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p Preliminary

Degenerations and
their splitting deformations



p Degeneration of Riemann surfaces
M : a smooth complex surface ∆ : the unit disk in C
π : M → ∆ : a proper surjective holomorphic map s.t.

Xs := π−1(s) (s ̸= 0) are smooth curves of genus g.
X0 := π−1(0) is a singular fiber.

(⇐⇒ 0 is a unique critical value.)

π : M → ∆ is called
a degeneration (or, degenerating family)

of Riemann surfaces of genus g.

Regard X0 as the divisor defined by π:
X0 =

∑
miΘi,

where Θi is an irreducible component
with multiplicity mi.
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p Splitting of singular fibers
π : M → ∆ : a degeneration w/ singular fiber X0

{πt : Mt → ∆} : a family of deformations of π : M → ∆
i.e. π0 : M0 → ∆ coincides with π : M → ∆.

・・
If πt (t ̸= 0) has k singular fibers Xs1, . . . , Xsk , k ≥ 2,
=⇒We say that X0 splits into Xs1, . . . , Xsk .
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p Splittability of singular fibers
How to construct splittings

Double covering method
Moishezon (genus 1 case), Horikawa (genus 2 case),
Arakawa-Ashikaga (hyperelliptic case)

Barking deformation
Takamura (some criterion)

Fact (Atoms of singular fibers)
(1) A Lefschetz fiber and (2) a multiple smooth fiber

admit no splittings (i.e. any deformation is equisingular).

Conjecture (from a topological viewpoint)
Every singular fiber can split into singular fibers
each of which is (1) or (2), in finite steps of deformations.
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p Topological classification
π : M → ∆ is topologically equivalent

to another degeneration π′ : M ′ → ∆
df⇐⇒ ∃ ori. preserving homeomorphisms

H : M →M ′, h : ∆→ ∆ s.t. h ◦ π = π′ ◦H .

M

π
��

H // M ′

π′

��
∆ h // ∆

⟲

Theorem (Terasoma)
Top. equivalent degenerations are deformation equivalent.

・・

The top. classes of degenerations
are completely determined by
their topological monodromies.

Theorem
(Imayoshi, Shiga-Tanigawa, Earle-Sipe)

Every topological monodromy
is pseudo-periodic of negative twist.
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p Topological classification
Theorem (Matsumoto-Montesinos, 91/92)top. equiv. classes of
minimal degenerations of
Riemann surfs. of genus g

 1:1←→

conj. classes in MCGg of
pseudo-periodic mapp. classes
of negative twist


via topological monodromy, for g ≥ 2.

pLefschetz fiber Right-handed Dehn twist
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3
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p Topological classification
Theorem (Matsumoto-Montesinos, 91/92)top. equiv. classes of
minimal degenerations of
Riemann surfs. of genus g

 1:1←→

conj. classes in MCGg of
pseudo-periodic mapp. classes
of negative twist


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pSingular fiber

1

Pseudo-periodic mapping class
of negative twist
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p Topics

Splittability
into Lefschetz fibers



p Degeneration of propeller surfaces
A propeller surface is a Riemann surface Σg of genus g ≥ 2

equipped with Zg-action s.t. Σg/Zg has genus 1.
ωg : a propeller automorphism
Xg : the singular fiber with monodromy ωg

M

π

∆

X5

5

4
3
2
1

1

0

ω5
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p Case g = 2

Theorem (Y. Matsumoto)
π : M → ∆ : the degeneration of Riemann surfaces of genus 2

with monodromy ω2

Then its singular fiber X2 can split into four Lefschetz fibers.
Moreover, their vanishing cycles are as depicted below.

ωω2
X

2
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p Psudo-propeller maps

ω
(2)
3

γ
m = 3

n = 2

X
(2)
3

m = 3

2
1

1 }
n = 2

γ : a separating simple loop on Σg

s.t. Σg \ γ = Σm,1

⨿
Σn,1 (g = m+ n,m ≥ 1, n ≥ 0)

ω(n)
m : a psudo-periodic map satisfying

ω
(n)
m |Σm,1 ∼ a periodic map with a fixed pt of rot angle 2π

m
.

ω
(n)
m |Σn,1 ∼ id. NOTE: (ω(n)

m )m = τγ

X(n)
m : the singular fiber with monodromy ω(n)

m
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p Psudo-propeller maps
X

(1)
4
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4
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ω
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p Psudo-propeller maps
X

(3)
2

2

1

1

X
(4)
1

ω
(3)
2

γ

ω
(4)
1 = τγ
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p Results
Theorem (O-Takamura)

1 For any m ≥ 2, n ≥ 0, the singular fiber
X(n)

m can split into X
(n+1)
m−1 and three Lefschetz fibers.

2 For any g ≥ 2, we have the following sequence:
X(0)

g −→X
(1)
g−1 −→ · · · −→X

(g−2)
2 −→X

(g−1)
1 ,

where “A→ B” means “A splits into B and 3 Lefschetz fibers”.

X(n)
m

m

m − 1

2
1

1

}
n

−−−→

X
(n+1)
m−1

m − 1

m − 2

1

1

}
n+ 1
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p Results

X(n)
m −→X

(n+1)
m−1

g = 2

g = 3

g = 4

2 →
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p Remark

Remark of Theorem
1 Generalization of Matsumoto’s splitting for genus 2.
2 Analogous to adjacency diagrams of singularities:

A6
// A5

// A4
// A3

// A2
// A1

D6
//

==

D5
//

==

D4

>>

E6

==

FF

3 A splitting of a singular fiber into Lefschetz fibers gives
a Dehn-twist expression of its topological monodromy.

14 / 19



p Case g = 2 (bis)

Theorem (Y. Matsumoto)
1 The singular fiber X2 can split into four Lefschetz fibers,

and their vanishing cycles are as depicted below.
2 ω2 = τ0 ◦ τa ◦ τb ◦ τc.

ωω2

0

a

b

c
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p Case g = 3

Proposition
1 X

(0)
3 can split into X

(1)
2 and three Lefshetz fibers,

and their vanishing cycles are as depicted below.

2 ω3 = ω
(1)
2 ◦ τa1

◦ τb1 ◦ τc1 .

ω3

ω
(1)
2

a1

b1

c1
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p Case g = 3

Proposition
ω3 = τ0 ◦ (τa2

◦ τb2 ◦ τc2) ◦ (τa1
◦ τb1 ◦ τc1).

0

a1

a2

b1

b2

c1

c2
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p Dehn-twist expression

Theorem
ωg = τ0 ◦ (τag−1

◦ τbg−1
◦ τcg−1

)
◦ · · · ◦ (τa1

◦ τb1 ◦ τc1).

0

a1

ag−1

b1

bg−1

c1

cg−1

17 / 19



p Results

f ∈ MCG(Σg) : a periodic mapping class of order m
b(f) := # {branch points of Σg → Σg/f}
p(f) := # {propeller points of f} ≤ h(f)

fixed points of f with rotation angle ±1/m
r(f) :=

∑
qj/ℓj ∈ Z+ : the total valency sum

Theorem (O)
X : the singular fiber equipped with periodic monodromy f
Suppose f satisfies at least one of the following:

b(f)− p(f) ≤ r(f).
b(f)− p(f) ≤ 2, r(f) = 1 and genus(Σg/f) = 0.

Then X can splits into Lefschetz fibers.

18 / 19
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p Results

Remark of Theorem
1 If m = 2, 3, then X can split into Lefschetz fibers.
2

genus 1 2 3 4 5 6

# of periodic m.c. 8 17 47 72 76 203
# of periodic m.c. 8 14 30 41 35satisfying (∗)
# of powers of periodic m.c. 8 16 45 66 66satisfying (∗)

18 / 19



p Ending

Thank you for your attention.


