non-trivial link.




The following pictures are non-split prion-tangles
with the loop system a trivial link obtained from
a trivial 2-string prion-tangle by one-crossing
changes.

Type 1 Type 11 Type 111



Theorem B. For every n> 1, we have the
following (1) and (2).

(1) The minimum of the crossing numbers of
diagrams of non-split n-string prion-tangles
with the trivial loop system is 2n.

(2) The minimum of the crossing numbers of
diagrams of non-split n-string prion-tangles
granting non-trivial loop systems is 2n-2.



The following pictures give non-split n-string
prion-tangles T with /T) a trivial link such that

T is obtained from a trivial n-string prion-tangle

by a one-crossing change and has a diagram D
with ¢(D)=2n.

S R T

Ky K, / \




The following picture gives a non-split n-string
prion-tangle T with {T) a non-trivial link such
that T is obtained from a trivial n-string prion-
tangle by a one-crossing change and has a
diagram D with ¢(D)=2n-2.




5. Conclusion and a further question

Our question on prions is:

Prion proteins are easily entangled ?



A prion-string is a spatial graph K =¢ (K) U a(K)

in the upper half space H3 consisting of SS-loop
¢(K) and GPI-tail a(K) joining the SS-vertex
with the GPl-anchor.




In our topological model, we regard

Cellular PrP’s = trivial prion-tangles
Scrapie PrP’s = non-split prion-tangles.

The addition property of prion-tangles supports :
a conformal difference of PrP‘and PrP*¢
and also explains a mysterious fact:

s PrP3¢ + t PrP¢ - (s+t) PrP>¢,



S. B. Prusiner et al report

PrP>¢’s form Amyloid fibrils.

@ S. B. Prusiner et al., Molecular properties, partial purification,
and assay by incubation period measurements of the hamster
scrapie agent, Biochemistry 19(1980), 4883-4891.

The following (1) and (2) on Amyloid fibrils are
known:

(1) Amyloid fibrils are related to more than 20
serious human diseases such as Alzheimer’s
Disease.

(2) Amyloid formation is a generic property of
polypeptides.

@ Y. Goto ,Amyloid Fibril Formation and Protein Science (in
Japanese),POLYMERS,58,N0.2(2009),92-96.




It would be interesting to consider:

Question. How is a knotting model of
Amyloid fibrils constructed ?




