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A talk based on joint-works With,

and M. Takahashi %f‘

Y. Machida

Let (X, g) be a C° Lorentz 3-manifold (of signature (1, 2)).

Example (Minkowskii space):
X =R3, g¢g:ds*= da:% —da:% —dazg.

Definition. A C* immersion f : U(C R?) — (X, g) is called
null (or lightlike) if the pull-back metric f*g is degenerate

everywhere on U.

Let C':={v e TX | g(v,v) = 0} be the null quadratic cone field
associated to the indefinite metric g.
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It is easy to see that an immersion f : U — X is null if and only if

f«(TtU) is tangent to the cone Cy ) for any t € U.
Then U is foliated by null curves.

(A curve is called null if its velocity vectors belong to C C T'X. )
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Let 7 := PC ={(z,¢) | x € X,£is a null line in T, X} C P(TX),
the space of null directions, dim(Z) = 4.
Denote by mx : Z — X the natural projection, wx (x,£) = .

Lemma. Let f : U — X be a null immersion. Then there

exists a unique C°° map f: U — Z such that WXf: f and
that f«(TrU) = f(t)*, for any t € U.

f(t)L = {v € Tep X | g(v,u) =0, for any u € f(t)}

Z —  PT*X

£/ lrx

v L x
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Definition. A (possibly non-immersive) C'°° map-germ f :
(R?,p) — X is called a null frontal surface or a lightlike frontal
surface if there exists a C'°° map-germ f: (R?,p) — Z such
that 7x f = f and that f«(TxR?) C f(t)L, for any t € R?
nearby p.

F)L = {v € TiyX | g(v,u) =0, for any u € F(t)}.




Goo Ishikawa, Hokkaido University, Japan AEMEGT R & ARG O XONE &R 2 5

Problem. Classify “generic” singularities of null frontal

surfaces up to local diffeomorphisms.

— Minkowskii case: Chino-Izumiya 2010 (lightlike developables).
— O(2, 3)-homogeneous case: Machida-Takahashi-I 2011 (tangent

surfaces of directed null curves).

We show that any null frontal surface is a null tangent sur-
face of a directed null curves (in a wider sense) and we give

the generic classification of singularities of null frontal sur-

taces for general Lorentz 3-manifolds, moreover for arbitrary

non-degenerate (strictly convex) cone fields on 3-manifolds.
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Solution. The list of generic singularities consists of three

local diffeomorphism classes, cuspidal edge (CE), swallow-
tail (SW) and Shcherbak surface (SB).

Cuspidal Edge SWallowtail ShcherBak surface
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We observe the “stability” or, in other words, “robustness”

of the classification of singularities.

Query. What are the geometric structures behind, which

dominate the appearance of singularities of null frontals.
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[ Pseudo-product Engel structure ]

Define a distribution

E= |J (mx);'(0) c Tz,

(x,0)eZ

over /, where wx. : T'Z — T X is the differential map of 7x.
Then F is of rank 2 with the growth (2, 3,4), i.e.

E? := E+[&,E] is generated by a subbunde E? of rank 3 and

E? 4+ [£,£%] = T Z, in other words, E is an Engel structure

on the 4-manifold Z.



Goo Ishikawa, Hokkaido University, Japan AEMEGT R & ARG O XONE &R 2 9

Define other distributions
E, :=Ker(rx.) CECTZ, Es:=ch(E*)CECTZ,
Cauchy characteristic of EZ2.
Then both E; and E> are of rank 1, and we have the de-

composition

E = F & B,

a pseudo-product Engel structure (in the sense of Noboru

Tanaka). Moreover we have

E+16,E =8, E°4[&,E)=TZ, [E,ECé&.
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Let Y denote the leaf space of E3, which is regarded as the
space of null geodesics.
Denote by my : Z — Y be the natural projection.
Locally we have the double fibration
y3 Y g4 TX 3
The distribution E* on Z of rank 3 descends by my to a

contact structure D on Y:
(ry+)(E*) =D, E°=(ny.) (D).

(Z, E)

N
& (¥, D) (X, ©) £\
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[ Singularities of null frontal surfaces )

Lemma. f: (R? p) — X is a null frontal if and only if
there exists an FE°-integral lift f . (R%,p) — Z of f.
(f)*(TtRi) C (EQ)J;;(t), for any ¢t € R? nearby p.

Then 7y f is D-integral and, therefore, of rank < 1.

Thus ]?collapses by my to a D-integral curve, in other words,
to a “Legendre curve”, and fis foliated by my-fibres. There-
fore f is ruled by a “Legendre family” of null geodesics.

The singular locus of f = Xfconsist of an E-integral curve

~v and the my-fibres of singular points of the Legendre curve.
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Thus the null frontal f is regarded as the tangent surface
to a (directed) null curve mx-y.

Avoiding very degenerate cases, we start with a germ of
E-integral curve v : (R,t9) — Z so that m, 'my~y is right

equivalent to f, and f is right equivalent to Xw;-lmﬂy.
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Theorem 1. (Machda-Takahashi-I)

For a generic E-integral curve v : I — Z, the induced null
frontal wxm, myy is diffeomorphic (right-left equivalent)
along v to cuspidal edge, swallowtail or Shcherbak surface.
The same classification result holds for arbitrary non-

degenerate (strictly convex) cone structure C' C T'X.

Sl
| |

il

RN
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Cuspidal Edge SWallowtail ShcherBak surface
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(Z, E = F; EDEQ)

pseudo-product Engel structure

3rd order ODE N\

(Y, D)

projective contact structure

(X,C)

non-degenerate (strictly convex)

cone structure

14

Classification of geometric structures, contact geometry of 3rd or-

der ODE, by E. Cartan, S.-S. Chern(1940), N. Tanaka,
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“Wiunschmann invariant”’= 0 <— (': metric cone.

There are works by H. Sato, T. Ozawa, A. Yamada-Yoshikawa,
Simonetta Frittelli, C. Kozameh, E.T. Newman, and so forth.

Also there are relations with the theory of Lie contact structures,
Lie tensor metric structures (Sato, Yamaguchi, Miyaoka), Grass-
mannian structures, (Machida, Sato), CR geometry, “sub-semi-

Riemannian geometry”, etc..

(Please refer the next afternoon lecture by Y. Machida. )
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Some details of the classification.
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Let C' C T'X be a non-degenerate cone structure of X.
Then dlocal.coord. x1,x2,x3,0 of Z such that

X - (xl L2, I3, )'_> ($1,ZC2,$3)

E1:<89> Fs _<8;gl+982 + a(zx, 9) —|—e(w 9)80>
(e is determined from a, C non—degenerate <:> agg 7= 0.

If a = %92, then e = 0 and C is flat.)

L7

Theorem 2. Let v : (R,t9g) — Z be an FE-integral curve,
f = 7Tx7T;17Ty’y : (R?, (t9,0)) — X the null frontal generated
by myy. Set ¢(t) :=0'(t) — (eov)(t)z|(t). Then

f~CE <= z/(to) # 0,¢(to) # 0

f~SW < ZEll (to) = 0, p(to) # O,:C’ll(to) #£0

f~SB < :I?’l (to) # 0, p(tg) = 0, (tg) £ 0

Here ~(t) = (x1(), x2(t), z3(t), 0(2)).
Note that mxy is a null geodesic <= p(t) = 0.
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The dual objects to null frontals are given by tangent sur-
faces 7Ty7T)_(17T x 7 of Legendre curves my -y ruled by tangential

“Legendre geodesics” (Legendre lines) mymyx ' (2), (xz € X).

Theorem 3. For a generic E-integral curve v : I — Z,
Ty Ty 7x7y is diffeomorphic to cuspidal edge (CE), Mond
surface (MD), or generic folded pleat (GFP).

cuspidal edge Mond surface generic folded pleat
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dlocal coordinates x, vy, p,q of Z such that

Ty : (2, ¥,p,9) — (z,Y,D)

by = <aa: _I_pc’?y +a5; + f(z,y,p,9) 8q> Ba = <8%>'
For an FE-integral curve ~(t) = (x(t),y(t),p(t),q(t)), we

put ¥ (t) :=q'(t) — (f o v) ()" (t).

Theorem 4. wy 7wy mx7 is diffeomorphic at (g, 0) to
cuspidal edge (CE) <= x'(t0) # 0,%(to) # 0,

Mond surface (MD) <= z'(to) # 0, (to) = 0, (t0) # 0,
folded pleat (FP) <= z'(to) = 0,v¢(to) # 0,z" (to) # 0.

Note that 7y is a solution of 3rd order ODE ¢’ = f(z, v, p, q)
<~ Y(t) = 0.
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Thanks to Engel integral curves v (“dancing on the heaven”),

we have got the “asymmetric duality” of

singularities of tangent surfaces.

Y Z X
Wyﬂgiﬂxﬁ’ Y 'WXW;1WYW
CE (I) non-tangent to E; CE
non-tangent to Lo
MD (IT) simply tangent to E; SW
non-tangent to Fo
FP (IIT) non-tangent to E; SB

simply tangent to Fs

20
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How about the higher dimensional cases 7
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Let X be an (n + 2)-dim. C°° manifold with a conformal class
lg] of an indefinite metric g of signature (r,s), r + s = n + 2, e.g.
(r,s) = (1,n + 1) Lorentz, (r,s) = (2,2) neutral, etc..

Let C := {v € TX | g(v,v) = 0} be the null quadratic cone
field.
Set Z := PC ={(x,f) | x € X,¢is a null line in T X} C P(TX),
the space of null directions, dim(Z) = 2n + 2.
Denote by mx : Z — X the natural projection, wx (x,£) = .

Definition. A C* map-germ f : (R""!,p) — X is called a
null frontal (hypersurface) or a lightlike frontal (hypersurface)
if there exists a C'°° map-germ ]7: (R*T!,p) — Z such that
rxf = f and that f.(TyR"*1) C f(t)*, for any ¢t € R*H1
nearby p.
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Note that f(¢t)+ is a lightlike hyperplane.
An immersion to Z is called null if the pull-back of the metric g
is degenerate everywhere. Then null immersions are null frontals.

For example, null hyperplanes and null cones, in the flat case,

are (non-generic) null frontal hypersurfaces.

Problem. Understand the geometry of null frontal hyper-
surfaces. Moreover classify “generic”singularities of null

frontal hypersurfaces of (X"12,[qg]).
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To try to understand the geometry well, we observe a duality

between indefinite metrics and contact structures.

Define a distribution £ = U(x’e)ez(wx);l(ﬁ) C TZ, which is
of rank n 4+ 1 and with the growth (n + 1,2n 4+ 1,2n + 2):
E? := £+ €, ] is generated by a subbunde E? of rank 2n + 1 and
E2+[E,E2)=T2Z.

Let F1 := Ker(wx,). Then Ej is an integrable subbundle of F
of rank n.

Moreover we see that the distribution E? has the Cauchy char-

acteristic Ey := ch(E?), which is a subbundle of E of rank 1.
Then we have a pseudo-product structure

E = F; & E2, rank(F1) =n, rank(FE2) =1,
(E1, FEo, integrable) over Z (in the sense of Noboru Tanaka).
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Let Y denote the leaf space of Fo, which is regarded as the
space of null geodesics. dim(Y') = 2n + 1. |[null geodesic = (right
equivalent to) null curve with paralell velocities.]

Denote by my : Z — Y be the natural projection.

Then locally we have a double fibration

Y2n—|—1 ) [iig ZQ’I’L—I—Q TX >)(’I’I,—I—Q

The distribution E? on Z of rank 2n + 1 descends by 7y to a
contact structure D on Y. wy.(E?) = D, (ny.) (D) = EZ.

(7, E)
<N I

& (¥, D) (X, ©) £\
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[ General structure of null frontal hypersurfaces ]

Proposition. f : (R"T!,p) — X™T2 is a null frontal if and
only if there exists an E?-integral lift f : (R”‘H,p) ., Z2n+2

of f. i.e. f*(TtR"H'l) C (EQ)f(ty for any t € R® 1! nearby p.

Then Wyfis D-integral and of rank < n.
Then f is foliated by my -fibres in Z.
Thus f is ruled by a “Legendre family” of null geodesics in X.
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[ From Legendre maps to null frontal hypersurfaces ]

Let B: (R™,p) — Y?"T1 be a D-integral map-germ and
B:U — Y a representative of 3, written by the same letter.

Then we set
Uxy Z(=B"1Z=n,'U) :={(u,2) €U x Z | B(u) = ny (2)},
which is an (n 4+ 1)-dimensional manifolds with the fibre product:

—1
7TY6\

3=17 Z

B~ 'ry | O I Ty

R"™ DU o > Y
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Proposition. Let 3 : (R",p) — Y?"T! be a D-integral map-
germ. Then the induced map 7TX7T;,16 . 3717 — X"*T2 is a
null frontal hypersurface,

i.e., for any (ug,z20) € B 'Z, there exists a lift WXW;16 ;
(5_127 (ug, z0)) — Z of wxw;lﬁ such that

(mx 7y B)x(T(w,y(8712) C (mxmy " B)(u, 2) T,
for any (u, z) nearby (ug,20) € 37 1Z.
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[ Null family of null curves and their tangent 3-folds ]
n =2, dim(X) = 4,dim(~2) = 6.
A C*° map-germ o : (R xR, (tg,s0)) — X* is called a null family
of null curves if there exists a C* lift a : (R x R, (tg,s0)) — Z°
of a such that ax (T(t,S)RQ) C a(t,s)* and
ax (T, s\R x {s}) C a(t, s), for any (¢,s) € R X R nearby (o, s0)-

Then a null frontal hypersurface is obtained as the union of null
tangent surfaces of null tangent curves a;(t) := af(t, s).



Goo Ishikawa, Hokkaido University, Japan AEMEGT R & ARG O XONE &R 2 30

Example. ( (1,3) flat model.)

TX - 76 — X4,7Tx(t,21,22,23,91,92) = (t,zl,ZQ,Zg),

Ty 1 Z% - Y?,

7wy (t, 21, 22, 23,01,02) = (21 —t01, 290 —tO2, 23 — %t(@% —I—QS), 01,02).
The quadratic cone C' is given by dtdzs — %{(dzl)2 +(dz2)?} = 0.
The contact structure on Y is given by D : dys —yady1 —ysdys = 0.
Let B8: (R?,0) — Y be a Legendre map deﬁned by

B(u1,u2) = (Y1,Y2,Y3,Y4,Y5) = (u1, —ug, —u2, 0, %UQ).

Then we have the null frontal f = nxm,, 15:(R3,0) — X,
fluy,uz,t) = (t, ui, %u% + %u t, éu% + 1u§t)

The singular value set of f is parametrized by

Q- (R X R, (070)) — X, a(ulauQ) — (_2U27’UJ17—%U%7—112 %)
which is a null family of null curves. Then the null frontal f is
obtained from «, and f is a union of tangent surfaces of null curves

with parameter us, which is diffeomorphic to CE X R.
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An example of singular null hypersurface generated by a null fam-

ily of null curves in a Lorentz 4-manifold.
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Thank you for your attention.



