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Classifications of complex neighborhoods
X: complex surface (possibly noncompact)
Y: compact Riemann surface in X, non-singular

V. (a sufficiently small) open nbhd of Y in X

~~ Problem ~
What kinds of complex analytic structures appear in V7?7
@ existence of holomorphic/(s.)p.s.h./p.h. functions on V or V\Y
What kinds of geometric structures appear in V77
@ existence of holomorphic foliations with compact leaf Y
o ‘“degeneration” of the family of Levi-flat hypersurfaces or contact
type hypersufaces
J

"The tubular neighborhood theorem” does NOT hold in holomorphic
setting.
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Known Results ([Grauert’62], [Suzuki'75], [Ueda'83])

Theorem (Grauert '62)

If c1(Ny/x) < 0, then there exist a neighborhood V' of Y and
a s.p.s.h.function ® : V\Y — R s.t. ®(p) - —c0 (p = Y),

that is, there is a strongly pseudoconvex neighborhood system around Y .
In particular, OV is a contact manifold.

e &: strictly plurisubharmonic (s.p.s.h) function if
—dJ*d® (v, Jv) = v/—1900®(v, Jv) > 0 for Yo € TV,v # 0

in other words, A®|p > 0 for any holomorphic disk D in V.

@ o := —J*"d®|gy defines a positive contact structure £ on OV

& = Ker «vis J-invariant, £ =T (0V) N JT(0V)
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Known Results ([Grauert’62], [Suzuki'75], [Ueda'83])

@ c1(Ny/x) <0 <= d strongly pseudoconvex nbhd system around Y’
@ c1(Ny/x) >0 == 3 strongly pseudoconcave nbhd system around Y’

° C1(NY/X) =

Q. How about the case ¢1(Ny;x) =07

Ueda's neighborhood theory
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Observations in the case ci(Ny/x) = 0
Ex.1 (Product case) (3 pseudo-flat nbhd system)

Y: compact Riemann surface,
X=YxCP'DY =Y x{[1:0]}, Ny,x = 1y (holomorphically)
®:V\Y =R, &(z,w) = £log|w| p.h.function, ®(p) — Foo (p —Y)

®~1(c) = Levi-flat hypersurface

Ex.2 (Serre's example) (3 pseudo-convave nbhd system)

_ 2
X - C(z,w)/ ~ U Y
where (z,w) ~ (z+1,w+1) ~ (z+ 7,w+7) and Y elliptic curve
X =Y x,CP' DY =Y x{[0:1]}, Ny;x = 1y (holomorphically)
®:V\Y =R, &(z,w) = |w— 2|? s.p.s.h.function, ®(p) = co (p = Y)

®~1(c) = contact type hypersurface, 3F: holo.foliation with leaf Y’
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Observations in the case ci(Ny/x) = 0

Ex.3 (Ueda's example [Ueda'83], Koike's example [Koike'15])

o 3 (Y, X) with ¢1(Ny,x) = 0, ¥V nbd of Y,
A®:V\Y — R p.s.h.function s.t. ®(p) > 00 (p = Y).

In [U’'83], Ueda classified into the following three cases - - - type a, 3,7.

@ type a --- “d pseudo-concave neighborhood system”
@ type B --- 1 pseudo-flat neighborhood system
@ type v --- otherwise

Ex.1--- type 8, Ex.2--- type o, Ex.3--- type~
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Main result (foliations v.s. Ueda type)

Y elliptic curve, X: tubular neighborhood of Y

F: holomorphic foliation in X with the compact leaf Y

holonomy of F along Y: p: m1(Y, %) — Diff(C, 0)

We assume that A, € U(1).

f(2) =2+ 0(2%), g(2) = pz+ O(2%)
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Ueda’s classification — type ()
Setup

@ X: complex manifold of dim¢ = 2,

e Y C X: compact (non-singular) Riemann surface
holomorphically embedded in X with c¢1(Ny,x) = 0.

Definition (type (3))
The pair (Y, X) is said to be of type () if there exists a (non-singular)

holomorphic foliation F defined on a neighborhood of Y which also has Y
as a leaf and has U(1)-linear holonomy along Y

(i.e. the image of the holonomy function Holry : m (Y, %) — Diff(C, 0) is
a subgroup of U(1) :={t € C| [t| = 1}).

Observation: (Y, X): of type () if Y admits a holomorphic tubular
neighborhood (<= the fact that Ny, x admits U(1)-flat connection).
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|dea of Ueda's classification theory

Idea

Classify (Y, X) in accordance with the difference from “the case of type
(8)" in n-jet sense (along Y, n € Zsy).

In what follows, we will try to explain Ueda’s classification theory in the
following steps:

Step 1: Alternative definition of type () by using local defining functions
Step 2: The notion “local defining functions of type n”

Step 3: Ueda’s obstruction class u, (Y, X)

Step 4: Definition of type («) and (v)

Step 5: Ueda's theorems on the classification
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A

(Y, X): of type (a)

-+ Y admits psd-concave nbhds
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(Y, X): of type (B)
-+ Y admits psd-flat nbhds
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Stepl: Alternative definition of type (/)

Take an open covering {V;} of a small neighborhood V' of ¥ and a
holomorphic coordinates system (z;, w;) of each V; as follows:

@ zj: an extension of a coordinate z; on V; NY

@ wj: a local defining function of V; NY
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Stepl: Alternative definition of type () (continuation)

From the following, we may assume that there exists ¢;;, € U(1) such that

holds on each Vj;, :=V; N V.

Let Y be a compact Kahler manifold and N be a line bundle on Y .
Assume that ¢1(N) = 0. Then N is U(1)-flat (i.e. the transition functions
€ U(1) for a suitable choice of a local trivialization of N ).

Therefore, we have the following form of the expansion of the function

tjkwk’ij by wy-

tiwwe = wj + fi) (z5) - w? + £ () - wd + 1 (2) - wh + O(w))
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Stepl: Alternative definition of type () (continuation)

Definition (alternative definition of type (5))
The pair (Y, X) is said to be of type (3) if

tjkwk = Wj

holds on each Vj;, by choosing w;'s appropriately.

c.f. F:= “{w; = (constant)}”

Definition (type (/3), repeated)
The pair (Y, X) is said to be of type () if there exists a (non-singular)

holomorphic foliation F defined on a neighborhood of Y which also has Y
as a leaf and has U(1)-linear holonomy along Y.
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Step2: Local defining functions of type n

{(V}, (z5,w;))}: as above (tjrwi = w; + f;z)(zj) . wj2~ +--).

Definition (Local defining functions of type n)

{w;} is said to be of type n if, for any v < n, it holds that f](k = 0 for
each 7, k.

ie.
tikwr = wj + fjn+1)(zj) A f(n+2 (z) - wft? 4

holds for {w;} of type n.

F{w;} of type n < “(Y, X) seems to be type () in n-jet along V"
Note: Our {w;} is always at least of type 1.
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Step3: Ueda’s obstruction class u, (Y, X)
Assume that 3{w;} of type n. One can deduce from

tjkwk:w]+fn+1( - n+1+f(n+2)( i) w24

J
1 n
(%‘M)

Therefore,

that

(1‘>n-(1—f}2‘“)(zg) wl + O )",

(n+1) 1)1 1
g iy = — [n i o
j Wy

From the calculation above, we have that

v;nY

{(V ny, f (nt+1) )} satisfies the 1-cocycle condition as sections of Ny, / %+
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Step3: Ueda's obstruction class u, (Y, X) (continuation)

Definition

un (Y, X) = [{ (VJ ny, f;zﬂ)) H € HY(Y, Ny/X): n-th Ueda class.

Here we denote by H'(Y, Ny/X) the 1-st Cech cohomology group
HYY, Oy ( Y/X)) of the sheaf of holomorphic sections of N. Y/X

(1) When 3{w;} of type n, the condition “u,(Y,X) = 0" does not

depend on the choice of {w;} of type n.
(2) Assume that {w;} of type n. Then u,(Y,X) =0 iff IH{w;} of type

n+ 1.
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Step4: Definition of type («) and (7)

By the Key Proposition in the previous page, only one of the following
holds:

e dn € Zwq s.t. 3{w;} of type n and u, (Y, X) # 0.

® Vn € Zso, Hw;} of type n and u, (Y, X) = 0.
In the former case, (Y, X) is said to be of finite type (or more precisely, of
type n).
In the latter case, (Y, X) is said to be of infinite type.

Note: (Y, X) of type (8) = of infinite type.

Definition

(Y, X)) is said to be of type («) if it is of finite type.
(Y, X) is said to be of type (v) if it is of infinite type however it is not of
type (63).
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A

(Y, X): of type (a)

-+ Y admits psd-concave nbhds
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(Y, X): of type (B)
-+ Y admits psd-flat nbhds
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Stepb: Ueda's theorems on the classification

Theorem (Ueda '83)

(1) Ny/x € Pic’(Y): torsion = (Y, X): of type (a) or (B).

(2) Ny, x € Pic’(Y)): Diophantine (see below) and (Y, X): of infinite type
= (Y, X): of type (B).

(3) (Y, X): of type (o) = there exists a R-valued function ® on a
neighborhood V of Y s.t. ®|yn\y: s.p.s.h, ®(p) = +oc asp = Y.
Especially, Y has a str. pseudoconcave neighborhoods system in this case.
(4) 3 an example (Y, X)) of type (7).

Observation: When (Y, X): of type (), then there exists a R-valued
function ® on a neighborhood V of Y s.t. ®[y,\y: pluriharmonic,
®(p) = +oo as p = Y (<= D(zj,w;) :=log |w;|). Especially, Y has a
psudoflat neighborhoods system in this case.
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