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・Differential Equation

・Differential geometry (Differential systems)

・Lie algebra

2



R : smooth manifold

D ⊂ TR : subbundle

(R,D) : differential system, distribution or Pfaffian system

rank D := the rank of D as a vector bundle

・(local) isomorphism ϕ :

diffeomorphism ϕ : (R1, D1) → (R2, D2) , ϕ∗(D1) = D2
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� �
Example (Contact manifold: (J,C))

J := R2n+1 : (x1, . . . , xn, y, p1, . . . pn)

Put θ := dy − Σipidx

C := {θ = 0} = {X ∈ TJ | θ(X) = 0},

� �
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� �
Example (The canonical contact system on k-jet space of n indepen-

dent and m dependent variables: (Jk(Rn,Rm), Ck))

Jk(Rn,Rm) : (xi, y
α, pαI ) (1 ≤ |I| ≤ k) ,

Ck = {ϖα
I = 0 (0 ≤ |I| ≤ k − 1, 1 ≤ α ≤ m)},

where I is a multi-index,

ϖα
0 = dyα −

∑n
i=1 p

α
i dxi , ϖ

α
I = dpαI −

∑n
i=1 p

α
Iidxi.

� �
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・Derived System

∂D := D + [D,D]

(∂D : ∂D := D + [D,D] where D = Γ(D))

・The derived system of D is not always a subbundle of TR.

・D = ∂D ⇐⇒ D is completely integrable.

i-th Derived System: ∂iD := ∂(∂i−1D)

・Assume ∂iD are subbundles (∀i)
・∃i0 s.t.

D ⊂ · · · ⊂ ∂i0−1D ⊂ ∂i0D = ∂i0+1D = · · · ⊂ TR

then, ∂i0D is the smallest completely integrable subbundle which con-

tains D
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・Cauchy characteristic system Ch(D) of D

Ch(D)(x) := {X(x) ∈ D(x) | X ∈ D , [X,Y ] ∈ D (∀Y ∈ D)}

where D := Γ(D).

Ch(D):constant rank ⇒ Ch(D) is completely integrable

Remark

The Cauchy characteristic system is the biggest completely integrable

subbundle contained in D
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Example(3-dim contact distribution)

For (R3, D)

D = {dz − ydx = 0} =<
∂

∂y
,
∂

∂x
+ y

∂

∂z
>

Put θ := dz − ydx,

dθ = −dy ∧ dx ̸= 0 mod θ

Therefore, by using

dθ(X,Y ) = X(θ(Y ))− Y (θ(X))− θ([X,Y ])

we obtain

∂D = TR3 , Ch(D) = {0}
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Definition

For a diffferential sysytem (R,D), a submanifold S is called an integral

manifold of (R,D), if TS ⊂ D.

Example (Integral manifolds of Contact manifold (J,C))

J := R2n+1 : (x1, . . . , xn, y, p1, . . . pn)

Put θ := dy − Σipidxi
C := {θ = 0} = {X ∈ TJ | θ(X) = 0},

Assume that S is a n-dimensional integral manifold of (J,C) with

independence condition dx1 ∧ · · · ∧ dxn|S ̸= 0. (i.e. S is a submanifold

of (J,C) which satisfies TS ⊂ C.)
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Then, the n-dim integral manifold S

S = (x1, . . . , xn, y(x1, . . . , xn), p1(x1, . . . , xn), . . . , pn(x1, . . . , xn))

of (J,C) satisfies ι∗(θ) = 0, where ι : S → J is the inclusion.

So,

ι∗(θ) = ι∗(dy − Σipidxi)

= (Σi
∂y

∂xi
dxi)− Σipidxi

= Σi(
∂y

∂xi
− pi)dxi

= 0.

Hence, we get

∂y

∂xi
(x1, . . . , xn) = pi(x1, . . . , xn) (∀i)
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Conversely, for any function y(x1, . . . , xn),

S = (x1, . . . , xn, y(x1, . . . , xn),
∂y

∂x1
(x1, . . . , xn), . . . ,

∂y

∂xn
(x1, . . . , xn))

is an n-dim integral manifold of (J,C).

So,

{functions y(x1, . . . , xn)} = {integral manifolds S of (J,C)}
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Now, we consider a 1st order PDE of n independent and 1dependent

variables.

F (x1, . . . , xn, y, p1, . . . pn) = 0

satisfying

(Fp1, . . . , Fpn) ̸= 0

We consider a submanifold

R := {F = 0} ⊂ J

and restrict the contact system C to R. (that is, D := C|R ⊂ TR)

Then, by the same argument with the above,

{solutions of the PDE : F = 0}

⇐⇒

{integral manifolds of (R,D) with independence condition dx ∧ dy}.
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Hence,

“Geometry of 1st order n independent and 1dependent variables PDE”

=

“Submanifold theory in contact manifolds”

In general,

“Geometry of PDE”

=

“Submanifold theory in higher order contact manifolds”

(Here, higher order contact manifold means jet space.)
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Geometry of 2nd order 2 independent and 1 dependent variables single

PDE was well studied by Lie, Darboux, Goursat, Monge, Cartan, Tresse,

etc. around 1900.

Example

r − t = 0 (wave equation, hyperbolic)

r − q = 0 (heat equation, parabolic)

r + t = 0 (Laplace’s equation, elliptic)

where, x, y, u, p, q, r, s, t are the classical notations
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Example (hyperbolic)

∂2u

∂x∂y
= 0

R := {s = 0} ⊂ J2(R2,R) D = C2|Σ
D = {ϖ0 = ϖ1 = ϖ2 = 0}

dϖ0 ≡ dx ∧ϖ1 + dy ∧ϖ2 mod ϖ0,

dϖ1 ≡ dx ∧ dr mod ϖ0, ϖ1, ϖ2,

dϖ2 ≡ dy ∧ dt mod ϖ0, ϖ1, ϖ2.

where

{ϖ0, ϖ1, ϖ2, dx, dy, dr, dt}:coframe on Σ.
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Example (parabolic)

∂2u

∂x2
= 0

D = {ϖ0 = ϖ1 = ϖ2 = 0}

dϖ0 ≡ dx ∧ϖ1 + dy ∧ϖ2 mod ϖ0,

dϖ1 ≡ dy ∧ ds mod ϖ0, ϖ1, ϖ2,

dϖ2 ≡ dx ∧ ds + dy ∧ dt mod ϖ0, ϖ1, ϖ2.

where

{ϖ0, ϖ1, ϖ2, dx, dy, ds, dt}:coframe on Σ.
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Example (elliptic)

∂2u

∂x2
+
∂2u

∂y2
= 0

D = {ϖ0 = ϖ1 = ϖ2 = 0}

dϖ0 ≡ dx ∧ϖ1 + dy ∧ϖ2 mod ϖ0,

dϖ1 ≡ dx ∧ dr + dy ∧ ds mod ϖ0, ϖ1, ϖ2,

dϖ2 ≡ dx ∧ ds− dy ∧ dr mod ϖ0, ϖ1, ϖ2.

where

{ϖ0, ϖ1, ϖ2, dx, dy, dr, ds}:coframe on Σ.
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After that, the theory is developed by

Bryant, Chern, Gardner, Goldschmidt, and Griffiths, etc. (“MSRI

group”)

and Tanaka, Morimoto and Yamaguchi, etc. (“Tanaka school”)

Motivation� �
We would like to extend the theory for 2nd order to higher order.� �

Tomorrow’s goal is to give a rough classification for the set of all 3rd

order 2 relations PDEs from the view point of Cartan-Kahler theorem

and to give characterizations for some classes in the set.
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Pfaff-Darboux type Theorem for higher order contact

manifolds

M : a manifold of dimension m + n

J(M,n) =
∪
x∈M

Jx, Jx = Gr(TxM,n)

We define Canonical System C on J(M,n):

∀u ∈ J(M,n)

Tu(J(M,n))
π∗−→ TxM

∪
Ĉ(u) := π−1

∗ (u) → u
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m = 1 ⇒ Contact Manifold

φ : M → M̂ :diffeomorphism ⇒ φ∗ : (J(M,n), C) → (J(M̂, n), Ĉ)

Theorem (Bäcklund)

M, M̂ :m + n−dim manifold(m ≥ 2).

Φ : (J(M,n), C) → (J(M̂, n), Ĉ):isomorphism

⇒ ∃1φ : M → M̂ such that Φ = φ∗

For (J(M,n), C) (m ≥ 2), F =Ker π∗ is calledCovariant System.
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2nd Order Jet spaces(m=1)

(J,C):Contact Manifold ⇒ (L(J), E) Lagrange-Grassmann

Bundle

L(J) =
∪
u∈J

Lu
π−→ J

Lu = {Legendrian subspaces of (C(u), dϖ)}
where, C = {ϖ = 0}. ∀v ∈ L(J)

E(v) = π−1
∗ (v) ⊂ Tv(L(J))

π∗−→ Tu(J)

Ker π∗ = Ch(∂E) ⇒ Bäcklund Theorem for (L(J), E)

We define J2 := L(J), C2 := E
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2nd Order Jet spaces(m ≥ 2)

J2 ⊂ J(J(M,n), n) is defined by

J2 = {n−dim. integral elements of (J(M,n), C), transversal to F}.

C2: Restriction Canonical System on J(J(M,n), n) to J2.

Let (R,D) be a differential system expressed by

D = {ϖ1 = · · · = ϖs = 0}.

For x ∈ R, E ⊂ TxR is an n-dimensional integral element of D, if

E is an n dimensional subspace in TR such that

ϖ1|E = · · · = ϖs|E = dϖ1|E = · · · = dϖs|E = 0

Namely, integral elements are candidates for the tangent space of in-

tegral manifolds of D.
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Higher Order Jet spaces

Inductively, we define Jk+1 ⊂ J(Jk, n) for k ≥ 2 by

Jk+1 = {n-dim integral elements of (Jk, Ck),

transversal to Ker (πkk−1)∗}

Ck+1:Canonical System on Jk+1 where ,Ker (πkk−1)∗ = Ch(∂Ck).

Ck ⊂· · ·⊂ ∂k−2Ck ⊂∂k−1Ck⊂ T (Jk)
∪ ∪ ∪

Ch(Ck)⊂Ch(∂Ck)⊂· · ·⊂Ch(∂k−1Ck)⊂ F

Transversality condition:

Ck ∩ F = Ch(∂Ck)(m ≥ 2)

Ck ∩ Ch(∂k−1Ck) = Ch(∂Ck)(m = 1)

[Yamaguchi (1982,1983)]
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Contact isomorphisms

m = 1

{Diffeo.} ⊂ {Contact iso.} = {Contact iso. for higher order}

m > 1

{Diffeo.} = {Contact iso.} = {Contact iso. for higher order}
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Weak Derived system, Symbol algebra

k-th weak higher derived system ∂(k)D is defined by

∂(1)D = ∂D , ∂(k)D = ∂(k−1)D + [D, ∂(k−1)D]

where D = Γ(D).

D is weakly regular ⇐⇒ ∂(i)D is subbundle (∀i).

Proposition(Tanaka)

For weakly regular differential system D;

(S1) ∃µ s.t. D−1 ⊂ D−2 ⊂ · · · ⊂ D−k ⊂ · · ·
· · · ⊂ D−(µ−1) ⊂ D−µ = D−(µ+1) = · · ·

(S2) [Dp,Dq] ⊂ Dp+q ∀p, q < 0

i.e. [X,Y ] ∈ Dp+q , X ∈ Dp, Y ∈ Dq ∀p, q < 0

where D−1 := D, D−k := ∂(k−1)D (k ≥ 2)
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Symbol Algebra of weakly regular differential system

(R,D):weakly regular differential system ,

T (R) = D−µ ⊃ D−(µ−1) ⊃ · · · ⊃ D−1 = D

∀x ∈ R, g−1(x) := D−1(x) = D(x), gp(x) := Dp(x)/Dp+1(x)

m(x) =

−µ⊕
p=−1

gp(x).

dim m(x)=dim R.

For X ∈ gp(x) , Y ∈ gq(x), we define [X,Y ] ∈ gp+q(x) by :

let X̃ ∈ Dp , Ỹ ∈ Dq be extensions (X̃x = X , Ỹx = Y ), then

[X̃, Ỹ ] ∈ Dp+q [X,Y ] := [X̃, Ỹ ]x ∈ gp+q(x) is not depend on the

extensions.

(m(x), [ ]) is called Symbol Algebra of (R,D) at x
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・(m(x), [ ]) is nilpotent graded Lie algebra

・[g−1, gp] = g−1+p (generating condition) holds.

Conversely, for a graded Lie algebra m which satisfies the above con-

dition (FGLA), ∃(R,D) s.t. symbol algebra of (R,D) is isomorphic to

the m at any points.

Examples(Martinet distribution)

(R3, D)

D = {dz − y2dx = 0} =<
∂

∂y
,
∂

∂x
+ y2

∂

∂z
>

∂D = D on {y = 0}
∂D = TR3 on {y ̸= 0}

Not weak regular. Not defined symbol.
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Example(contact distribution)

(R3, D)

D = {dz − ydx = 0} =<
∂

∂y
,
∂

∂x
+ y

∂

∂z
>

∂D = TR3

Symbol algebra is isomorphic to Heisenberg Lie alg.:

m = g−1 ⊕ g−2

g−1 =< {X,Y } > , g−2 =< {Z} >

Z = [Y,X ]
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Remark

・Prolongation

・Finite, Infinite

・Simple Lie alg.
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Finsler Geometry and Contact Geometry

An (I, J,K)-generalized Finsler structure on a 3-manifold is a gener-

alization of a Finslerian structure, introduced in order to separate and

clarify the local and global aspects in Finsler geometry making use of

the Cartan’s method of exterior differential systems.

In this talk, we introduce that there is a close relation between (I, J, 1)-

generalized Finsler structures and a class of contact circles, namely the

so-called Cartan structures .

This correspondence allows us to determine the topology of 3-manifolds

that admit (I, J, 1)-generalized Finsler structures and to single out

classes of (I, J, 1)-generalized Finsler structures induced by standard

Cartan structures.
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Definition of (I, J,K)-generalized Finsler structure

(classical) Finsler Manifold : (M,F )

R: C∞ manifold (dim R = n)

F : TM → [0,∞) : Finsler metric

(1) F is smooth on TM \ {0} and continuous at zero section.

(2) F (x, λv) = λF (x, v) (λ > 0)

(3)

gij :=
1

2

∂2F 2

∂yi∂yj

is positive definite for all v = (x, y) ∈ TM \ {0}
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In this talk, we consider only n = 2 case.

Theorem(Chern)

(M2, F ) : classical Finsler manifold ⇒
There exists a unique coframe ω = {ω1, ω2, ω3} on ΣF s.t.

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3

dω2 = −ω1 ∧ ω3

dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3

where

ΣF := {v ∈ TM : F (v) = 1} ⊂ TM

is indicatrix.

・Chern proved the existence of the coframe for n ≥ 2.
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(M2, g):Riemannian manifold ⇒

Σ : indicatrix

There exists a unique coframe ω = {ω1, ω2, ω3} on Σ

dω1 = ω2 ∧ ω3

dω2 = −ω1 ∧ ω3

dω3 = Kω1 ∧ ω2

K : Gauss curvature
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Definition(Bryant 1996)

(Σ, ω) : (I, J,K)-generalized Finsler structure(GFS)

Σ : 3-dim manifold

ω = {ω1, ω2, ω3}: coframe on Σ

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3

dω2 = −ω1 ∧ ω3

dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3

where I, J,K are functions on Σ.
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Remark

・Bryant defined the GFSs for any n ≥ 2.

・For (I, J,K)-generalized Finsler structure, if I = 0, then J = 0 by

Bianchi identities. Hence, (0, 0, K)-generalized Finsler structure.

(Roughly speaking, (0, 0, K)-generalized Finsler structure is Riemann

structure)
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Theorem (Bryant 1996) GFS:(Σ, ω) to be realizable as a classical

Finsler structure on a surface

⇐⇒

1. the leaves of the foliation {ω1 = 0, ω2 = 0} are compact;

2. it is amenable, i.e. the space of leaves of the foliation {ω1 = 0, ω2 =

0} is a differentiable manifold M ;

3. the canonical immersion ι : Σ → TM , given by ι(u) = π∗,u(ê2), is
one-to-one on each π-fiber Σx,

where we denote by (ê1, ê2, ê3) the dual frame of the coframing

(ω1, ω2, ω3).
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Remark

・The condition (2) of Bryant’s Theorem guarantees the existence of the

base surface M .

・(1) guarantees the each fiber Σ → M is diffeomorphic to S1

・(3) guarantees the each fiber Σ → M which is diffeomorphic to S1

have no selfintersections
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Definition of K-Cartan structure on Σ3

Σ : C∞ manifold (dim Σ = 3)

Definition

A contact form on a 3-manifold Σ is a 1-form α such that α ∧ dα ̸= 0,

that is, is a volume form.

Definition

A 3-manifold Σ is said to admit a contact circle if it admits a pair

of contact forms (α1, α2) such that for any (λ1, λ2) ∈ S1, the linear

combination λ1α
1 + λ2α

2 is also a contact form.
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Definition

A contact circle (α1, α2) is called a taut contact circle if the contact

forms λ1α
1 + λ2α

2 define the same volume form for all (λ1, λ2) ∈ S1.

That is, the contact circle (α1, α2) satisfies

α1 ∧ dα1 = α2 ∧ dα2 ̸= 0

α1 ∧ dα2 + α2 ∧ dα1 = 0

Definition

The contact circle (α1, α2) is called a Cartan structure on the 3-

manifold Σ if the following conditions are satisfied

α1 ∧ dα1 = α2 ∧ dα2 ̸= 0

α1 ∧ dα2 = 0, α2 ∧ dα1 = 0.
(1)
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Definition

The Cartan structure (α1, α2) is called a K-Cartan structure if the

unique form η(this always exists) satisfies the structure equation

dα1 = α2 ∧ η

dα2 = η ∧ α1

dη = Kα1 ∧ α2.

Remark By the definitions,

・A K-Cartan structure is a taut contact circle.

・A K-Cartan structure is a (0, 0,K)-generalized Finsler structure.
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One of the main results of this theory is the following:

Theorem(Geiges and Gonzalo 1995)

Let Σ be a closed 3-manifold. Then Σ admits a taut contact circle if

and only if Σ is diffeomorphic to a quotient of the Lie group G under a

discrete subgroup Γ of G, acting by left multiplication, where G is one

of the following:

1. S3 = SU(2), the universal cover of SO(3),

2. S̃L2, the universal cover of PSL2(R),

3. Ẽ2, the universal cover of the Euclidean group, i.e. orientation pre-

serving isometries of R2.
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Remark

・For the Lie group G in Theorem, all discrete cocompact subgroups

Γ of G are known.

42



Proposition(Pitis-Sabau-S) Let (Σ, ω) be an (I, J,K)-generalized

Finsler structure on a closed 3-manifold Σ, where ω = (ω1, ω2, ω3).

Then we have

1. (ω1, ω2) is a taut contact circle if and only if I = 0, i.e. (Σ, ω) is in

fact a K := K-Cartan structure;

2. (ω1, ω3) is a taut contact circle if and only if K = 1, i.e. (Σ, ω) is

an (I, J, 1)-generalized Finsler structure. This taut contact circle is

actually a K-Cartan structure on Σ;

3. (ω2, ω3) is a taut contact circle if and only if K = 1 and J = 0.

Moreover, I = 0 and (Σ, ω) is a 1-Cartan structure.
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Remark

・The case of (1) and (3) are “Riemann” case. So we consider the

non-trivial case (2) (I, J, 1)-generalized Finsler structure.
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Theorem(Pitis-Sabau-S)

Let Σ be a closed 3-manifold. Then Σ admits an (I, J, 1)-generalized

Finsler structure ⇐⇒ it is diffeomorphic to a quotient of the Lie group

G under a discrete subgroup Γ of G, where G is one of the following:

1. S3 = SU(2), the universal cover of SO(3),

2. S̃L2, the universal cover of PSL2(R),

3. Ẽ2, the universal cover of the Euclidean group, i.e. orientation pre-

serving isometries of R2.
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Sketch of proof

(⇒ ) By Proposition and Thoerem(Geiges and Gonzalo 1995).

(⇐ ) This direction is essential and difficult part.

1. Take a K-Cartan structure (α1, α2, η) on Σ/Γ.

2. Write a condition of a 1-form φ which change the K-Cartan structure

to (I, J, 1)-generalized Finsler structure ω = (ω1, ω2, ω3).

ω1 = α1

ω2 = φ− η

ω3 = α2

3. Rewrite the condition by the theory of the Liouville-Cartan sturuc-

ture.

4. Construct a 1-form satisfying this condition.

□
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Thank you for your attention !!
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