複素近傍の分類理論と Levi 葉層

Classification of complex neighborhoods and Levi-flat foliations

Takayuki Koike / Noboru Ogawa

January 26, 2018

Classifications of complex neighborhoods

X: complex surface (possibly noncompact)

Y: compact Riemann surface in X, non-singular

V: (a sufficiently small) open nbhd of Y in X

Problem

What kinds of complex analytic structures appear in V?

ullet existence of holomorphic/(s.)p.s.h./p.h. functions on V or $V \backslash Y$

What kinds of geometric structures appear in V??

- ullet existence of holomorphic foliations with compact leaf Y
- "degeneration" of the family of Levi-flat hypersurfaces or contact type hypersurfaces

Rmk.

"The tubular neighborhood theorem" does **NOT** hold in holomorphic setting.

Theorem (Grauert '62)

If $c_1(N_{Y/X}) < 0$, then there exist a neighborhood V of Y and a s.p.s.h.function $\Phi: V \backslash Y \to \mathbb{R}$ s.t. $\Phi(p) \to -\infty$ $(p \to Y)$, that is, there is a strongly pseudoconvex neighborhood system around Y. In particular, ∂V is a contact manifold.

- Φ : strictly plurisubharmonic (s.p.s.h) function if $-dJ^*d\Phi(v,Jv) = \sqrt{-1}\partial\overline{\partial}\Phi(v,Jv) > 0 \text{ for } \forall v \in TV, v \neq 0$ in other words, $\Delta\Phi|_D > 0$ for any holomorphic disk D in V.
- $\alpha:=-J^*d\Phi|_{\partial V}$ defines a positive contact structure ξ on ∂V . $\xi=\operatorname{Ker}\,\alpha$ is J-invariant, $\xi=T(\partial V)\cap JT(\partial V)$

Theorem (Grauert '62)

If $c_1(N_{Y/X}) < 0$, then there exist a neighborhood V of Y and a s.p.s.h.function $\Phi: V \backslash Y \to \mathbb{R}$ s.t. $\Phi(p) \to -\infty$ $(p \to Y)$, that is, there is a strongly pseudoconvex neighborhood system around Y. In particular, ∂V is a contact manifold.

- Φ : pluriharmonic (p.h.) function if $-dJ^*d\Phi(v,Jv)=\sqrt{-1}\partial\overline{\partial}\Phi(v,Jv)=0 \text{ for } \forall v\in TV, v\neq 0$ in other words, $\Delta\Phi|_D=0$ for any holomorphic disk D in V.
- $\alpha:=-J^*d\Phi|_{\partial V}$ defines a (Levi-flat) foliation ξ on ∂V . $\xi=\mathrm{Ker}\ \alpha$ is J-invariant, $\xi=T(\partial V)\cap JT(\partial V)$

Theorem (Grauert '62)

If $c_1(N_{Y/X}) < 0$, then there exist a neighborhood V of Y and a s.p.s.h.function $\Phi: V \backslash Y \to \mathbb{R}$ s.t. $\Phi(p) \to -\infty$ $(p \to Y)$, that is, there is a strongly pseudoconvex neighborhood system around Y. In particular, ∂V is a contact manifold.

- Φ : plurisubharmonic (p.s.h) function if $-dJ^*d\Phi(v,Jv) = \sqrt{-1}\partial\overline{\partial}\Phi(v,Jv) \geqq 0 \text{ for } \forall v \in TV, v \neq 0$ in other words, $\Delta\Phi|_D \ge 0$ for any holomorphic disk D in V.
- $\alpha:=-J^*d\Phi|_{\partial V}$ defines a positive confoliation ξ on ∂V . $\xi=\operatorname{Ker}\ \alpha \text{ is } J\text{-invariant, } \xi=T(\partial V)\cap JT(\partial V)$

- ullet $c_1(N_{Y/X}) < 0 \iff \exists$ strongly pseudoconvex nbhd system around Y
- ullet $c_1(N_{Y/X})>0 \implies \exists$ strongly pseudoconcave nbhd system around Y
- \bullet $c_1(N_{Y/X}) = 0 \cdots$

$$c_1(N_{Y/X}) < 0$$
 $c_1(N_{Y/X}) > 0$ $c_1(N_{Y/X}) = 0$

Q. How about the case $c_1(N_{Y/X}) = 0$?

Ueda's neighborhood theory

Observations in the case $c_1(N_{Y/X}) = 0$

Ex.1 (Product case) $(\exists pseudo-flat nbhd system)$

Y: compact Riemann surface,

$$X=Y\times \mathbb{C}P^1\supset Y=Y\times \{[1:0]\},\ N_{Y/X}=\mathbf{1}_Y$$
 (holomorphically)

$$\Phi: V \backslash Y \to \mathbb{R}, \ \Phi(z,w) = \pm \log |w| \ \text{ p.h.function, } \Phi(p) \to \mp \infty \ (p \to Y)$$

 $\Phi^{-1}(c) = \text{Levi-flat hypersurface}$

Ex.2 (Serre's example) (\exists pseudo-convave nbhd system)

$$X = \mathbb{C}^2_{(z,w)} / \sim \ \cup \ Y$$

where $(z,w) \sim (z+1,w+1) \sim (z+\tau,w+\overline{\tau})$ and Y elliptic curve

$$X=Y\times_{\rho}\mathbb{C}P^1\supset Y=Y\times\{[0:1]\}$$
, $N_{Y/X}=\mathbf{1}_Y$ (holomorphically)

$$\Phi: V\backslash Y \to \mathbb{R}, \ \Phi(z,w) = |w-\bar{z}|^2 \quad \text{s.p.s.h.} \text{function,} \ \Phi(p) \to \infty \ (p \to Y)$$

 $\Phi^{-1}(c)=$ contact type hypersurface, $\exists \mathcal{F}:$ holo.foliation with leaf Y

Observations in the case $c_1(N_{Y/X}) = 0$

Ex.3 (Ueda's example [Ueda'83], Koike's example [Koike'15])

• \exists (Y,X) with $c_1(N_{Y/X})=0$, $\forall V$ nbd of Y, $\not\exists$ $\Phi:V\backslash Y\to\mathbb{R}$ p.s.h.function s.t. $\Phi(p)\to\infty$ $(p\to Y)$.

In [U'83], Ueda classified into the following three cases \cdots type α, β, γ .

- ullet type lpha ... " \exists pseudo-concave neighborhood system"
- ullet type eta $\,\cdots\,$ \exists pseudo-flat neighborhood system
- ullet type γ $\,\cdots$ otherwise

Ex.1··· type β , Ex.2··· type α , Ex.3··· type γ

Main result (foliations v.s. Ueda type)

Y: elliptic curve, X: tubular neighborhood of Y

 \mathcal{F} : holomorphic foliation in X with the compact leaf Y

holonomy of \mathcal{F} along $Y \colon \rho : \pi_1(Y, *) \to \mathrm{Diff}(\mathbb{C}, 0)$

$$f(z) = \lambda z + O(z^2), \quad g(z) = \mu z + O(z^2)$$

We assume that $\lambda, \mu \in U(1)$.

		λ : torsion		λ : non-torsion	
		f:lin'ble	f:non-lin'ble	f:lin'ble	f:non-lin'ble
μ	g:lin	I	П	Ш	IV
tor	g:non-lin		V	VI	VII
μ	g:lin			VIII	IX
non-tor	g:non-lin				X

Q. Which type appears in I \sim X ?

Ueda's classification – type (β)

Setup

- X: complex manifold of $\dim_{\mathbb{C}} = 2$,
- $Y \subset X$: compact (non-singular) Riemann surface holomorphically embedded in X with $c_1(N_{Y/X}) = 0$.

Definition (type (β))

The pair (Y,X) is said to be *of type* (β) if there exists a (non-singular) holomorphic foliation $\mathcal F$ defined on a neighborhood of Y which also has Y as a leaf and has U(1)-linear holonomy along Y (i.e. the image of the holonomy function $\operatorname{Hol}_{\mathcal F,Y}\colon \pi_1(Y,*)\to \operatorname{Diff}(\mathbb C,0)$ is a subgroup of $U(1):=\{t\in\mathbb C\mid |t|=1\}$).

Observation: (Y,X): of type (β) if Y admits a holomorphic tubular neighborhood (\Leftarrow the fact that $N_{Y/X}$ admits U(1)-flat connection).

Idea of Ueda's classification theory

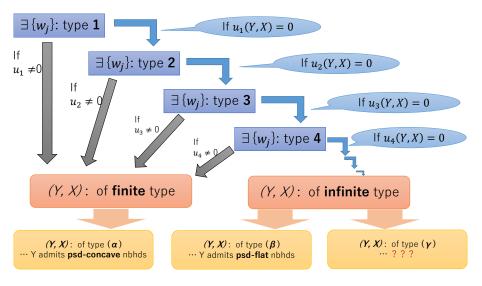
Idea

Classify (Y,X) in accordance with the difference from "the case of type (β) " in n-jet sense (along $Y, n \in \mathbb{Z}_{>0}$).

In what follows, we will try to explain Ueda's classification theory in the following steps:

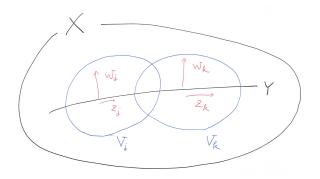
- **Step 1**: Alternative definition of type (β) by using local defining functions
- **Step 2**: The notion "local defining functions of type n"
- **Step 3**: Ueda's obstruction class $u_n(Y, X)$
- **Step 4**: Definition of type (α) and (γ)
- Step 5: Ueda's theorems on the classification

Summary



Step1: Alternative definition of type (β)

Take an open covering $\{V_j\}$ of a small neighborhood V of Y and a holomorphic coordinates system (z_j,w_j) of each V_j as follows:



- z_i : an extension of a coordinate z_i on $V_i \cap Y$
- w_i : a local defining function of $V_i \cap Y$

Step1: Alternative definition of type (β) (continuation)

From the following, we may assume that there exists $t_{jk} \in U(1)$ such that

$$\left. \frac{w_j}{w_k} \right|_{V_{jk} \cap Y} \equiv t_{jk}$$

holds on each $V_{jk} := V_j \cap V_k$.

Theorem

Let Y be a compact Kähler manifold and N be a line bundle on Y. Assume that $c_1(N)=0$. Then N is U(1)-flat (i.e. the transition functions $\in U(1)$ for a suitable choice of a local trivialization of N).

Therefore, we have the following form of the expansion of the function $t_{jk}w_k|_{V_{jk}}$ by w_j :

$$t_{jk}w_k = w_j + f_{jk}^{(2)}(z_j) \cdot w_j^2 + f_{jk}^{(3)}(z_j) \cdot w_j^3 + f_{jk}^{(4)}(z_j) \cdot w_j^4 + O(w_j^5)$$

4 D > 4 B > 4 E > 4 E > E 990

Step1: Alternative definition of type (β) (continuation)

Definition (alternative definition of type (β))

The pair (Y,X) is said to be of type (β) if

$$t_{jk}w_k = w_j$$

holds on each V_{jk} by choosing w_j 's appropriately.

c.f.
$$\mathcal{F} := \{w_j \equiv (\text{constant})\}$$

Definition (type (β) , repeated)

The pair (Y,X) is said to be of type (β) if there exists a (non-singular) holomorphic foliation $\mathcal F$ defined on a neighborhood of Y which also has Y as a leaf and has U(1)-linear holonomy along Y.

Step2: Local defining functions of type n

$$\{(V_j,(z_j,w_j))\}: \text{ as above } (t_{jk}w_k=w_j+f_{jk}^{(2)}(z_j)\cdot w_j^2+\cdots).$$

Definition (Local defining functions of type n)

 $\{w_j\}$ is said to be of type n if, for any $\nu \leq n$, it holds that $f_{jk}^{(\nu)} \equiv 0$ for each j, k.

i.e.

$$t_{jk}w_k = w_j + f_{jk}^{(n+1)}(z_j) \cdot w_j^{n+1} + f_{jk}^{(n+2)}(z_j) \cdot w_j^{n+2} + \cdots$$

holds for $\{w_j\}$ of type n.

$$\exists \{w_j\} \text{ of type } n \Leftrightarrow \text{``}(Y,X) \text{ seems to be type } (\beta) \text{ in } n\text{-jet along } Y''$$

Note: Our $\{w_j\}$ is always at least of type 1.

<ロ > → □ > → □ > → □ > → □ ● → ○ へ ○ ○

Step3: Ueda's obstruction class $u_n(Y, X)$

Assume that $\exists \{w_i\}$ of type n. One can deduce from

$$t_{jk}w_k = w_j + f_{jk}^{(n+1)}(z_j) \cdot w_j^{n+1} + f_{jk}^{(n+2)}(z_j) \cdot w_j^{n+2} + \cdots$$

that

$$\left(\frac{1}{t_{jk}w_k}\right)^n = \left(\frac{1}{w_j}\right)^n \cdot (1 - f_{jk}^{(n+1)}(z_j) \cdot w_j^n + O(w_j^{n+1}))^n.$$

Therefore,

$$f_{jk}^{(n+1)}|_{V_j \cap Y} = \frac{1}{n} \left[\frac{1}{w_j^n} - t_{jk}^{-n} \frac{1}{w_k^n} \right]|_{V_j \cap Y}.$$

From the calculation above, we have that

Prop.

 $\left\{\left(V_j\cap Y,f_{jk}^{(n+1)}
ight)
ight\}$ satisfies the 1-cocycle condition as sections of $N_{Y/X}^{-n}$.

Step3: Ueda's obstruction class $u_n(Y, X)$ (continuation)

Definition

$$u_n(Y,X):=\left[\left\{\left(V_j\cap Y,f_{jk}^{(n+1)}
ight)
ight\}
ight]\in H^1(Y,N_{Y/X}^{-n})$$
: n -th Ueda class.

Here we denote by $H^1(Y,N_{Y/X}^{-n})$ the 1-st Čech cohomology group $\check{H}^1(Y,\mathcal{O}_Y(N_{Y/X}^{-n}))$ of the sheaf of holomorphic sections of $N_{Y/X}^{-n}$.

Key Prop.

- (1) When $\exists \{w_j\}$ of type n, the condition " $u_n(Y,X)=0$ " does not depend on the choice of $\{w_j\}$ of type n.
- (2) Assume that $\exists \{w_j\}$ of type n. Then $u_n(Y,X)=0$ iff $\exists \{w_j\}$ of type n+1.

Step4: Definition of type (α) and (γ)

By the Key Proposition in the previous page, only one of the following holds:

- $\exists n \in \mathbb{Z}_{>0}$ s.t. $\exists \{w_i\}$ of type n and $u_n(Y,X) \neq 0$.
- $\forall n \in \mathbb{Z}_{>0}$, $\exists \{w_i\}$ of type n and $u_n(Y,X) = 0$.

In the former case, (Y,X) is said to be <u>of finite type</u> (or more precisely, of type n).

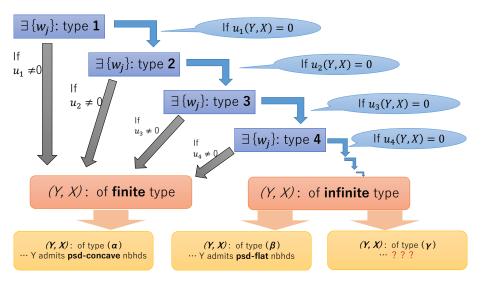
In the latter case, (Y, X) is said to be of infinite type.

Note: (Y, X) of type $(\beta) \Rightarrow$ of infinite type.

Definition

- (Y,X) is said to be *of type* (α) if it is of finite type.
- (Y,X) is said to be *of type* (γ) if it is of infinite type however it is not of type (β) .

Summary



Step5: Ueda's theorems on the classification

Theorem (Ueda '83)

- (1) $N_{Y/X} \in \operatorname{Pic}^0(Y)$: torsion $\Rightarrow (Y, X)$: of type (α) or (β) .
- (2) $N_{Y/X} \in \operatorname{Pic}^0(Y)$: Diophantine (see below) and (Y, X): of infinite type $\Rightarrow (Y, X)$: of type (β) .
- (3) (Y,X): of type $(\alpha) \Rightarrow$ there exists a \mathbb{R} -valued function Φ on a neighborhood V of Y s.t. $\Phi|_{V\setminus Y}$: s.p.s.h, $\Phi(p) \to +\infty$ as $p \to Y$. Especially, Y has a str. pseudoconcave neighborhoods system in this case.
- (4) \exists an example (Y, X) of type (γ) .

Observation: When (Y,X): of type (β) , then there exists a \mathbb{R} -valued function Φ on a neighborhood V of Y s.t. $\Phi|_{V\setminus Y}$: pluriharmonic, $\Phi(p)\to +\infty$ as $p\to Y$ ($\Leftarrow \Phi(z_j,w_j):=\log|w_j|$). Especially, Y has a psudoflat neighborhoods system in this case.

Summary

