Splittings of singular fibers and vanishing cycles

smooth complex surface M

Takayuki OKUDA the University of Tokyo

Kanazawa University
Satellite Plaza
January 18, 2017

Preliminary

Degenerations and their splitting deformations

Degeneration of Riemann surfaces

M : a smooth complex surface Δ : the unit disk in \mathbb{C} $\pi: M \rightarrow \Delta:$ a proper surjective holomorphic map s.t.

open disk Δ

Degeneration of Riemann surfaces

M : a smooth complex surface $\quad \Delta$: the unit disk in \mathbb{C} $\pi: M \rightarrow \Delta$: a proper surjective holomorphic map s.t.

- $X_{s}:=\pi^{-1}(s)(s \neq 0)$ are smooth curves of genus g.
- $X_{0}:=\pi^{-1}(0)$ is a singular fiber.
smooth complex surface M

open disk Δ
($\Longleftrightarrow 0$ is a unique critical value.)
$\pi: M \rightarrow \Delta$ is called
a degeneration (or, degenerating family) of Riemann surfaces of genus g.

Regard
where Θ_{i} is an irreducible component

Degeneration of Riemann surfaces

M : a smooth complex surface $\quad \Delta$: the unit disk in \mathbb{C} $\pi: M \rightarrow \Delta$: a proper surjective holomorphic map s.t.

- $X_{s}:=\pi^{-1}(s)(s \neq 0)$ are smooth curves of genus g.

■ $X_{0}:=\pi^{-1}(0)$ is a singular fiber.
smooth complex surface M

open disk Δ
($\Longleftrightarrow 0$ is a unique critical value.)
$\pi: M \rightarrow \Delta$ is called
a degeneration (or, degenerating family) of Riemann surfaces of genus g.

Regard \boldsymbol{X}_{0} as the divisor defined by π : $X_{0}=\sum m_{i} \Theta_{i}$,
where Θ_{i} is an irreducible component with multiplicity m_{i}.

Degeneration of Riemann surfaces

M : a smooth complex surface $\quad \Delta$: the unit disk in \mathbb{C} $\pi: M \rightarrow \Delta$: a proper surjective holomorphic map s.t.

- $X_{s}:=\pi^{-1}(s)(s \neq 0)$ are smooth curves of genus g.

■ $X_{0}:=\pi^{-1}(0)$ is a singular fiber.
smooth complex surface M

open disk Δ
($\Longleftrightarrow 0$ is a unique critical value.)
$\pi: M \rightarrow \Delta$ is called
a degeneration (or, degenerating family) of Riemann surfaces of genus g.

Regard \boldsymbol{X}_{0} as the divisor defined by π : $X_{0}=\sum m_{i} \Theta_{i}$,
where Θ_{i} is an irreducible component with multiplicity m_{i}.

Degeneration of Riemann surfaces

M : a smooth complex surface $\quad \Delta$: the unit disk in \mathbb{C} $\pi: M \rightarrow \Delta$: a proper surjective holomorphic map s.t.

- $X_{s}:=\pi^{-1}(s)(s \neq 0)$ are smooth curves of genus g.

■ $X_{0}:=\pi^{-1}(0)$ is a singular fiber.
smooth complex surface M

open disk Δ
($\Longleftrightarrow 0$ is a unique critical value.)
$\pi: M \rightarrow \Delta$ is called
a degeneration (or, degenerating family) of Riemann surfaces of genus g.

Regard \boldsymbol{X}_{0} as the divisor defined by π : $X_{0}=\sum m_{i} \Theta_{i}$,
where Θ_{i} is an irreducible component with multiplicity m_{i}.

Degeneration of Riemann surfaces

M : a smooth complex surface $\quad \Delta$: the unit disk in \mathbb{C} $\pi: M \rightarrow \Delta$: a proper surjective holomorphic map s.t.

- $X_{s}:=\pi^{-1}(s)(s \neq 0)$ are smooth curves of genus g.

■ $X_{0}:=\pi^{-1}(0)$ is a singular fiber.
smooth complex surface M

open disk Δ
($\Longleftrightarrow 0$ is a unique critical value.)
$\pi: M \rightarrow \Delta$ is called
a degeneration (or, degenerating family) of Riemann surfaces of genus g.

Regard \boldsymbol{X}_{0} as the divisor defined by π : $X_{0}=\sum m_{i} \Theta_{i}$,
where Θ_{i} is an irreducible component with multiplicity m_{i}.

Splitting of singular fibers

$\pi: M \rightarrow \Delta:$ a degeneration $\mathrm{w} /$ singular fiber $\boldsymbol{X}_{\mathbf{0}}$

Splitting of singular fibers

$\pi: M \rightarrow \Delta:$ a degeneration w/ singular fiber $\boldsymbol{X}_{\mathbf{0}}$
$\left\{\pi_{t}: M_{t} \rightarrow \Delta\right\}:$ a family of deformations of $\pi: M \rightarrow \Delta$ i.e. $\pi_{0}: M_{0} \rightarrow \Delta$ coincides with $\pi: M \rightarrow \Delta$.
given degeneration M

deformed degeneration M_{t}

If $\pi_{t}(t \neq 0)$ has k singular fibers $X_{s_{1}}, \ldots, X_{s_{k}}, k \geq 2$,
\Longrightarrow We say that $\boldsymbol{X}_{\mathbf{0}}$ splits into $\boldsymbol{X}_{s_{1}}, \ldots, \boldsymbol{X}_{s_{k}}$.

Splittability of singular fibers

How to construct splittings

- Double covering method

■ Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)

Splittability of singular fibers

How to construct splittings

- Double covering method
- Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)
- Barking deformation
- Takamura (some criterion)

ConjectureEvery singular fiber can split into singular fibers each of which is (1) or (2), in finite steps of deformations.

Splittability of singular fibers

How to construct splittings

- Double covering method

■ Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)

- Barking deformation

■ Takamura (some criterion)
Fact (Atoms of singular fibers)
(1) A Lefschetz fiber and (2) a multiple smooth fiber admit no splittings (i.e. any deformation is equisingular).

Conjecture Every singular fibe can split into sinquar fibers
\qquad

Splittability of singular fibers

How to construct splittings

- Double covering method

■ Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)

- Barking deformation
- Takamura (some criterion)

Fact (Atoms of singular fibers)
(1) A Lefschetz fiber and (2) a multiple smooth fiber admit no splittings (i.e. any deformation is equisingular).

Conjecture

Every singular fiber can split into singular fibers each of which is (1) or (2), in finite steps of deformations.

Splittability of singular fibers

How to construct splittings

- Double covering method

■ Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)

- Barking deformation
- Takamura (some criterion)

Fact (Atoms of singular fibers)
(1) A Lefschetz fiber and (2) a multiple smooth fiber admit no splittings (i.e. any deformation is equisingular).

Conjecture (from a topological viewpoint)
Every singular fiber can split into singular fibers each of which is (1) or (2), in finite steps of deformations.

Topological classification

$\pi: M \rightarrow \Delta$ is topologically equivalent to another degeneration $\pi^{\prime}: M^{\prime} \rightarrow \Delta$
$\stackrel{\mathrm{df}}{\Longleftrightarrow} \exists$ ori. preserving homeomorphisms $H: M \rightarrow M^{\prime}, h: \Delta \rightarrow \Delta$ s.t. $h \circ \pi=\pi^{\prime} \circ H$.

smooth complex surface M

open disk Δ

Topological classification

$\pi: M \rightarrow \Delta$ is topologically equivalent to another degeneration $\pi^{\prime}: M^{\prime} \rightarrow \Delta$
$\stackrel{\mathrm{df}}{\Longleftrightarrow} \exists$ ori. preserving homeomorphisms

$$
H: M \rightarrow M^{\prime}, h: \Delta \rightarrow \Delta \text { s.t. } h \circ \pi=\pi^{\prime} \circ H .
$$

Theorem (Terasoma)
Top. equivalent degenerations are deformation equivalent.

open disk Δ

Topological classification

$\pi: M \rightarrow \Delta$ is topologically equivalent to another degeneration $\pi^{\prime}: M^{\prime} \rightarrow \Delta$
$\stackrel{\mathrm{df}}{\Longleftrightarrow} \exists$ ori. preserving homeomorphisms

$$
H: M \rightarrow M^{\prime}, h: \Delta \rightarrow \Delta \text { s.t. } h \circ \pi=\pi^{\prime} \circ H
$$

Theorem (Terasoma)
Top. equivalent degenerations are deformation equivalent.

open disk Δ

The top. classes of degenerations are completely determined by their topological monodromies.

Every topological monodromy is pseudo-periodic of neqative twist.

Topological classification

$\pi: M \rightarrow \Delta$ is topologically equivalent to another degeneration $\pi^{\prime}: M^{\prime} \rightarrow \Delta$
$\stackrel{\mathrm{df}}{\Longleftrightarrow} \exists$ ori. preserving homeomorphisms

$$
H: M \rightarrow M^{\prime}, h: \Delta \rightarrow \Delta \text { s.t. } h \circ \pi=\pi^{\prime} \circ H .
$$

Theorem (Terasoma)
Top. equivalent degenerations are deformation equivalent.

The top. classes of degenerations are completely determined by their topological monodromies.

Theorem

(Imayoshi, Shiga-Tanigawa, Earle-Sipe)
Every topological monodromy is pseudo-periodic of negative twist.

Topological classification

Theorem (Matsumoto-Montesinos, 91/92)

$\left\{\begin{array}{l}\text { top. equiv. classes of } \\ \text { minimal degenerations of } \\ \text { Riemann surfs. of genus } g\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{l}\text { conj. classes in } \mathrm{MCG}_{g} \text { of } \\ \text { pseudo-periodic mapp. classes } \\ \text { of negative twist }\end{array}\right\}$ via topological monodromy, for $g \geq 2$.

Lefschetz fiber
smooth complex surface M

open disk Δ

Right-handed Dehn twist

Topological classification

Theorem (Matsumoto-Montesinos, 91/92)

$\left\{\begin{array}{l}\text { top. equiv. classes of } \\ \text { minimal degenerations of } \\ \text { Riemann surfs. of genus } g\end{array}\right\} \stackrel{\leftrightarrow 1: 1}{\longleftrightarrow}\left\{\begin{array}{l}\text { conj. classes in } \mathrm{MCG}_{g} \text { of } \\ \text { pseudo-periodic mapp. classes } \\ \text { of negative twist }\end{array}\right\}$ via topological monodromy, for $g \geq 2$.

Multiple smooth fiber
smooth complex surface M

Periodic mapping class w/o multiple points

Topological classification

Theorem (Matsumoto-Montesinos, 91/92)

$\left\{\begin{array}{l}\text { top. equiv. classes of } \\ \text { minimal degenerations of } \\ \text { Riemann surfs. of genus } g\end{array}\right\} \stackrel{\leftrightarrow 1: 1}{\longleftrightarrow}\left\{\begin{array}{l}\text { conj. classes in } \mathrm{MCG}_{g} \text { of } \\ \text { pseudo-periodic mapp. classes } \\ \text { of negative twist }\end{array}\right\}$ via topological monodromy, for $g \geq 2$.

Stellar fiber
smooth complex surface M

Periodic mapping class

open disk Δ

Topological classification

Theorem (Matsumoto-Montesinos, 91/92)

$\left\{\begin{array}{l}\text { top. equiv. classes of } \\ \text { minimal degenerations of } \\ \text { Riemann surfs. of genus } g\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{l}\text { conj. classes in } \mathrm{MCG}_{g} \text { of } \\ \text { pseudo-periodic mapp. classes } \\ \text { of negative twist }\end{array}\right\}$ via topological monodromy, for $g \geq 2$.

Singular fiber

smooth complex surface M

Pseudo-periodic mapping class of negative twist

Splittability into Lefschetz fibers

Degeneration of propeller surfaces

A propeller surface is a Riemann surface Σ_{g} of genus $g \geq 2$ equipped with \mathbb{Z}_{g}-action s.t. $\Sigma_{g} / \mathbb{Z}_{g}$ has genus 1 . ω_{g} : a propeller automorphism \boldsymbol{X}_{g} : the singular fiber with monodromy ω_{g}

Case $g=2$

Theorem (Y. Matsumoto)

$\pi: M \rightarrow \Delta:$ the degeneration of Riemann surfaces of genus 2 with monodromy ω_{2}
Then its singular fiber \boldsymbol{X}_{2} can split into four Lefschetz fibers.

Case $g=2$

Theorem (Y. Matsumoto)

$\pi: M \rightarrow \Delta:$ the degeneration of Riemann surfaces of genus 2 with monodromy ω_{2}
Then its singular fiber \boldsymbol{X}_{2} can split into four Lefschetz fibers. Moreover, their vanishing cycles are as depicted below.

Psudo-propeller maps

γ : a separating simple loop on Σ_{g}

$$
\text { s.t. } \Sigma_{g} \backslash \gamma=\Sigma_{m, 1} \coprod \Sigma_{n, 1} \quad(g=m+n, m \geq 1, n \geq 0)
$$

$\omega_{m}^{(n)}$: a psudo-periodic map satisfying
$X_{m}^{(n)}$: the singular fiber with monodromy $\omega_{m}^{(n)}$

Psudo-propeller maps

γ : a separating simple loop on Σ_{g}

$$
\text { s.t. } \Sigma_{g} \backslash \gamma=\Sigma_{m, 1} \coprod \Sigma_{n, 1} \quad(g=m+n, m \geq 1, n \geq 0)
$$

$\omega_{m}^{(n)}$: a psudo-periodic map satisfying
■ $\left.\omega_{m}^{(n)}\right|_{\Sigma_{m, 1}} \sim$ a periodic map with a fixed pt of rot angle $\frac{2 \pi}{m}$.
■ $\left.\omega_{m}^{(n)}\right|_{\Sigma_{n, 1}} \sim \mathrm{id}$.

$$
\text { NOTE: }\left(\omega_{m}^{(n)}\right)^{m}=\tau_{\gamma}
$$

$X_{m}^{(n)}$: the singular fiber with monodromy $\omega_{m}^{(n)}$

Psudo-propeller maps

Psudo-propeller maps

Results

Theorem (O-Takamura)

1 For any $m \geq 2, n \geq 0$, the singular fiber $X_{m}^{(n)}$ can split into $X_{m-1}^{(n+1)}$ and three Lefschetz fibers.

Results

Theorem (O-Takamura)

1 For any $m \geq 2, n \geq 0$, the singular fiber $X_{m}^{(n)}$ can split into $X_{m-1}^{(n+1)}$ and three Lefschetz fibers.

Results

Theorem (O-Takamura)

1 For any $m \geq 2, n \geq 0$, the singular fiber $\boldsymbol{X}_{m}^{(n)}$ can split into $\boldsymbol{X}_{m-1}^{(n+1)}$ and three Lefschetz fibers.
2 For any $g \geq 2$, we have the following sequence:

$$
X_{g}^{(0)} \longrightarrow X_{g-1}^{(1)} \longrightarrow \cdots \longrightarrow X_{2}^{(g-2)} \longrightarrow X_{1}^{(g-1)}
$$

where " $A \rightarrow B$ " means " A splits into B and 3 Lefschetz fibers".

$$
X_{m}^{(n)} \rightarrow X_{m-1}^{(n+1)}
$$

$$
g=2
$$

$$
g=3
$$

$$
g=4
$$

$$
X_{m}^{(n)} \rightarrow X_{m-1}^{(n+1)}
$$

$$
g=2
$$

$$
g=3
$$

$$
g=4
$$

$$
X_{m}^{(n)} \rightarrow X_{m-1}^{(n+1)}
$$

$$
g=2
$$

$$
g=3
$$

$$
g=4
$$

$$
X_{m}^{(n)} \rightarrow X_{m-1}^{(n+1)}
$$

$$
g=2
$$

$$
g=3
$$

$$
g=4
$$

$$
X_{m}^{(n)} \longrightarrow X_{m-1}^{(n+1)}
$$

$$
g=2
$$

$$
g=3
$$

$g=4$

$$
X_{m}^{(n)} \longrightarrow X_{m-1}^{(n+1)}
$$

$$
g=2
$$

$$
g=3
$$

$g=4$

Remark

Remark of Theorem

1 Generalization of Matsumoto's splitting for genus 2.
2 Analogous to adjacency diagrams of singularities:

3 A splitting of a singular fiber into Lefschetz fibers gives a Dehn-twist expression of its topological monodromy.

Theorem (Y. Matsumoto)
1 The singular fiber \boldsymbol{X}_{2} can split into four Lefschetz fibers, and their vanishing cycles are as depicted below. $\omega_{2}=\tau_{0} \circ \tau_{a} \circ \tau_{b} \circ \tau_{c}$

Case $g=2$ (bis)

Theorem (Y. Matsumoto)

1 The singular fiber \boldsymbol{X}_{2} can split into four Lefschetz fibers, and their vanishing cycles are as depicted below.

```
\imath \omega
```

ω_{2}

Case $g=3$

Proposition

$1 X_{3}^{(0)}$ can split into $X_{2}^{(1)}$ and three Lefshetz fibers, and their vanishing cycles are as depicted below.

Case $g=3$

Proposition

$1 X_{3}^{(0)}$ can split into $X_{2}^{(1)}$ and three Lefshetz fibers, and their vanishing cycles are as depicted below.

$$
\text { ■ } \omega_{3}=\omega_{2}^{(1)} \circ \tau_{a_{1}} \circ \tau_{b_{1}} \circ \tau_{c_{1}} .
$$

Proposition
$1 X_{2}^{(1)}$ can split into four Lefshetz fibers (including $X_{1}^{(2)}$), and their vanishing cycles are as depicted below.
2 $\omega_{2}^{(1)}=\tau_{0} \circ \tau_{a_{1}} \circ \tau_{b_{1}} \circ \tau_{c_{1}}$.

Case $g=3$

Proposition

$1 \boldsymbol{X}_{2}^{(1)}$ can split into four Lefshetz fibers (including $\boldsymbol{X}_{1}^{(2)}$), and their vanishing cycles are as depicted below.
${ }_{2} \omega_{2}^{(1)}=\tau_{0} \circ \tau_{a_{1}} \circ \tau_{b_{1}} \circ \tau_{c_{1}}$.

$16 / 19$

Case $g=3$

Proposition

$\omega_{3}=\tau_{0} \circ\left(\tau_{a_{2}} \circ \tau_{b_{2}} \circ \tau_{c_{2}}\right) \circ\left(\tau_{a_{1}} \circ \tau_{b_{1}} \circ \tau_{c_{1}}\right)$.

Dehn-twist expression

Theorem

$$
\begin{aligned}
& \omega_{g}=\tau_{0} \circ\left(\tau_{a_{g-1}} \circ \tau_{b_{g-1}} \circ \tau_{c_{g-1}}\right) \\
& \circ \cdots \circ\left(\tau_{a_{1}} \circ \tau_{b_{1}} \circ \tau_{c_{1}}\right) .
\end{aligned}
$$

Results

$\boldsymbol{f} \in \operatorname{MCG}\left(\Sigma_{g}\right)$: a periodic mapping class of order m
$\boldsymbol{b}(\boldsymbol{f}):=\#\left\{\right.$ branch points of $\left.\Sigma_{g} \rightarrow \Sigma_{g} / f\right\}$ $\boldsymbol{p}(\boldsymbol{f}):=\#\{$ propeller points of $f\} \leq h(f)$ fixed points of f with rotation angle $\pm 1 / m$ $\boldsymbol{r}(\boldsymbol{f}):=\sum q_{j} / \ell_{j} \in \mathbb{Z}_{+}$: the total valency sum

Results

$f \in \operatorname{MCG}\left(\Sigma_{g}\right)$: a periodic mapping class of order m
$\boldsymbol{b}(\boldsymbol{f}):=\#\left\{\right.$ branch points of $\left.\Sigma_{g} \rightarrow \Sigma_{g} / f\right\}$
$\boldsymbol{p}(\boldsymbol{f}):=\#\{$ propeller points of $f\} \leq h(f)$ fixed points of f with rotation angle $\pm 1 / m$
$\boldsymbol{r}(\boldsymbol{f}):=\sum q_{j} / \ell_{j} \in \mathbb{Z}_{+}$: the total valency sum

Theorem (O)

\boldsymbol{X} : the singular fiber equipped with periodic monodromy f
Suppose f satisfies at least one of the following:
$\square b(f)-p(f) \leq r(f)$.
$\square b(f)-p(f) \leq 2, r(f)=1$ and $\operatorname{genus}\left(\Sigma_{g} / f\right)=0$.
Then \boldsymbol{X} can splits into Lefschetz fibers.

Remark of Theorem
1 If $m=2,3$, then \boldsymbol{X} can split into Lefschetz fibers.
2

genus	1	2	3	4	5	6
\# of periodic m.c.	$\mathbf{8}$	$\mathbf{1 7}$	$\mathbf{4 7}$	$\mathbf{7 2}$	$\mathbf{7 6}$	$\mathbf{2 0 3}$
\# of periodic m.c. satisfying (*) \# of powers of periodic m.c. satisfying (*) $\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{3 0}$	$\mathbf{4 1}$	$\mathbf{3 5}$		

Ending

Thank you for your attention.

