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A holomorphic disk bundle over a closed Riemann surface

Let ¥ be a compact Riemann surface of genus > 2.
Uniformize ¥ = D/I. Extend I ~ D c CPL.

Diagonal action I ~ D x CP! gives X := D x CP!/T.
The first projection gives X — ¥, a CP'-bundle.

Q:=DxD/I, Q :=D x D*/T where D* := CP! \ D.
The first projections gives Q — ¥ and ' — ¥, D-bundles.

M=00Q=00=Dx S/l - ¥ isa C¥ Levi-flat S'-bundle.
M is diffeomorphic to the unit tangent bundle of %.

@ The Levi foliation is the weak stable foliation of the geodesic
flow on X.
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Known facts

(Diederich—Ohsawa ’85)

e Q is 1-convex. Recall that Q :=D x D/(z,w) ~ (yz,yw),y € T.

2

w—z , is a proper smooth psh

w:=—logd, where § :=1—

1—-Zw
which is strictly psh except D .= {(z,z) | z € D}/l ~ %.

e Q' is Stein. Note that Q' ~D x D/(z, w') ~ (yz,7w’),v € T.
w—2z

¢ = —log ¢, where §' :==1 — ‘ , is a proper smooth

1—zw
strictly psh.
Y contains a totally real surface D' := {(z,Z) | z € D}/T = ¥.

(cf. E. Hopf '36)

e Bounded holomorphic functions on 2 and Q' are constant.
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Main Theorem

Question (asked by Ohsawa, Mitsumatsu)

Can we express holomorphic functions on Q and Q' explicitly?
What is their growth rate?

0 O(Q) ~{feODxD)|f(z,w)="Ff(yz,yw),y €T}.
o (Ohsawa) >  r(v(z) — y(w))V € O(Q) for N > 2.

Theorem (A.)

I @PHUZ, KE™) = 0(Q), I': @D Ker(A = \,l) = O(Q)
n=0 n=0

where
HO(Z, KE™) = {holomorphic n-differential v» = 1(7)(d7)*" on X}

Ker(A—A,l) ={f : X — C| Af = \,f}, A: Laplacian w.r.t. Poincaré
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Theorem (A., continued)
Moreover, for any 1) € H(X, KE") and f € Ker(A — \,l),

1@)|2 = /Q HW)P5dV < so, [II'(F)]2 = /Q JH()PEAV < oo,

for all « > —1. Here dV is any volume form of X =D x CP!/T.

1-zw

e Q:=DxD/(z,w) ~ (yz,yw). (5—1—‘

2

o ' ~DxD/(z,w) ~ (yz,7w'). &' =1 — ‘ w—z

1—zw

(E. Hopf ’36, L. Garnett '83)
o For f € O(Q) or O(Y), ||f|2 = o (ail) as o\, —1

(i.e. f belongs to the Hardy space / has L? boundary value)
= f is constant.




Outline of Proof

1@, HO(S, KE™) < O(Q) is given by, for ¢ € HO(X, KE™), n > 1,

w w— 7)1 — z)\ 20D
e = [ g (M0 T e

n,n

where ¢ = 1)(7)(d7)®" on D, and B(p, q) is the beta function.

I": @, o Ker(A —X,l) — O(Q') is given by the analytic continuation
of given f : ¥ — C, Af = \,f as a function on D ~ {(z,2) | z € D}/T
to D x D. It follows that f actually extends to entire D x D from the
method to show the integrability of /(¢)) above.
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Outline of proof for the integrability

The idea of the formula defining / comes from
Ke =Ty =Tp~Npg D={(z2)]zeD}/IT CQ,

which implies ¢ € HO(X, KZ") is identified with a n-jet of a
holomorphic function along D C Q. /(¢) gives the extension of 1
which has the smallest || - |, norm.

Step 1. We use a non-holomorphic coordinate of D, x D, (z,t)
given by t = (w — z)(1 —zw) L. f = f(z,w) € O(Q)" is expanded as
f=>1"0f(z)t" and {f,} satisfy

ofy nz n—1

i
I

Al A fi1=0.
0z "1 1=0

Xn
Put ¢, = fy(2) ( ﬁdZ) e COO(L, K2). Then {p,} satisfy

1-[z?

— — -1
Do =0, Dpp= —”Wgon_l 2w (n>1)

where w = 2dz ® dz/(1 — |z[?).
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Outline of proof for the integrability — continued
Step 2.

Let ¢ € HO(Z, KEY). Put ¢, := 0 for n < N and ¢y := 1. We pick
the L2 minimal solution to

a Nl i
= — _ w
®n \/§ ©n-1

inductively and determine ¢, for n > N. The spectral decomposition
of the complex laplacian tells us the L2 minimal solutions are

onim = Tiyp G <_’V+m—1

\ﬁ PN+m—1 ®w)
V2(N+m—1)_

T m(2N + m — 1) Ntm (PN4+m—1 @ w)

where 3, is the formal adjoint of 9 : C(O0(T, KE") — CO(T, KEM)
and G is the Green operator on C(®D (3, K2") .



Outline of proof for the integrability — continued?

Step 3.

The convergence of f = "0 £,(2)t" in L?(Q), vn = fa(2) (@

follows from

IIsonH
I1£15 = Z

_ ||¢N+m||2
= N+m+1
1 {(N+m—1)1}2
AL Z <o

m!( 2N+m—1) (N+m+1)

Similar computation shows ||f|, < oo for any a < 1.



Outline of proof for the integrability — continued?

Step 4.
Want to show

> w w— 7)1 — 2)\ 2V
> = | B(I\}, ) (( (w —)(z)dr )) Sl

n=0
Enough to show the desired equality on {0} x D.

}:f

2N—1I“ (N+m=1)! 10™,  nim
—1)! Z(2N—|—m—1 I m! Ozm(o)t

__QN—lﬂN !
= (N—l)! t | dty / dtQ/ ttl dtl

2N —1)! N-1(1
= ((/v— 1))! tN/O (5\/— 1)) v(th)dn

_ / B(Nl, . ((t —;)r)w‘”wmw. O
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