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Degeneration of Riemann surfaces

M : a smooth complex surface A : the unit disk in C

m: M — A : aproper surjective holomorphic map s.t.
m X, := 7w 1(s) (s # 0) are smooth curves of genus g.
m X, := w~1(0) is a singular fiber.

(<= 0 is a unique critical value.)
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Splitting of singular fibers

m: M — A: adegeneration w/ singular fiber X

{m : My — A} : afamily of deformations of 7 : M — A
i.e. 7r0 MO — A coincides with 7 : M — A.

ration M deformed degeneration V/;

03‘0

If 70, (¢ ;é 0) has k singular fibers Xsl, vy X k> 2,
=—> We say that X splits into X, , ..., X, .
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Splittability of singular fibers

How to construct splittings

m Double covering method
m Moishezon (genus 1 case), Horikawa (genus 2 case),
Arakawa-Ashikaga (hyperelliptic case)

m Barking deformation
m Takamura (some criterion)

Fact (Atoms of singular fibers)
(1) A Lefschetz fiber and (2) a multiple smooth fiber
admit no splittings (i.e. any deformation is equisingular).

Conjecture (from a topological viewpoint)
Every singular fiber can split into singular fibers
each of which is (1) or (2), in finite steps of deformations.
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Topological classification

m: M — Ais topologically equivalent Moy
to another degeneration 7’ : M’ — A ﬂl o |
<L Jori, preserving homeomorphisms h A

H:M—M,h: A~ Asthor=mn"oH.

Theorem (Terasoma)
Top. equivalent degenerations are deformation equivalent.

The top. classes of degenerations
are completely determined by
their topological monodromies.

Theorem
(Imayoshi, Shiga-Tanigawa, Earle-Sipe)

Every topological monodromy
is pseudo-periodic of negative twist.




Topological classification

Theorem (Matsumoto-Montesinos, 91/92)

top. equiv. classes of » con;j. classes in MCG,, of
minimal degenerations of »<—< pseudo-periodic mapp. classes
Riemann surfs. of genus g of negative twist

via topological monodromy, for g > 2.

Lefschetz fiber Right-handed Dehn twist

smooth complex surface M
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Topological classification

Theorem (Matsumoto-Montesinos, 91/92)

top. equiv. classes of » con;j. classes in MCG,, of
minimal degenerations of »<—< pseudo-periodic mapp. classes
Riemann surfs. of genus g of negative twist

via topological monodromy, for g > 2.

Singular fiber Pseudo-periodic mapping class
smooth complex surface M . .
of negative twist

V) <R

open disk A




Splittability
into Lefschetz fibers



Degeneration of propeller surfaces

A propeller surface is a Riemann surface >, of genus g > 2
equipped with Z,-action s.t. ¥,/Z, has genus 1.

wg . a propeller automorphism

X, : the singular fiber with monodromy w,

p

X5
.
o .

a) ]




Theorem (Y. Matsumoto)

m: M — A : the degeneration of Riemann surfaces of genus 2
with monodromy wo
Then its singular fiber X5 can split into four Lefschetz fibers.
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Theorem (Y. Matsumoto)

m: M — A : the degeneration of Riemann surfaces of genus 2
with monodromy wo

Then its singular fiber X5 can split into four Lefschetz fibers.

Moreover, their vanishing cycles are as depicted below.

W2

P
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Psudo-propeller maps
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m

m =3
b9 }n=2

7 : a separating simple loop on X,
st. X2 \v=2,1][21 (@=m+nm>1n>0)
w(™ : a psudo-periodic map satisfying

X (™ : the singular fiber with monodromy w ™)




Psudo-propeller maps

@ @
X3" @

7 : a separating simple loop on X,
st. X2 \v=2,1][21 (@=m+nm>1n>0)
w(™ : a psudo-periodic map satisfying

m wfﬁ)hm ~ a periodic map with a fixed pt of rot angle %’r

QI
W |z, ~id NOTE: (wg‘))m =T,

X (™ : the singular fiber with monodromy w ™)




Psudo—propeller maps

Xil) x0 @
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Psudo-propeller maps

3 f 4
X() Xf)




Theorem (O-Takamura)

For any m > 2, n > 0, the singular fiber

X (™ can splitinto X" and three Lefschetz fibers.

xp & X @
5 1 a5 2
} n } n+1
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Theorem (O-Takamura)
For any m > 2, n > 0, the singular fiber
X (™ can splitinto X, (n+ ) and three Lefschetz fibers.
Forany g > 2, we have the following sequence:
X0 — ngl_)l s XD, x oD,
where “A — B” means “A splits into B and 3 Lefschetz fibers”.
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(n+1)
m—1
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(n+41)
m—1

XM — X




(n+41)
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Remark of Theorem
Generalization of Matsumoto’s splitting for genus 2.

Analogous to adjacency diagrams of singularities:

/ 1 D4/
e

Eg

As Ay

A splitting of a singular fiber into Lefschetz fibers gives
a Dehn-twist expression of its topological monodromy.
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Case g = 2 (bis)

Theorem (Y. Matsumoto)

The singular fiber X5 can split into four Lefschetz fibers,
and their vanishing cycles are as depicted below.
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Case g = 2 (bis)

Theorem (Y. Matsumoto)

The singular fiber X5 can split into four Lefschetz fibers,
and their vanishing cycles are as depicted below.

B Wy — TogO Ty OTp O Te.

W2
<|5180°

‘<I>’ ‘<>’




Case g =3

Proposition

Xéo) can split into Xél) and three Lefshetz fibers,
and their vanishing cycles are as depicted below.
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Case g =

Proposition

Xéo) can split into Xél) and three Lefshetz fibers,
and their vanishing cycles are as depicted below.

— D
W3 = Wy ' O Ty, OTh, OTe,.

(1)
2

w




Case g =3

Proposition
1] X( ) can split into four Lefshetz fibers (including X(2))
and their vanishing cycles are as depicted below.

w
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Case g =

Proposition

Xél) can split into four Lefshetz fibers (including Xf)),
and their vanishing cycles are as depicted below.

1
wé):TOOTaloTbloTcl.

w




Case g =3

Proposition
w3 = T O (Tgq, O Th, O Te,) © (T, O Tp, O Te,).




Dehn-twist expression

Theorem
wWg =T9 0 (Taq,_, ©Tb,_, O Tc,_,)
0-++0(Tg, OTp, OTc,).




f € MCG(X,) : a periodic mapping class of order m

b(f) := # {branch points of £, — 3,/ f} 90’

p(f) = # {propeller points of f} < h(/) i
’fixed points of f with rotation angle :tl/m‘ - @ 77777 <

r(f) :==>_q;/l; € Z, : the total valency sum A /




f € MCG(X,) : a periodic mapping class of order m

b(f) := # {branch points of £, — 3,/ f} 90°
p(f) := # {propeller points of f} < h(f) i
’fixed points of f with rotation angle :tl/m‘ > o 4

r(f) :==>_q;/l; € Z, : the total valency sum A /

Theorem (O)

X : the singular fiber equipped with periodic monodromy f
Suppose f satisfies at least one of the following:

m b(f) —p(f) <r(f).
mO(f) —p(f) <2,7(f) =1and genus(X,/f) = 0.
Then X can splits into Lefschetz fibers.
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Remark of Theorem
If m = 2,3, then X can split into Lefschetz fibers.

genus 1 2 3 4 5 6
# of periodic m.c. 8 17 47 72 76 203
# of periodic m.c. 8 14 30 41 35

satisfying (x)
# of powers of periodic m.c.

o 8 16 45 66 66
satisfying (x)

ﬂ



Thank you for your attention.



