Splittings of singular fibers and vanishing cycles

Takayuki OKUDA

the University of Tokyo

Kanazawa University Satellite Plaza January 18, 2017

Preliminary

Degenerations and their splitting deformations

 $\label{eq:main_state} \begin{array}{ll} M: \text{ a smooth complex surface } & \Delta: \text{ the unit disk in } \mathbb{C} \\ \pi: M \to \Delta: \text{ a proper surjective holomorphic map s.t.} \end{array}$

 $lacksymbol{X}_s:=\pi^{-1}(s)$ (s
eq 0) are smooth curves of genus g. $lacksymbol{X}_0:=\pi^{-1}(0)$ is a singular fiber.

smooth complex surface Mπ open disk Λ

 $\iff 0$ is a unique critical value.)

 $\pi: M \to \Delta$ is called a degeneration (or, degenerating family) of Riemann surfaces of genus g.

 $\label{eq:main_state} \begin{array}{ll} M: \text{ a smooth complex surface } & \Delta: \text{ the unit disk in } \mathbb{C} \\ \pi: M \to \Delta: \text{ a proper surjective holomorphic map s.t.} \end{array}$

• $X_s := \pi^{-1}(s)$ ($s \neq 0$) are smooth curves of genus g. • $X_0 := \pi^{-1}(0)$ is a singular fiber.

smooth complex surface Mπ open disk Δ

($\iff 0$ is a unique critical value.)

 $\begin{aligned} \pi: M \to \Delta \text{ is called} \\ \text{a degeneration (or, degenerating family)} \\ \text{ of Riemann surfaces of genus } g. \end{aligned}$

 $\label{eq:main_state} \begin{array}{ll} M: \text{ a smooth complex surface } & \Delta: \text{ the unit disk in } \mathbb{C} \\ \pi: M \to \Delta: \text{ a proper surjective holomorphic map s.t.} \end{array}$

• $X_s := \pi^{-1}(s)$ ($s \neq 0$) are smooth curves of genus g. • $X_0 := \pi^{-1}(0)$ is a singular fiber.

smooth complex surface M2 π open disk Δ

($\iff 0$ is a unique critical value.)

 $\begin{aligned} \pi: M \to \Delta \text{ is called} \\ \text{a degeneration (or, degenerating family)} \\ \text{ of Riemann surfaces of genus } g. \end{aligned}$

 $\label{eq:main_state} \begin{array}{ll} M: \text{ a smooth complex surface } & \Delta: \text{ the unit disk in } \mathbb{C} \\ \pi: M \to \Delta: \text{ a proper surjective holomorphic map s.t.} \end{array}$

• $X_s := \pi^{-1}(s)$ ($s \neq 0$) are smooth curves of genus g. • $X_0 := \pi^{-1}(0)$ is a singular fiber.

π open disk Δ

smooth complex surface M

($\iff 0$ is a unique critical value.)

 $\begin{aligned} \pi: M \to \Delta \text{ is called} \\ \text{a degeneration (or, degenerating family)} \\ \text{ of Riemann surfaces of genus } g. \end{aligned}$

 $\label{eq:main_state} \begin{array}{ll} M: \text{ a smooth complex surface } & \Delta: \text{ the unit disk in } \mathbb{C} \\ \pi: M \to \Delta: \text{ a proper surjective holomorphic map s.t.} \end{array}$

• $X_s := \pi^{-1}(s)$ ($s \neq 0$) are smooth curves of genus g. • $X_0 := \pi^{-1}(0)$ is a singular fiber.

π open disk Δ

smooth complex surface M

($\iff 0$ is a unique critical value.)

 $\begin{aligned} \pi: M \to \Delta \text{ is called} \\ \text{a degeneration (or, degenerating family)} \\ \text{ of Riemann surfaces of genus } g. \end{aligned}$

 $\label{eq:main_state} \begin{array}{ll} M: \text{ a smooth complex surface } & \Delta: \text{ the unit disk in } \mathbb{C} \\ \pi: M \to \Delta: \text{ a proper surjective holomorphic map s.t.} \end{array}$

• $X_s := \pi^{-1}(s)$ ($s \neq 0$) are smooth curves of genus g. • $X_0 := \pi^{-1}(0)$ is a singular fiber.

π open disk Δ

smooth complex surface M

($\iff 0$ is a unique critical value.)

 $\begin{aligned} \pi: M \to \Delta \text{ is called} \\ \text{a degeneration (or, degenerating family)} \\ \text{ of Riemann surfaces of genus } g. \end{aligned}$

Splitting of singular fibers

$\pi: M \to \Delta$: a degeneration w/ singular fiber $\boldsymbol{X_0}$

 $\{\pi_t : M_t \to \Delta\}$: a family of deformations of $\pi : M \to \Delta$ i.e. $\pi_0 : M_0 \to \Delta$ coincides with $\pi : M \to \Delta$.

If $\pi_t (t \neq 0)$ has k singular fibers $X_{s_1}, \ldots, X_{s_k}, k \geq 2$, \implies We say that X_0 splits into X_{s_1}, \ldots, X_{s_k} .

Splitting of singular fibers

$\pi: M \to \Delta$: a degeneration w/ singular fiber $\boldsymbol{X_0}$

If $\pi_t \ (t \neq 0)$ has k singular fibers $X_{s_1}, \ldots, X_{s_k}, k \ge 2$, \implies We say that X_0 splits into X_{s_1}, \ldots, X_{s_k} .

How to construct splittings

Double covering method

- Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)
- Barking deformation
 - Takamura (some criterion)

Fact (Atoms of singular fibers)
(1) A Lefschetz fiber and (2) a multiple smooth fiber admit no splittings (i.e. any deformation is equisingular).

Conjecture the can split into singular fibers Every singular fiber can split into singular fibers each of which is (1) or (2), in finite steps of deformations.

How to construct splittings

Double covering method

 Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)

Barking deformation

Takamura (some criterion)

Fact (Atoms of singular fibers)
(1) A Lefschetz fiber and (2) a multiple smooth fiber admit no splittings (i.e. any deformation is equisingular).

Conjecture Conjecture Conj

How to construct splittings

Double covering method

 Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)

Barking deformation

Takamura (some criterion)

Fact (Atoms of singular fibers)
(1) A Lefschetz fiber and (2) a multiple smooth fiber admit no splittings (i.e. any deformation is equisingular).

Conjecture (from a <u>topological viewpoint</u>) Every singular fiber can split into singular fibers each of which is (1) or (2), in finite steps of deformations.

How to construct splittings

Double covering method

 Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)

Barking deformation

Takamura (some criterion)

Fact (Atoms of singular fibers)
(1) A Lefschetz fiber and (2) a multiple smooth fiber admit no splittings (i.e. any deformation is equisingular).

Conjecture (from a <u>topological viewpoint</u>) Every singular fiber can split into singular fibers each of which is (1) or (2), in finite steps of deformations.

How to construct splittings

Double covering method

 Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)

Barking deformation

Takamura (some criterion)

Fact (Atoms of singular fibers)
(1) A Lefschetz fiber and (2) a multiple smooth fiber admit no splittings (i.e. any deformation is equisingular).

Conjecture (from a topological viewpoint) Every singular fiber can split into singular fibers each of which is (1) or (2), in finite steps of deformations.

$\begin{array}{l} \pi\colon M\to\Delta \text{ is topologically equivalent} \\ \text{ to another degeneration } \pi':M'\to\Delta \\ \xleftarrow{}^{\mathrm{df}}\exists \text{ ori. preserving homeomorphisms} \\ H\colon M\to M',h\colon\Delta\to\Delta \text{ s.t. } h\circ\pi=\pi'\circ H. \end{array}$

Theorem (Terasoma)

Top. equivalent degenerations are deformation equivalent.

he top. classes of degenerations are completely determined by their **topological monodromies**.

reorem mayoshi, Shiga-Tanigawa, Earle-Sipe) rery topological monodromy seudo-periodic of negative twis

 $\begin{array}{l} \pi\colon M\to\Delta \text{ is topologically equivalent} \\ \text{ to another degeneration } \pi':M'\to\Delta \\ \xleftarrow{}^{\mathrm{df}}\exists \text{ ori. preserving homeomorphisms} \\ H\colon M\to M',h\colon\Delta\to\Delta \text{ s.t. } h\circ\pi=\pi'\circ H. \end{array}$

Theorem (Terasoma)

Top. equivalent degenerations are deformation equivalent.

The top. classes of degenerations are completely determined by their **topological monodromies**. **Theorem** (Imayoshi, Shiga-Tanigawa, Earle-Sipe) Every topological monodromy is **pseudo-periodic of negative twist**.

 $\begin{array}{l} \pi\colon M\to\Delta \text{ is topologically equivalent} \\ \text{ to another degeneration } \pi':M'\to\Delta \\ \xleftarrow{}^{\mathrm{df}}\exists \text{ ori. preserving homeomorphisms} \\ H\colon M\to M',h\colon\Delta\to\Delta \text{ s.t. } h\circ\pi=\pi'\circ H. \end{array}$

$$\begin{array}{c|c} M \xrightarrow{H} M' \\ \pi & & & \downarrow \pi' \\ \Delta \xrightarrow{h} \Delta \end{array}$$

Theorem (Terasoma)

Top. equivalent degenerations are deformation equivalent.

The top. classes of degenerations are completely determined by their topological monodromies.

Theorem

(Imayoshi, Shiga-Tanigawa, Earle-Sipe)

Every topological monodromy

is pseudo-periodic of negative twist.

 $\begin{array}{l} \pi\colon M\to\Delta \text{ is topologically equivalent} \\ \text{ to another degeneration } \pi':M'\to\Delta \\ \xleftarrow{}^{\mathrm{df}}\exists \text{ ori. preserving homeomorphisms} \\ H\colon M\to M',h\colon\Delta\to\Delta \text{ s.t. } h\circ\pi=\pi'\circ H. \end{array}$

$$\begin{array}{c|c} M & \xrightarrow{H} & M' \\ \pi & & & \downarrow \\ \pi & & & \downarrow \\ \Delta & \xrightarrow{h} & \Delta \end{array}$$

Theorem (Terasoma)

Top. equivalent degenerations are deformation equivalent.

The top. classes of degenerations are completely determined by their topological monodromies.

Theorem

(Imayoshi, Shiga-Tanigawa, Earle-Sipe)

Every topological monodromy

is pseudo-periodic of negative twist.

Theorem (Matsumoto-Montesinos, 91/92)

 ${ top. equiv. classes of minimal degenerations of Riemann surfs. of genus <math>g$

conj. classes in MCG_g of

 $\xrightarrow{1:1} \left\{ \begin{array}{c} \textbf{pseudo-periodic mapp. classes} \\ \text{of negative twist} \end{array} \right\}$

via topological monodromy, for $g \ge 2$.

Lefschetz fiber

Right-handed Dehn twist

Theorem (Matsumoto-Montesinos, 91/92)

 ${ top. equiv. classes of minimal degenerations of Riemann surfs. of genus <math>g$

conj. classes in MCG_g of

 $\begin{cases} 1:1 \\ \textbf{pseudo-periodic mapp. classes} \\ \text{of negative twist} \end{cases}$

via topological monodromy, for $g \ge 2$.

Multiple smooth fiber

Periodic mapping class w/o multiple points

Theorem (Matsumoto-Montesinos, 91/92)

 ${ top. equiv. classes of minimal degenerations of Riemann surfs. of genus <math>g$

conj. classes in MCG_g of

 $\xrightarrow{1:1} \left\{ \begin{array}{c} \textbf{pseudo-periodic mapp. classes} \\ \text{of negative twist} \end{array} \right\}$

via topological monodromy, for $g \ge 2$.

Stellar fiber

Periodic mapping class

Theorem (Matsumoto-Montesinos, 91/92)

 $\begin{cases} \text{top. equiv. classes of} \\ \text{minimal degenerations of} \\ \text{Riemann surfs. of genus } g \end{cases} \stackrel{\leftarrow}{\leftarrow}$

conj. classes in MCG_g of

 $\begin{cases} 1:1 \\ \textbf{pseudo-periodic mapp. classes} \\ of negative twist \end{cases}$

via topological monodromy, for $g \ge 2$.

Singular fiber

Pseudo-periodic mapping class of negative twist

Splittability into Lefschetz fibers

Degeneration of propeller surfaces

A propeller surface is a Riemann surface Σ_g of genus $g \ge 2$ equipped with \mathbb{Z}_g -action s.t. Σ_g/\mathbb{Z}_g has genus 1. ω_g : a propeller automorphism X_g : the singular fiber with monodromy ω_g

Theorem (Y. Matsumoto)

 $\pi: M \to \Delta$: the degeneration of Riemann surfaces of genus 2 with monodromy $\pmb{\omega_2}$

Then its singular fiber X_2 can split into four Lefschetz fibers.

Moreover, their vanishing cycles are as depicted below.

Theorem (Y. Matsumoto)

$\pi: M \to \Delta$: the degeneration of Riemann surfaces of genus 2 with monodromy $\pmb{\omega_2}$

Then its singular fiber X_2 can split into **four** Lefschetz fibers. Moreover, their vanishing cycles are as depicted below.

 γ : a separating simple loop on Σ_g s.t. $\Sigma_g \setminus \gamma = \Sigma_{m,1} \coprod \Sigma_{n,1}$ $(g = m + n, m \ge 1, n \ge 0)$ $\boldsymbol{\omega}_m^{(n)}$: a psudo-periodic map satisfying

• $\omega_m^{(n)}|_{\Sigma_{m,1}} \sim$ a periodic map with a fixed pt of rot angle $\frac{2\pi}{m}$. • $\omega_m^{(n)}|_{\Sigma_{n,1}} \sim \text{id.}$ NOTE: $(\boldsymbol{\omega}^{(n)})^m = \tau_{\boldsymbol{\gamma}}$

 $X_m^{(n)}$: the singular fiber with monodromy $\omega_m^{(n)}$

 $X_m^{(n)}$: the singular fiber with monodromy $\omega_m^{(n)}$

Theorem (O-Takamura)

1 For any $m \ge 2$, $n \ge 0$, the singular fiber $X_m^{(n)}$ can split into $X_{m-1}^{(n+1)}$ and three Lefschetz fibers.

2 For any $g \ge 2$, we have the following sequence: $X_g^{(0)} \longrightarrow X_{g-1}^{(1)} \longrightarrow \cdots \longrightarrow X_2^{(g-2)} \longrightarrow X_1^{(g-1)}$, where " $A \to B$ " means "A splits into B and 3 Lefschetz fibers".

12/19

Theorem (O-Takamura)

1 For any $m \ge 2$, $n \ge 0$, the singular fiber $X_m^{(n)}$ can split into $X_{m-1}^{(n+1)}$ and three Lefschetz fibers.

Performing and $g \ge 2$, we have the following sequence: $X_g^{(0)} \longrightarrow X_{g-1}^{(1)} \longrightarrow \cdots \longrightarrow X_2^{(g-2)} \longrightarrow X_1^{(g-1)}$, where " $A \to B$ " means "A splits into B and 3 Lefschetz fibers".

Theorem (O-Takamura)

 For any m ≥ 2, n ≥ 0, the singular fiber X⁽ⁿ⁾_m can split into X⁽ⁿ⁺¹⁾_{m-1} and three Lefschetz fibers.

 For any g ≥ 2, we have the following sequence: X⁽⁰⁾_g → X⁽¹⁾_{g-1} → ··· → X^(g-2)₂ → X^(g-1)₁,

where " $A \to B$ " means "A splits into B and 3 Lefschetz fibers".

0

20

$$X_m^{(n)} \longrightarrow X_{m-1}^{(n+1)}$$

$$g = 3$$

g = 4

$$\begin{array}{c} X_{m}^{(n)} \longrightarrow X_{m-1}^{(n+1)} \\ g = 2 \\ g = 3 \end{array} \qquad \qquad \begin{array}{c} 2 \\ 3 \\ 3 \\ \end{array} \rightarrow \end{array} \qquad \begin{array}{c} 2 \\ 2 \\ 0 \\ \end{array} \rightarrow \end{array}$$

g = 4

$$\begin{array}{c} X_{m}^{(n)} \longrightarrow X_{m-1}^{(n+1)} \\ g = 2 \\ g = 3 \end{array} \qquad \qquad \begin{array}{c} 2 \\ 0 \\ 3 \\ 0 \\ 0 \end{array} \rightarrow \begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \rightarrow \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \rightarrow \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)$$

g = 4

$$\begin{array}{c} X_{m}^{(n)} \longrightarrow X_{m-1}^{(n+1)} \\ g = 2 \\ g = 3 \\ g = 4 \end{array} \qquad \begin{array}{c} 2 \\ 3 \\ 4 \\ 4 \\ 4 \end{array} \rightarrow \begin{array}{c} 3 \\ 3 \\ 0 \\ 3 \\ 0 \end{array} \rightarrow \begin{array}{c} 2 \\ 2 \\ 0 \\ 0 \\ 0 \end{array} \rightarrow \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)$$

Remark

Remark of Theorem

- **1** Generalization of Matsumoto's splitting for genus 2.
- 2 Analogous to adjacency diagrams of singularities:

 A splitting of a singular fiber into Lefschetz fibers gives a Dehn-twist expression of its topological monodromy.

Case g = 2 (bis)

Theorem (Y. Matsumoto)

- 1 The singular fiber X_2 can split into **four** Lefschetz fibers, and their vanishing cycles are as depicted below.
- 2 $\omega_2 = au_0 \circ au_a \circ au_b \circ au_c$.

Case g = 2 (bis)

Theorem (Y. Matsumoto)

- 1 The singular fiber X_2 can split into **four** Lefschetz fibers, and their vanishing cycles are as depicted below.
- $2 \omega_2 = \tau_0 \circ \tau_a \circ \tau_b \circ \tau_c.$

Proposition

1 $X_3^{(0)}$ can split into $X_2^{(1)}$ and three Lefshetz fibers, and their vanishing cycles are as depicted below. $\omega_2^{(1)}$ ω_3

Proposition

1 $X_3^{(0)}$ can split into $X_2^{(1)}$ and three Lefshetz fibers, and their vanishing cycles are as depicted below.

2 $\omega_3=\omega_2^{(1)}\circ au_{a_1}\circ au_{b_1}\circ au_{c_1}.$

Proposition

1 $X_2^{(1)}$ can split into four Lefshetz fibers (including $X_1^{(2)}$), and their vanishing cycles are as depicted below.

2 $oldsymbol{\omega}_2^{\scriptscriptstyle (1)} = au_0 \circ au_{a_1} \circ au_{b_1} \circ au_{c_1}$.

Proposition

1 $X_2^{(1)}$ can split into four Lefshetz fibers (including $X_1^{(2)}$), and their vanishing cycles are as depicted below.

2
$$\omega_2^{(1)}= au_0\circ au_{a_1}\circ au_{b_1}\circ au_{c_1}.$$

Case g = 3

$\begin{array}{l} \textbf{Proposition} \\ \omega_3 = \tau_0 \circ (\tau_{a_2} \circ \tau_{b_2} \circ \tau_{c_2}) \circ (\tau_{a_1} \circ \tau_{b_1} \circ \tau_{c_1}). \end{array}$

Dehn-twist expression

 $f \in MCG(\Sigma_g) : a \text{ periodic mapping class of order } m$ $b(f) := \# \{ \text{branch points of } \Sigma_g \to \Sigma_g / f \}$ $p(f) := \# \{ \text{propeller points of } f \} \leq h(f)$ fixed points of f with rotation angle $\pm 1/m$ $r(f) := \sum q_j / \ell_j \in \mathbb{Z}_+ : \text{ the total valency sum}$

Theorem (O)

X : the singular fiber equipped with periodic monodro Suppose f satisfies at least one of the following:

$$b(f) - p(f) \le r(f).$$

$$b(f) - p(f) \le 2$$
, $r(f) = 1$ and $\operatorname{genus}(\Sigma_g/f) = 0$.

Then old X can splits into Lefschetz fibers.

$$\begin{array}{l} \boldsymbol{f} \in \operatorname{MCG}(\Sigma_g) : \text{ a periodic mapping class of order } m \\ \boldsymbol{b}(\boldsymbol{f}) := \# \left\{ \text{branch points of } \Sigma_g \to \Sigma_g / f \right\} \\ \boldsymbol{p}(\boldsymbol{f}) := \# \left\{ \begin{array}{l} \text{propeller points of } f \right\} \leq h(f) \\ \hline \text{fixed points of } f \text{ with rotation angle } \pm 1/m \\ \boldsymbol{r}(\boldsymbol{f}) := \sum q_j / \ell_j \in \mathbb{Z}_+ : \text{ the total valency sum} \end{array} \right)$$

Theorem (O)

X: the singular fiber equipped with periodic monodromy fSuppose f satisfies at least one of the following:

$$b(f) - p(f) \le r(f).$$

•
$$b(f) - p(f) \le 2$$
, $r(f) = 1$ and $\operatorname{genus}(\Sigma_g/f) = 0$.

Then X can splits into Lefschetz fibers.

Remark of Theorem

1 If m = 2, 3, then **X** can split into Lefschetz fibers.

2

genus	1	2	3	4	5	6
# of periodic m.c.	8	17	47	72	76	203
# of periodic m.c. satisfying (*)	8	14	30	41	35	
# of powers of periodic m.c. satisfying $(*)$	8	16	45	66	66	

Thank you for your attention.