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————————————————————————

A talk based on joint-works with

Y. Machida and M. Takahashi
————————————————————————
Let (X, g) be a C∞ Lorentz 3-manifold (of signature (1, 2)).

Example (Minkowskii space):

X = R3, g : ds2 = dx2
1 − dx2

2 − dx2
3.

Definition. A C∞ immersion f : U(⊂ R2) → (X, g) is called

null (or lightlike) if the pull-back metric f∗g is degenerate

everywhere on U .

Let C := {v ∈ TX | g(v, v) = 0} be the null quadratic cone field

associated to the indefinite metric g.
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It is easy to see that an immersion f : U → X is null if and only if

f∗(TtU) is tangent to the cone Cf(t) for any t ∈ U .

Then U is foliated by null curves.

(A curve is called null if its velocity vectors belong to C ⊂ TX. )

f(t)

Cf(t)

f(t)
〜 f(t)

〜 ⊥

⊂ Tf(t)X



Goo Ishikawa, Hokkaido University, Japan 不定値計量と接触構造の双対性と特異性 3

Let Z := PC = {(x, `) | x ∈ X, ` is a null line in TxX} ⊂ P (TX),

the space of null directions, dim(Z) = 4.

Denote by πX : Z → X the natural projection, πX(x, `) = x.

Lemma. Let f : U → X be a null immersion. Then there

exists a unique C∞ map ef : U → Z such that πX
ef = f and

that f∗(TtU) = ef(t)⊥, for any t ∈ U .

ef(t)⊥ := {v ∈ Tf(t)X | g(v, u) = 0, for any u ∈ ef(t)}.

Z ↪→ PT ∗X

ef ↗ ↓ πX ↙

U
f−→ X
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Definition. A (possibly non-immersive) C∞ map-germ f :

(R2, p) → X is called a null frontal surface or a lightlike frontal

surface if there exists a C∞ map-germ ef : (R2, p) → Z such

that πX
ef = f and that f∗(TtR2) ⊂ ef(t)⊥, for any t ∈ R2

nearby p.

ef(t)⊥ := {v ∈ Tf(t)X | g(v, u) = 0, for any u ∈ ef(t)}.

f(t)

Cf(t)

f(t)
〜 f(t)

〜 ⊥

⊂ Tf(t)X
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Problem. Classify “generic” singularities of null frontal

surfaces up to local diffeomorphisms.

— Minkowskii case: Chino-Izumiya 2010 (lightlike developables).

— O(2, 3)-homogeneous case: Machida-Takahashi-I 2011 (tangent

surfaces of directed null curves).

We show that any null frontal surface is a null tangent sur-

face of a directed null curves (in a wider sense) and we give

the generic classification of singularities of null frontal sur-

faces for general Lorentz 3-manifolds, moreover for arbitrary

non-degenerate (strictly convex) cone fields on 3-manifolds.
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Solution. The list of generic singularities consists of three

local diffeomorphism classes, cuspidal edge (CE), swallow-

tail (SW) and Shcherbak surface (SB).

Cuspidal Edge SWallowtail ShcherBak surface
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We observe the “stability” or, in other words, “robustness”

of the classification of singularities.

Query. What are the geometric structures behind, which

dominate the appearance of singularities of null frontals.
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【 Pseudo-product Engel structure 】

Define a distribution

E =
[

(x,`)∈Z

(πX)−1
∗ (`) ⊂ TZ,

over Z, where πX∗ : TZ → TX is the differential map of πX .

Then E is of rank 2 with the growth (2, 3, 4), i.e.

E2 := E +[E , E ] is generated by a subbunde E2 of rank 3 and

E2 + [E , E2] = T Z, in other words, E is an Engel structure

on the 4-manifold Z.
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Define other distributions

E1 := Ker(πX∗) ⊂ E ⊂ TZ, E2 := ch(E2) ⊂ E ⊂ TZ,

Cauchy characteristic of E2.

Then both E1 and E2 are of rank 1, and we have the de-

composition
E = E1 ⊕ E2,

a pseudo-product Engel structure (in the sense of Noboru

Tanaka). Moreover we have

E + [E1, E ] = E2, E2 + [E1, E2] = T Z, [E2, E2] ⊂ E2.
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Let Y denote the leaf space of E2, which is regarded as the

space of null geodesics.

Denote by πY : Z → Y be the natural projection.

Locally we have the double fibration

Y 3 πY←−−−− Z4 πX−−−−→ X3.

The distribution E2 on Z of rank 3 descends by πY to a

contact structure D on Y :

(πY ∗)(E
2) = D, E2 = (πY ∗)

−1(D).

(Y,D)

(Z,E)

(X,C)
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【 Singularities of null frontal surfaces 】

Lemma. f : (R2, p) → X is a null frontal if and only if

there exists an E2-integral lift ef : (R2, p) → Z of f .

( ef)∗(TtR
2) ⊂ (E2)

ef(t), for any t ∈ R2 nearby p.

Then πY
ef is D-integral and, therefore, of rank ≤ 1.

Thus ef collapses by πY to a D-integral curve, in other words,

to a “Legendre curve”, and ef is foliated by πY -fibres. There-

fore f is ruled by a “Legendre family” of null geodesics.

The singular locus of f = πX
ef consist of an E-integral curve

γ and the πY -fibres of singular points of the Legendre curve.
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π
Y

π
X

Thus the null frontal f is regarded as the tangent surface

to a (directed) null curve πXγ.

Avoiding very degenerate cases, we start with a germ of

E-integral curve γ : (R, t0) → Z so that π−1
Y πY γ is right

equivalent to ef , and f is right equivalent to πXπ−1
Y πY γ.



Goo Ishikawa, Hokkaido University, Japan 不定値計量と接触構造の双対性と特異性 13

Theorem 1. (Machda-Takahashi-I)

For a generic E-integral curve γ : I → Z, the induced null

frontal πXπ−1
Y πY γ is diffeomorphic (right-left equivalent)

along γ to cuspidal edge, swallowtail or Shcherbak surface.

The same classification result holds for arbitrary non-

degenerate (strictly convex) cone structure C ⊂ TX.

Cuspidal Edge SWallowtail ShcherBak surface
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(Z, E = E1 ⊕ E2)

pseudo-product Engel structure

3rd order ODE ↙ ↘

(Y, D)

projective contact structure

(X, C)

non-degenerate (strictly convex)

cone structure

Classification of geometric structures, contact geometry of 3rd or-

der ODE, by E. Cartan, S.-S. Chern(1940), N. Tanaka,
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“Wünschmann invariant”= 0 ⇐⇒ C: metric cone.

There are works by H. Sato, T. Ozawa, A. Yamada-Yoshikawa,

Simonetta Frittelli, C. Kozameh, E.T. Newman, and so forth.

Also there are relations with the theory of Lie contact structures,

Lie tensor metric structures (Sato, Yamaguchi, Miyaoka), Grass-

mannian structures, (Machida, Sato), CR geometry, “sub-semi-

Riemannian geometry”, etc..

(Please refer the next afternoon lecture by Y. Machida. )
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Some details of the classification.
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Let C ⊂ TX be a non-degenerate cone structure of X.

Then ∃local.coord. x1, x2, x3, θ of Z such that

πX : (x1, x2, x3, θ) 7→ (x1, x2, x3),

E1 =
D

∂
∂θ

E

, E2 =
D

∂
∂x1

+ θ ∂
∂x2

+ a(x, θ) ∂
∂x3

+ e(x, θ) ∂
∂θ

E

,

(e is determined from a, C non-degenerate ⇔ aθθ 6= 0.

If a = 1
2
θ2, then e = 0 and C is flat.)

Theorem 2. Let γ : (R, t0) → Z be an E-integral curve,

f = πXπ−1
Y πY γ : (R2, (t0, 0)) → X the null frontal generated

by πY γ. Set ϕ(t) := θ′(t) − (e ◦ γ)(t)x′
1(t). Then

f ∼ CE ⇐⇒ x′
1(t0) 6= 0, ϕ(t0) 6= 0

f ∼ SW ⇐⇒ x′
1(t0) = 0, ϕ(t0) 6= 0, x′′

1 (t0) 6= 0

f ∼ SB ⇐⇒ x′
1(t0) 6= 0, ϕ(t0) = 0, ϕ′(t0) 6= 0

Here γ(t) = (x1(t), x2(t), x3(t), θ(t)).

Note that πXγ is a null geodesic ⇐⇒ ϕ(t) ≡ 0.
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The dual objects to null frontals are given by tangent sur-

faces πY π−1
X πXγ of Legendre curves πY γ ruled by tangential

“Legendre geodesics”(Legendre lines) πY π−1
X (x), (x ∈ X).

Theorem 3. For a generic E-integral curve γ : I → Z,

πY π−1
X πXγ is diffeomorphic to cuspidal edge (CE), Mond

surface (MD), or generic folded pleat (GFP).

cuspidal edge Mond surface generic folded pleat
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∃local coordinates x, y, p, q of Z such that

πY : (x, y, p, q) 7→ (x, y, p)

E1 =
D

∂
∂x

+ p ∂
∂y

+ q ∂
∂p

+ f(x, y, p, q) ∂
∂q

E

, E2 =
D

∂
∂q

E

.

For an E-integral curve γ(t) = (x(t), y(t), p(t), q(t)), we

put ψ(t) := q′(t) − (f ◦ γ)(t)x′(t).

Theorem 4. πY π−1
X πXγ is diffeomorphic at (t0, 0) to

cuspidal edge (CE) ⇐⇒ x′(t0) 6= 0, ψ(t0) 6= 0,

Mond surface (MD) ⇐⇒ x′(t0) 6= 0, ψ(t0) = 0, ψ′(t0) 6= 0,

folded pleat (FP) ⇐⇒ x′(t0) = 0, ψ(t0) 6= 0, x′′(t0) 6= 0.

Note that πY γ is a solution of 3rd order ODE q′ = f(x, y, p, q)

⇐⇒ ψ(t) ≡ 0.
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Thanks to Engel integral curves γ (“dancing on the heaven”),

we have got the “asymmetric duality” of

singularities of tangent surfaces.

Y Z X

πY π−1
X πXγ γ πXπ−1

Y πY γ

CE (I) non-tangent to E1 CE

non-tangent to E2

MD (II) simply tangent to E1 SW

non-tangent to E2

FP (III) non-tangent to E1 SB

simply tangent to E2
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How about the higher dimensional cases ?
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Let X be an (n + 2)-dim. C∞ manifold with a conformal class

[g] of an indefinite metric g of signature (r, s), r + s = n + 2, e.g.

(r, s) = (1, n + 1) Lorentz, (r, s) = (2, 2) neutral, etc..

Let C := {v ∈ TX | g(v, v) = 0} be the null quadratic cone

field.

Set Z := PC = {(x, `) | x ∈ X, ` is a null line in TxX} ⊂ P (TX),

the space of null directions, dim(Z) = 2n + 2.

Denote by πX : Z → X the natural projection, πX(x, `) = x.

Definition. A C∞ map-germ f : (Rn+1, p) → X is called a

null frontal (hypersurface) or a lightlike frontal (hypersurface)

if there exists a C∞ map-germ ef : (Rn+1, p) → Z such that

πX
ef = f and that f∗(TtRn+1) ⊂ ef(t)⊥, for any t ∈ Rn+1

nearby p.
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f(t)

Cf(t)

f(t)
〜 f(t)

〜 ⊥

⊂ Tf(t)X

Note that ef(t)⊥ is a lightlike hyperplane.

An immersion to Z is called null if the pull-back of the metric g

is degenerate everywhere. Then null immersions are null frontals.

For example, null hyperplanes and null cones, in the flat case,

are (non-generic) null frontal hypersurfaces.

Problem. Understand the geometry of null frontal hyper-

surfaces. Moreover classify “generic”singularities of null

frontal hypersurfaces of (Xn+2, [g]).
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To try to understand the geometry well, we observe a duality

between indefinite metrics and contact structures.

Define a distribution E =
S

(x,`)∈Z(πX)−1
∗ (`) ⊂ TZ, which is

of rank n + 1 and with the growth (n + 1, 2n + 1, 2n + 2):

E2 := E +[E, E] is generated by a subbunde E2 of rank 2n+1 and

E2 + [E, E2] = T Z.

Let E1 := Ker(πX∗). Then E1 is an integrable subbundle of E

of rank n.

Moreover we see that the distribution E2 has the Cauchy char-

acteristic E2 := ch(E2), which is a subbundle of E of rank 1.

Then we have a pseudo-product structure

E = E1 ⊕ E2, rank(E1) = n, rank(E2) = 1,

(E1, E2, integrable) over Z (in the sense of Noboru Tanaka).
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Let Y denote the leaf space of E2, which is regarded as the

space of null geodesics. dim(Y ) = 2n + 1. [null geodesic = (right

equivalent to) null curve with paralell velocities.]

Denote by πY : Z → Y be the natural projection.

Then locally we have a double fibration

Y 2n+1 πY←−−−−− Z2n+2 πX−−−−−→ Xn+2.

The distribution E2 on Z of rank 2n + 1 descends by πY to a

contact structure D on Y . πY ∗(E2) = D, (πY ∗)−1(D) = E2.

(Y,D)

(Z,E)

(X,C)
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【 General structure of null frontal hypersurfaces 】

Proposition. f : (Rn+1, p) → Xn+2 is a null frontal if and

only if there exists an E2-integral lift ef : (Rn+1, p) → Z2n+2

of f . i.e. ef∗(TtRn+1) ⊂ (E2)
ef(t)

, for any t ∈ Rn+1 nearby p.

Then πY
ef is D-integral and of rank ≤ n.

Then ef is foliated by πY -fibres in Z.

Thus f is ruled by a “Legendre family” of null geodesics in X.
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【 From Legendre maps to null frontal hypersurfaces 】

Let β : (Rn, p) → Y 2n+1 be a D-integral map-germ and

β : U → Y a representative of β, written by the same letter.

Then we set

U ×Y Z(= β−1Z = π−1
Y U) := {(u, z) ∈ U × Z | β(u) = πY (z)},

which is an (n + 1)-dimensional manifolds with the fibre product:

β−1Z
π−1

Y
β

−−−−→ Z

β−1πY ↓ 2 ↓ πY

Rn ⊃ U
β−−−−−→ Y
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Proposition. Let β : (Rn, p) → Y 2n+1 be a D-integral map-

germ. Then the induced map πXπ−1
Y β : β−1Z → Xn+2 is a

null frontal hypersurface,

i.e., for any (u0, z0) ∈ β−1Z, there exists a lift ˜πXπ−1
Y β :

(β−1Z, (u0, z0)) → Z of πXπ−1
Y β such that

(πXπ−1
Y β)∗(T(u,z)(β

−1Z) ⊆ ˜(πXπ−1
Y β)(u, z)⊥,

for any (u, z) nearby (u0, z0) ∈ β−1Z.
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【 Null family of null curves and their tangent 3-folds 】
n = 2, dim(X) = 4, dim(Z) = 6.

A C∞ map-germ α : (R×R, (t0, s0)) → X4 is called a null family

of null curves if there exists a C∞ lift eα : (R × R, (t0, s0)) → Z6

of α such that α∗(T(t,s)R
2) ⊂ eα(t, s)⊥ and

α∗(T(t,s)R×{s}) ⊂ eα(t, s), for any (t, s) ∈ R×R nearby (t0, s0).

Then a null frontal hypersurface is obtained as the union of null

tangent surfaces of null tangent curves αs(t) := α(t, s).
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Example. ( (1, 3) flat model.)

πX : Z6 → X4, πX(t, z1, z2, z3, θ1, θ2) = (t, z1, z2, z3),

πY : Z6 → Y 5,

πY (t, z1, z2, z3, θ1, θ2) = (z1−tθ1, z2−tθ2, z3− 1
2
t(θ2

1 +θ2
2), θ1, θ2).

The quadratic cone C is given by dtdz3 − 1
2
{(dz1)2 +(dz2)2} = 0.

The contact structure on Y is given by D : dy3−y4dy1−y5dy2 = 0.

Let β : (R2, 0) → Y be a Legendre map defined by

β(u1, u2) = (y1, y2, y3, y4, y5) = (u1, 1
2
u2
2, 1

6
u3
2, 0, 1

2
u2).

Then we have the null frontal f = πXπ−1
Y β : (R3, 0) → X,

f(u1, u2, t) = (t, u1, 1
2
u2
2 + 1

2
u2t, 1

6
u3
2 + 1

6
u2
2t).

The singular value set of f is parametrized by

α : (R × R, (0, 0)) → X, α(u1, u2) = (−2u2, u1,− 1
2
u2
2,− 1

12
u3
2),

which is a null family of null curves. Then the null frontal f is

obtained from α, and f is a union of tangent surfaces of null curves

with parameter u2, which is diffeomorphic to CE × R.
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An example of singular null hypersurface generated by a null fam-

ily of null curves in a Lorentz 4-manifold.

⊂ X4



ご清聴ありがとうございます．

Thank you for your attention.


