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Contact submanifolds

(M, ξ), (N, η): contact manifolds.

Definition

An embedding f : M → N is said to be a contact
embedding if TM ∩ η|M = ξ. Then (M, ξ) is called
a contact submanifold of (N, η).

Let ξ = kerα and η = ker β.

TM ∩ η|M = ξ ⇔ ker(f ∗β) = kerα.
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Examples 1

The standard contact 3-sphere in the standard
contact 5-sphere (S5, ξ0).

S5 =
{
|z1|2 + |z2|2 + |z3|2 = 1

}
⊂ C3.

S5 ⊃ {z3 = 0} ∼= S3 ⊂ C2 .

(S5, ξ0 = kerα0), α0 = r21dθ1 + r22dθ2 + r23dθ3.

(S3, η0 = ker f ∗α0), f
∗α0 = r21dθ1 + r22dθ2.
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Singularity links.

f(z1, z2, z3): a polynomial with an isolated
singularity at (0, 0, 0). V := f−1(0).

K := V ∩ S5
ε (0 < ε ≪ 1) is called the

singularity link.

(S5, ξ0 = TS5 ∩ JTS5): complex tangency.

Since TV = JTV , TK ∩ ξ0|K = TK ∩ JTK.

(K,TK ∩ ξ0|K) is a contact submanifold.
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Brieskorn singularity (Milnor) zp1 + zq2 + zr3 = 0.

1 Spherical 1
p +

1
q +

1
r > 1,

(2, 2, r): Ar−1 ⇒ tight str on L(r, r − 1),
(2, 3, 5): E8 ⇒ tight str on Σ(2, 3, 5).

2 Euclidean 1
p +

1
q +

1
r = 1 ⇔ Simple elliptic sing

3 Hyperbolic 1
p +

1
q +

1
r < 1,

(4, 4, 4): S1-bundle over Σ3 with the Euler class −4.
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Simple elliptic singularity (Saito, Neumann, cf. Mori)

Ẽ6 : z
3
1 + z32 + z33 + λ1z1z2z3 = 0 (λ1

3 + 27 ̸= 0),
Ẽ7 : z

2
1 + z42 + z43 + λ2z1z2z3 = 0 (λ2

4 − 64 ̸= 0),
Ẽ8 : z

2
1 + z32 + z63 + λ3z1z2z3 = 0 (λ3

6 − 432 ̸= 0).

(TA, ker (dy +mzdx)), A =

(
1 0
m 1

)
, m = 3, 2, 1.

Cusp singularity (Laufer, Hirzebruch, Neumann, K, cf. Mori)

Tpqr : z
p
1 + zq2 + zr3 + λz1z2z3 = 0(λ ̸= 0, 1

p
+ 1

q
+ 1

r
< 1).

(TA, ker (β+ + β−)), Anosov contact str,

A =

(
p− 1 −1
1 0

)(
q − 1 −1
1 0

)(
r − 1 −1
1 0

)
.
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Via moment polytope of S5 (Mori, K, Furukawa)
The followings can be contact submfds of (S5, ξ0).

1 An overtwisted contact str on S3,

2 Tight contact strs on T 3,

3 Some tight contact strs on T 2 bundles over S1.

The construction of the last ones can also
explain the links of simple elliptic and
cusp singularities.
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Main Theorem

Theorem

The singularity link of fm,k(z) = 0 is
contactomorphic to (TAm,k

, ker (β+ + β−)) if k ̸= 0,
and to (TAm,0

, ker (dy +mzdx)) if k = 0, where

f1,(k1)(z) = z21 + z32 + z6+k1
3 + z1z2z3

f2,(k1,k2)(z) = z21 + z4+k1
2 + z4+k2

3 + z1z2z3

f3,(k1,k2,k3)(z) = z3+k1
1 + z3+k2

2 + z3+k3
3 + z1z2z3.
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Main Theorem 2

Am,k =

(
1 0
1 1

)(
1 k1
0 1

)
· · ·

(
1 0
1 1

)(
1 km
0 1

)
,

where m ∈ Z>0, k = (k1, · · · , km) ∈ (Z≥0)
m.

Am,k is a hyperbolic matrix if k ̸= 0,

Am,0 is a parabolic matrix.

N. Kasuya, The canonical contact structure on the link of a

cusp singularity, Tokyo J. Math. Vol. 37, No. 1, 2014, 1-20.
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The moment polytope

(r1, θ1, r2, θ2, r3, θ3): the polar coordinates.
S5 =

{
r21 + r22 + r23 = 1

}
⊂ C3.

ϕ : S5 → R3; (z1, z2, z3) 7→ (r21, r
2
2, r

2
3)

is called the moment map. ∆ := ϕ(S5) is the
moment polytope.
The projection ϕ is T 3-fibration over Int∆,
T 2-fibration over edges, S1-fibration on vertices.
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The moment polytope 2

x3

x1 x2

O

1

1 1

Figure: Moment polytope

×

Figure: standard 3-sphere
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The principle

Let c : [0, 1] → Int∆ be a curve.
f : T 2 × [0, 1] → S5: an embedding defined by
“the slice section” {pθ1 + qθ2 + rθ3 = 0} over c.

Lemma

(T 2 × [0, 1], ker (f ∗α0)) is positive contact iff the
curve c rotates (counter) clockwise around the point

1
p+q+r(p, q, r), when it is inside (outside) ∆.
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Mori’s example

A. Mori, The Reeb foliation arises as a family of Legendrian

submanifolds at the end of a deformation of the standard S3

in S5, C. R. Acad. Sci. Paris, 350 (2012) 67-70.

Figure: Reeb foliation

×

Figure: OT 3-sphere
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The 3-torus case

(T 3, ηn), βn = sin (2nπz)dx+ cos (2nπz)dy.
We embed (T 3, η1) in (S5, ξ0) as a contact submfd.
Define an embedding by

f : T 3 → S5; (x, y, z) 7→ (r1, r2, r3, x, y,−x− y),

3

r21
r22
r23

 =

1
1
1

+ ε sin (2πz)

 2
−1
−1

+ ε cos (2πz)

−1
2
−1

 .

f ∗(r1
2dθ1 + r2

2dθ2 + r3
2dθ3) = εβ1.

(T 3, ker f ∗α0) ∼= (T 3, η1 = ker β1).
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The 3-torus case 2

Let us project f(T 3) by ϕ on ∆.
G = (1/3, 1/3, 1/3): the barycenter of ∆.

×G
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The 3-torus case 3

1 l := ϕ(f(T 3)) is a loop around G.

2 The embedding of T 3 is defined by the slice
section {θ1 + θ2 + θ3 = 0} over l.

The contact condition is equivalent to the
negativity of the angular momentum of the
curve l: c(z) (z ∈ [0, 1]), around G.
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The Ak−1-singularity link

The link of z1z2 − zk3 = 0 is (L(k, k − 1), ξ).
Furukawa showed this by the following argument.
K = S5 ∩

{
z1z2 − zk3 = 0

}
is determined by

1 the curve c : [0, 1] → ∆ defined by r1r2 = r3
k,

2 the slice section θ1 + θ2 − kθ3 = 0.

Slice sections over c([0, 12 ]) and c([12 , 1]) are the
standard contact solid tori pasted by the linear

map
(
k −1
1 0

)
. ⇒ (L(k, k − 1), ξ).
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The Ak−1-singularity link 2

×G

P
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Some T 2 bundles over S1

Let A =

(
p− 1 −1
1 0

)(
q − 1 −1
1 0

)(
r − 1 −1
1 0

)
.

Furukawa embedded (TA, ker (β+ + β−)) in (S5, ξ0).
The slice section over the curve c : [0, 1] → ∆ is
defined by

{(r − 1)θ3 − θ1 − θ2 = 0} (t ∈ (16 ,
1
3)),

{(q − 1)θ2 − θ3 − θ1 = 0} (t ∈ (12 ,
2
3)),

{(p− 1)θ1 − θ2 − θ3 = 0} (t ∈ (56 , 1)).

This is also valid for the case 1
p +

1
q +

1
r = 1.
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Some T 2 bundles over S1 2

B C

D

EF

A

P3

P1 P2
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The rough idea
Perturbation of contact submanifolds

The rough idea

Let Lλ = S5 ∩ {zp1 + zq2 + zr3 − λz1z2z3 = 0}.
When λ → ∞, ϕ(Lλ) approaches to ∂∆.

1 Lλ is approximated by z1z2z3 = 0.

2 Near the vertices, it is approximated by
zr−1
3 = λz1z2, z

q−1
2 = λz1z3, and zp−1

1 = λz2z3.

Namely, we obtained Furukawa’s model.

Lλ
∼=

{
(TA, ker (β+ + β−)) (1p +

1
q +

1
r < 1)

(TA, ker (dy +mzdx)) (1p +
1
q +

1
r = 1).
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When λ → ∞, ϕ(Lλ) approaches to ∂∆.

1 Lλ is approximated by z1z2z3 = 0.

2 Near the vertices, it is approximated by
zr−1
3 = λz1z2, z

q−1
2 = λz1z3, and zp−1

1 = λz2z3.

Namely, we obtained Furukawa’s model.

Lλ
∼=

{
(TA, ker (β+ + β−)) (1p +

1
q +

1
r < 1)

(TA, ker (dy +mzdx)) (1p +
1
q +

1
r = 1).
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The perturbation

To prove Main Theorem, we construct an isotopy of
contatct submanifolds between Lλ and Furukawa’s
model for large λ. Then, by Gray stability, they are
contactomorphic. Let φ : R≥0 → R be a bump
function supported on {s ∈ R | 1− 2δ ≤ s} and
φ ≡ 1 on {s ∈ R | 1− δ ≤ s} with 0 < δ < 1

5 .

Fλ := z1z2z3 −
1

λ
(zp1 + zq2 + zr3) and

Gλ := z1z2z3 −
1

λ
(φ(r21)z

p
1 + φ(r22)z

q
2 + φ(r23)z

r
3).

Naohiko Kasuya Constructions of contact structures via the moment map I



Introduction
Constructions via the moment map

Proof of Main Theorem

The rough idea
Perturbation of contact submanifolds

The perturbation 2

Ht := (1− t)Fλ + tGλ.
For large λ, H−1

t (0) is a contact submanifold.

1 On
{
|zi| >

√
1− δ

}
, H−1

t (0) is a singularity link.

2 On
{
|z1|, |z2|, |z3| <

√
1− 1

2
δ
}
, H−1

t (0) is close to

{z1z2z3 = 0} in the sense of C∞ topology, and
the contactness is an open condition.

This completes the proof.
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Remark

I. Zharkov used a similar argument to construct Lagrangian

torus fibrations of Calabi-Yau hypersurfaces. The figure below

represents the elliptic curve x3 + y3 + z3 + txyz = 0 in CP 2.

I. Zharkov, Torus fibrations of Calabi-Yau hypersurfaces in

toric varieties, Duke Math. J. Vol. 101, No. 2, 2000, 237-257.
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Thank you for your attention!
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