New Proofs of Some Basic Theorems on Stationary Point Processes

Nariyuki Minami*[∗]*

Summary– We give new proofs of three basic theorems on stationary point processes on the real line – theorems of Khintchine, Korolyuk, and Dobrushin. Moreover we give a direct construction of the Palm measure for a class of point processes which includes stationary ones as special cases.

1 Introduction.

The purpose of this note is to give new proofs, based on a same simple idea, to some basic theorems on stationary point processes on the real line **R**, as stated in standard treatises on point processes such as Daley and Vere-Jones (see *§*3.3 of [3]).

To begin with, let us introduce necessary definitions and notation. By *Mp*, we denote the set of all integer-valued Radon measures on **R**. Namely M_p is the totality of all measures $N(dx)$ on **R** such that for any bounded Borel set *B*, $N(B)$ is a non-negative integer. Let us call any such measure a *counting measure*. For a counting measure $N \in M_p$, let us define

$$
X(t) := N((0, t]) \quad (t \ge 0), \qquad := -N((t, 0)) \quad (t < 0). \tag{1}
$$

Then the function $X(t)$ is right-continuous, integer-valued, locally bounded and non-decreasing. Hence $X(t)$ is piecewise constant on **R** and the set Δ , finite or countably infinite, of its points of discontinuity has no accumulation points other than *±∞*. Thus the points in ∆ can be ordered as

$$
\cdots < x_{-1} < x_0 \leq 0 < x_1 < x_2 < \cdots,
$$

so that if we let $m_n := X(x_n) - X(x_n - 0)$, then $N(dx)$ can be represented as

$$
N(dx) = \sum_{n} m_n \delta_{x_n}(dx),\tag{2}
$$

where δ_a denotes the unit mass placed at *a*. Each m_n is a positive integer and is called the *multiplicity* of the point x_n . In general, either $N([0,\infty))$ or $N((-\infty,0))$ can be finite, in

*[∗]*南 就将, 慶應義塾大学医学部数学教室(〒 223-8521 横浜市港北区日吉4-1-1): School of medicine, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan

which case either $\{x_n\}_{n>0}$ or $\{x_n\}_{n\leq 0}$ is a finite sequence. If in the former [resp. latter] case ${x_n}_{n>0}$ [resp. ${x_n}_{n\le0}$] terminates with x_ν , then we will set $x_n = \infty$ [resp. $x_n = -\infty$] for $n > \nu$ [resp. $n < \nu$]. When $m_n = 1$ for all *n* such that $x_n \neq \pm \infty$, the counting measure *N* is said to be *simple*. For each $N \in M_p$ with representation (2), let us associate a simple counting measure *N[∗]* defined by

$$
N^*(dx) = \sum_n \delta_{x_n}(dx) . \tag{3}
$$

In order to make M_p a measurable space, we define \mathcal{M}_p to be the σ -algebra of subsets of *M^p* generated by all mappings of the form

$$
M_p \ni N \mapsto N(B) \in [0, \infty]
$$
\n⁽⁴⁾

for all Borel sets $B \subset \mathbf{R}$. Then we see that x_n , m_n and N^* are all measurable functions of *N*, as the following lemma shows.

Lemma 1 *(i) The set*

$$
C := \{ N \in M_p : N((-\infty, 0]) = N((0, \infty)) = \infty \} = \{ N \in M_p : x_n \text{ is finite for all } n \}
$$

belongs to \mathcal{M}_p *.*

(ii) For each integer *n*, x_n and m_n are \mathcal{M}_p -measurable functions of N.

(iii) The mapping $M_p \ni N \mapsto N^* \in M_p$ *is* $\mathcal{M}_p/\mathcal{M}_p$ -measurable.

Proof. (i) The assertion is obvious from the definition of \mathcal{M}_p , since we can write

$$
C = \bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \{ N \in M_p : N((-n, 0]) > k, N((0, n]) > k \} .
$$

(ii) The measurability of x_1 follows from the relation

$$
\{N \in M_p: x_1 > t\} = \{N \in M_p: N((0, t]) = 0\},\,
$$

which holds for all $t \geq 0$. Now for each $k \geq 1$, define

$$
x_1^{(k)} := \sum_{j=1}^{\infty} \frac{j}{2^n} \mathbf{1}_{((j-1)/2^n, j/2^n]}(x_1) + \infty \cdot \mathbf{1}_{\{x_1 = \infty\}}.
$$

Then we see that $x_1^{(k)}$ $\binom{k}{1}$ is measurable in *N* and that $x_1^{(k)} \searrow x_1$ as $k \to \infty$. By the rightcontinuity of $X(t) = N((0, t])$ at $t > 0$, we have, as $k \to \infty$,

$$
\mathbf{1}_{\{x_1 < \infty\}} \cdot X(x_1^{(k)}) = \sum_{j=1}^{\infty} \mathbf{1}_{((j-1)/2^n, j/2^n]}(x_1) X(\frac{j}{2^k}) \longrightarrow X(x_1) = m_1,
$$

which shows the measurability of m_1 in N .

Next let $\tilde{X}(t) := X(t) - X(t \wedge x_1)$. This is measurable in N for all $t \geq 0$, since

$$
X(t \wedge x_1) = X(t) \mathbf{1}_{\{x_1 \ge t\}} + X(x_1) \mathbf{1}_{\{x_1 < t\}}.
$$

If we apply the above argument to $\tilde{X}(t)$ instead of $X(t)$, we can verify the measurability of x_2 and m_2 in *N*, and the argument can be iterated to give the measurability of all x_n and *mn*.

(iii) For each $j = 0, 1, 2, \ldots$ and $t > 0$, the sets

$$
\{N \in M_p: N^*((0,t]) = j\} = \{N \in M_p: x_j \le t < x_{j+1}\}
$$

and

$$
\{N \in M_p: N^*((-t,0]) = j\} = \{N \in M_p: x_{-j} \le t < x_{-j+1}\}
$$

belong to \mathcal{M}_p . Now for each $n \geq 1$, let \mathcal{G}_n be the class of all Borel subsets *B* of $[-n, n]$ such that the mapping

$$
M_p \ni N \mapsto N^*(B) \in [0, \infty)
$$
\n⁽⁵⁾

is measurable. Then \mathcal{G}_n is seen to be a λ -system which contains the class of intervals

$$
\mathcal{I} := \{(0, t] : \ 0 < t \leq t\} \cup \{(-t, 0] : \ 0 < t \leq n\}
$$

which forms a π -system. Hence by Dynkin's π - λ theorem (see e.g. Durrett [2]), \mathcal{G}_n contains all Borel subsets of $[-n, n]$. Since $n \geq 1$ is arbitrary, and since we can write $N^*(B)$ = $\lim_{n\to\infty} N^*(B\cap [-n,n])$, the mapping (5) is measurable for all Borel subsets of **R**.

Remark 1. By an argument similar to (iii), it is easy to show that \mathcal{M}_p is generated by mappings $M_p \ni N \mapsto X(t)$ for all *t*, where $X(t)$ is defined in (1).

Definition 1 *A* point process N_ω *is a random variable defined on a probability space* $(\Omega, \mathcal{F}, \mathbf{P})$ and taking values in the measurable space (M_p, \mathcal{M}_p) .

Definition 2 *A point process* N_ω *is said to be* crudely stationary *if for any bounded interval I* and for any $x \in \mathbf{R}$, $N_{\omega}(I)$ and $N_{\omega}(I + x)$ are identically distributed. Its mean density is *the expectation value* $m := \mathbf{E}[N_\omega((0,1])] \leq \infty$.

Definition 3 *A point process* N_ω *is said to be* stationary *if for any* $C \in \mathcal{M}_p$ *and* $x \in \mathbb{R}$ *, one has the identity*

$$
\mathbf{P}(N_{\omega}(\cdot) \in C) = \mathbf{P}(N_{\omega}(x + \cdot) \in C) .
$$

Obviously, N^ω is crudely stationary if it is stationary.

Remark 2. By another application of π - λ theorem, one can show without difficulty that N_ω is stationary if and only if for any finite family of Borel subsets B_1, \ldots, B_n of **R**, and of non-negative integers k_1, \ldots, k_n , the identity

$$
\mathbf{P}(N_{\omega}(B_i) = k_i, i = 1,...,n) = \mathbf{P}(N_{\omega}(x + B_i) = k_i, i = 1,...,n)
$$

holds for any $x \in \mathbf{R}$.

2 Basic theorems and their proofs.

Our argument is based on the following lemma, which is an immediate consequence of Definition 2.

Lemma 2 Let the point process N_ω be crudely stationary. Then for any bounded interval I *and for any non-negative integer k,*

$$
\mathbf{P}(N_{\omega}(I)=k)=\int_0^1 \mathbf{P}(N_{\omega}(x+I)=k)dx=\mathbf{E}\Bigl[\int_0^1 \mathbf{1}_{\{N_{\omega(x+I)=k}\}}dx\Bigr]\ .
$$

Proposition 1 (Khintchine's theorem) *For any crudely stationary point process* N_ω *, the limit*

$$
\lambda := \lim_{h \searrow 0} \frac{1}{h} \mathbf{P}(N_{\omega}((0, h]) > 0)
$$

exists and satisfies $\lambda \leq m$ *.* λ *is called the intensity of the point process* N_{ω} *.*

Proof. Let N_ω be represented as (2) and define the point process N_ω^* by (3). If we set $\nu(\omega) := N^*_{\omega}(0,1],$ it satisfies $x_{\nu(\omega)}(\omega) \leq 1 < x_{\nu(\omega)+1}(\omega)$. Obviously we have

$$
\{x \in (0,1]: N_{\omega}((x, x+h]) > 0\} = (0,1] \cap \left[\bigcup_{j=1}^{\infty} [x_j(\omega) - h, x_j(\omega)]\right]
$$

$$
= (0,1] \cap \left[\bigcup_{j=1}^{\nu(\omega)+1} J_j^{\omega}(h)\right] = \sum_{j=1}^{\nu(\omega)+1} \left[(0,1] \cap (J_j^{\omega}(h) \setminus J_{j-1}^{\omega}(h))\right],
$$

where we have set $J_j^{\omega}(h) := [x_j(\omega) - h, x_j(\omega)]$ and $J_0 = \emptyset$. Hence

$$
\frac{1}{h} \int_0^1 \mathbf{1}_{\{N_\omega((x,x+h])>0\}} dx = \frac{1}{h} \sum_{j=1}^{\nu(\omega)+1} |(0,1] \cap (J_j^\omega(h) \setminus J_{j-1}^\omega(h))|
$$

$$
= \sum_{j=1}^{\nu(\omega)+1} \frac{1}{h} \{ (1 \wedge x_j(\omega)) - (0 \vee x_{j-1}(\omega) \vee (x_j(\omega) - h) \}_+,
$$

where for a Borel subset *B* of **R**, $|B|$ denotes its Lebesgue measure and for a real number *a*, $a_+ := a \vee 0 = \max\{a, 0\}$ denotes its positive part. Now it is easy to see that for $1 \leq j \leq \nu(\omega)$,

$$
\frac{1}{h}\{(1 \wedge x_j(\omega)) - (0 \vee x_{j-1}(\omega) \vee (x_j(\omega) - h)\}_+ \nearrow 1
$$

as $h \searrow 0$, and that for $j = \nu(\omega) + 1$,

$$
\frac{1}{h}\{(1\wedge x_{\nu(\omega)+1}(\omega))-(0\vee x_{\nu(\omega)}(\omega)\vee(x_{\nu(\omega)+1}(\omega)-h))\}_{+}
$$

is bounded by 1 and tends to 0 as $h \searrow 0$. Thus we can apply the monotone convergence theorem, the dominated convergence theorem and Lemma 2, to obtain

$$
\frac{1}{h}\mathbf{P}(N_{\omega}((0,h])>0) = \mathbf{E}\Big[\frac{1}{h}\sum_{j=1}^{\nu(\omega)+1}|(0,1] \cap (J_j^{\omega} \setminus J_{j-1}^{\omega}(h))|\Big] \n\to \mathbf{E}\Big[\sum_{j=1}^{\nu(\omega)}1\Big] = \mathbf{E}\Big[N_{\omega}^*((0,1])\Big],
$$

as $h \searrow 0$. Thus the desired limit λ exists and is equal to $\mathbf{E}[N^*_{\omega}((0,1])]$. Clearly it satisfies the inequality $\lambda \leq \mathbf{E}[N_{\omega}((0,1])] = m$.

Corollary 1 *If* N_ω *is simple, then* $\lambda = m$ *. When* $m < \infty$ *, the converse is also true.*

Proof. N_{ω} is simple if and only if $N_{\omega}^* = N_{\omega}$ almost surely, which obviously implies $\lambda = m$. On the other hand, if $\lambda = m < \infty$, then

$$
\mathbf{E}[N_{\omega}((0,1])-N_{\omega}^*((0,1])]=m-\lambda=0.
$$

But $N_\omega((0,1]) - N_\omega^*((0,1]) \geq 0$ in general, so that $N_\omega((0,1]) = N_\omega^*((0,1])$ almost surely. The same argument is valid if the interval $(0, 1]$ is replaced by $(n, n+1]$, so that $N_\omega((n, n+1])$ $N^*_{\omega}((n, n+1])$ almost surely for all integers *n*, and the simplicity of N_{ω} follows.

Remark 3. In the treatise by Daley and Vere-Jones [3], for example, Proposition 1 is proved in the following way: If we define $\phi(h) := \mathbf{P}(N_\omega((0,h]) > 0)$, then by the crude stationarity, we have for any positive h_1 and h_2 ,

$$
\phi(h_1 + h_2) = \mathbf{P}(N_{\omega}((0, h_1 + h_2]) > 0) = \mathbf{P}(N_{\omega}((0, h_1]) + N_{\omega}((h_1, h_1 + h_2]) > 0)
$$

\n
$$
\leq \mathbf{P}(N_{\omega}((0, h_1]) > 0) + \mathbf{P}(N_{\omega}((h_1, h_1 + h_2]) > 0) = \phi(h_1) + \phi(h_2),
$$

so that $\phi(h)$ is a sub-additive function defined on $[0, \infty)$ satisfying $\phi(0) = 0$. To show the existence of the intensity λ , it suffices to apply the following well known lemma.

Lemma 3 Let $g(x)$ be a sub-additive function defined on $[0, \infty)$ such that $g(0) = 0$. Then *one has*

$$
\lim_{x \searrow 0} \frac{g(x)}{x} = \sup_{x > 0} \frac{g(x)}{x} \le \infty.
$$

However, this argument does not provide the representation $\lambda = \mathbf{E}[N^*_{\omega}((0,1])]$, so that the proof of Corollary 1 requires some extra work. Our proof above is closer to that of Leadbetter [5]. See also Chung [1].

Definition 4 *A crudely stationary point process* N_ω *is said to be* orderly *when*

$$
\mathbf{P}(N_{\omega}((0,h]) \geq 2) = o(h) \quad (h \searrow 0) .
$$

Proposition 2 (Dobrushin's theorem) *If a crudely stationary point process* N_ω *is simple and if* $\lambda < \infty$ *, then* N_{ω} *is orderly.*

Proof. By Lemma 2, we can write

$$
\mathbf{P}(N_{\omega}((0,h])\geq 2)=\mathbf{E}\Bigl[\int_0^1\mathbf{1}_{\{N_{\omega}((x,x+h])\geq 2\}}dx\Bigr]\ .
$$

As can be seen from the proof of Proposition 1, we have

$$
\frac{1}{h} \int_0^1 \mathbf{1}_{\{N_\omega((x,x+h])\geq 2\}} dx \leq \frac{1}{h} \int_0^1 \mathbf{1}_{\{N_\omega((x,x+h])>0\}} dx
$$
\n
$$
= \sum_{j=1}^{\nu(\omega)} \frac{1}{h} |(0,1] \cap (J_j^\omega(h) \setminus J_{j-1}^\omega(h))| + \frac{1}{h} |(0,1] \cap (J_{\nu(\omega)+1}(h) \setminus J_{\nu(\omega)}(h))|
$$
\n
$$
\leq N_\omega^*((0,1]) + 1,
$$

and

$$
\lim_{h \searrow 0} \frac{1}{h} \int_0^1 \mathbf{1}_{\{N_\omega((x,x+h]) \ge 2\}} dx = \sharp \{j : x_j(\omega) \in (0,1], m_j(\omega) \ge 2\}.
$$

Since $\mathbf{E}[N^*_{\omega}((0,1])] = \lambda < \infty$, we can apply the dominated convergence theorem, to obtain

$$
\lim_{h \searrow 0} \frac{1}{h} \mathbf{P}(N_{\omega}((0, h]) \ge 2) = \mathbf{E}[\sharp \{j : x_j(\omega) \in (0, 1], m_j(\omega) \ge 2\}],
$$

which is equal to 0 if N_ω is simple.

Remark 4. The condition $\lambda < \infty$ cannot be dropped. For a counter example, see Exercise 3.3.2 of [3].

Proposition 3 (Korolyuk's theorem) *A crudely stationary, orderly point process is simple.*

Proof. By Fatou's lemma and the orderliness of *Nω*,

$$
\mathbf{E}[\sharp\{j:\ x_j(\omega) \in (0,1],\ m_j(\omega) \ge 2\}] = \mathbf{E} \Big[\liminf_{h \searrow 0} \frac{1}{h} \int_0^1 \mathbf{1}_{\{N_\omega((x,x+h]) \ge 2\}} dx \Big]
$$

$$
\leq \liminf_{h \searrow 0} \frac{1}{h} \mathbf{P}(N_\omega((0,h]) \ge 2) = 0,
$$

so that with probability one, N_ω has no multiple points in $(0, 1]$. By crude stationarity, the above argument is also valid if $(0, 1]$ is replaced by $(n, n + 1]$ for any integer *n*. Hence N_ω is simple.

Proposition 4 *For a crudely stationary point process* N_ω *with finite intensity* λ *, the limits*

$$
\lambda_k := \lim_{h \searrow 0} \frac{1}{h} \mathbf{P} (1 \le N_\omega((0, h]) \le k)
$$

exists for $k = 1, 2, \ldots$, and satisfy $\lambda_k \nearrow \lambda$ as $k \to \infty$. Moreover for $k = 1, 2, \ldots$,

$$
\pi_k := \frac{\lambda_k - \lambda_{k-1}}{\lambda} = \lim_{h \searrow 0} \mathbf{P}(N_\omega((0, h]) = k \mid N_\omega((0, h]) > 0) ,
$$

where we set $\lambda_0 := 0$.

Proof. As before, one has

$$
\frac{1}{h} \int_0^1 \mathbf{1}_{\{1 \le N_\omega((x,x+h]) \le k\}} dx \le 1 + N^*_\omega((0,1]) ,
$$

and

$$
\lim_{h \searrow 0} \frac{1}{h} \int_0^1 \mathbf{1}_{\{1 \le N \omega((x,x+h]) \le k\}} dx = \sharp \{j : x_j(\omega) \in (0,1], m_j(\omega) \le k\}.
$$

Since $\lambda = \mathbf{E}[N^*_{\omega}(0,1])] < \infty$, we can apply the dominated convergence theorem and Lemma 2, to obtain

$$
\lambda_k = \lim_{h \searrow 0} \frac{1}{h} \mathbf{E} \Big[\int_0^1 \mathbf{1}_{\{1 \le N_\omega((x,x+h]) \le k\}} dx \Big] = \mathbf{E}[\sharp \{j : x_j(\omega) \in (0,1], \ m_j(\omega) \le k\}].
$$

This representation of λ_k immediately gives

$$
\lim_{k \to \infty} \lambda_k = \mathbf{E}[\sharp \{j : x_j(\omega) \in (0,1]\}] = \mathbf{E}[N^*((0,1])] = \lambda ,
$$

by the monotone convergence theorem. The last statement of the proposition is obvious.

Corollary 2 *For a crudely stationary point process with finite intensity, we have*

$$
\lambda \sum_{k=1}^{\infty} k \pi_k = \mathbf{E}[N_\omega((0,1])] = m .
$$

3 The Palm measure

Let us assume that the probability space (Ω, \mathcal{F}, P) , on which our point process N_ω is defined, is equipped with a measurable flow $\{\theta_t\}_{t \in \mathbf{R}}$. Here a measurable flow $\{\theta_t\}$ is, by definition, a family of bijections $\theta_t : \Omega \to \Omega$ such that

- (a) θ_0 is the identity mapping, and for any $s, t \in \mathbf{R}$, $\theta_s \circ \theta_t = \theta_{s+t}$ holds;
- **(b)** the mapping $(t, \omega) \mapsto \theta_t(\omega)$ from $\mathbf{R} \times \Omega$ into Ω is jointly measurable with respect to $\mathcal{B}(\mathbf{R}) \times \mathcal{F}$, where $\mathcal{B}(\mathbf{R})$ is the Borel σ -algebra on **R**.

Let us further assume that the relation

$$
\int_{\mathbf{R}} N_{\theta_t \omega}(dx) \varphi(x) = \int_{\mathbf{R}} N_{\omega}(dx) \varphi(x - t)
$$
\n(6)

holds for any $t \in \mathbf{R}$ and any continuous function φ with compact support. If the probability measure **P** is $\{\theta_t\}$ -invariant in the sense **P** $\circ \theta_t^{-1} = \mathbf{P}$ for all $t \in \mathbf{R}$, then by (6), our point process N_ω is stationary.

Definition 5 *The Palm measure of a point process* $N_\omega(dx)$ *is a measure kernel* $Q(x, d\omega)$ *on* $\mathbf{R} \times \Omega$ *such that for any jointly measurable, non-negative function* $f(x, \omega)$ *, the relation*

$$
\int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) f(x, \omega) = \int_{\mathbf{R}} \lambda(dx) \int_{\Omega} Q(x, d\omega) f(x, \omega) \tag{7}
$$

holds, where $\lambda(dx)$ *is the mean measure of* N_ω *which is defined by* $\lambda(B) = \mathbf{E}[N_\omega(B)]$ *for* $B \in \mathcal{B}(\mathbf{R})$ *and which we assume to be finite for bounded Borel sets B.*

Now let $u(t)$ be a probability density function on **R**. Define a new probability measure P_u by

$$
\int_{\Omega} \mathbf{P}_u(d\omega)g(\omega) = \int_{\mathbf{R}} u(t)dt \Big(\int_{\Omega} \mathbf{P}(d\omega)g(\theta_t \omega) \Big) , \tag{8}
$$

where $g(\omega)$ is an arbitrary non-negative measurable function on Ω . Then the following result holds.

Theorem 1 *For any probability density* $u(t)$ *on* **R***, the Palm measure* $Q_u(x, d\omega)$ *exists for the point process* N_ω *defined on the probability space* $(\Omega, \mathcal{F}, \mathbf{P}_u)$ *.*

Proof. Let $f(x, \omega) \geq 0$ be jointly measurable on $\mathbb{R} \times \Omega$. Then we can rewrite the left hand side of (7) in the following way:

$$
\int_{\Omega} \mathbf{P}_{u}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) f(x, \omega) = \int_{\mathbf{R}} u(t)dt \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\theta_{t}\omega}(dx) f(x, \theta_{t}\omega)
$$
\n
$$
= \int_{\mathbf{R}} u(t)dt \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) f(x - t, \theta_{t}\omega)
$$
\n
$$
= \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) \int_{\mathbf{R}} u(t)dt f(x - t, \theta_{t}\omega)
$$
\n
$$
= \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) \int_{\mathbf{R}} u(x - s)ds f(s, \theta_{x - s}\omega)
$$
\n
$$
= \int_{\mathbf{R}} ds \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) u(x - s) f(s, \theta_{x - s}\omega) . \quad (9)
$$

At this stage, take $f(x, \omega) = \varphi(x)$. Then (9) reduces to

$$
\int_{\mathbf{R}} \varphi(s)\lambda(ds) = \int_{\mathbf{R}} \varphi(s)\ell_u(s)ds
$$
\n(10)

with

$$
\ell_u(s) = \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) u(x - s) . \tag{11}
$$

If we define, for each $s \in \mathbf{R}$, the measure $Q_u(s, d\omega)$ on (Ω, \mathcal{F}) by

$$
\int_{\Omega} Q_u(s, d\omega) g(\omega) = \frac{\mathbf{1}_{(0,\infty)}(\ell_u(s))}{\ell_u(s)} \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) u(x - s) g(\theta_{x-s}\omega) , \qquad (12)
$$

then (9) takes the form of (7), and the theorem is proved.

When **P** is $\{\theta_t\}$ -invariant, then we have $\mathbf{P}_u = \mathbf{P}$ for any probability density *u* on **R**, and

$$
\ell_u(s) = \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\theta_s \omega}(dx) u(x) = \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) u(x) =: \ell > 0
$$

is a constant. Moreover one can compute as

$$
\int_{\Omega} Q_u(s, d\omega) g(\omega) = \frac{1}{\ell} \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\theta_s \omega}(dx) u(x) g(\theta_x \omega)
$$
\n
$$
= \frac{1}{\ell} \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\theta_s \omega}(dx) u(x) g(\theta_{x-s}(\theta_s \omega)) = \frac{1}{\ell} \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) u(x) g(\theta_{x-s} \omega) .
$$

Hence if we define a measure $\hat{\mathbf{P}}(d\omega)$ on (Ω, \mathcal{F}) by

$$
\int_{\Omega} \hat{\mathbf{P}}(d\omega)g(\omega) = \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx)u(x)g(\theta_x \omega) ,
$$

then we get

$$
Q_u(s, d\omega) = \frac{1}{\ell} (\hat{\mathbf{P}} \circ \theta_s)(d\omega) ,
$$

and (7) can be written in the form

$$
\int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) f(x, \omega) = \int_{\mathbf{R}} dx \int_{\Omega} \hat{\mathbf{P}}(d\omega) f(x, \theta_{-x}\omega) , \qquad (13)
$$

which is the defining relation of the Palm measure in the stationary case (see [6]). (13) shows in particular that the definition of \tilde{P} is independent of the choice of u .

Our consideration of the probability measure P_u is motivated by the following observation.

Proposition 5 *The probability measure* **P** *is* $\{\theta_t\}$ *-invariant if and only if the following two conditions hold:*

- (i) $P_u = P$ *for any probability density function* $u(t)$ *on* **R***;*
- **(ii)** the set H of all bounded measurable functions $\varphi(\omega)$ on Ω such that $t \mapsto \varphi(\theta_t \omega)$ is *continuous for all* $\omega \in \Omega$ *is dense in* $L^2(\Omega, \mathbf{P})$ *.*

Proof. The necessity of (i) is obvious. That (ii) also follows from the $\{\theta_t\}$ -invariance of **P** is proved in [6] (see Lemma II. 3). To prove the sufficiency of (i) and (ii), fix an arbitrary $t_0 \in \mathbf{R}$ and take a sequence of probability density $\{u_n\}_n$ so that $u_n(t)dt \to \delta_{t_0}(dt)$ weakly. Now for any $\varphi \in H$, $t \mapsto \varphi(\theta_t \omega)$ is continuous and bounded by $\|\varphi\|_{\infty} := \sup_{\Omega} |\varphi(\omega)|$. Hence we can apply the dominated convergence theorem, to get

$$
\int_{\Omega} \mathbf{P}(d\omega)\varphi(\theta_{t_0}\omega) = \int_{\Omega} \mathbf{P}(d\omega) \left(\lim_{n \to \infty} \int_{\mathbf{R}} \varphi(\theta_t \omega) u_n(t) dt \right)
$$

$$
= \lim_{n \to \infty} \int_{\mathbf{R}} \left(\int_{\Omega} \mathbf{P}(d\omega)\varphi(\theta_t \omega) \right) u_n(t) dt
$$

$$
= \lim_{n \to \infty} \int_{\Omega} \mathbf{P}_{u_n}(d\omega)\varphi(\omega) = \int_{\Omega} \mathbf{P}(d\omega)\varphi(\omega)
$$

by condition (i). But if *H* is dense in $L^2(\Omega, \mathbf{P})$, we can approximate an arbitrary bounded measurable function $q(\omega)$ by the elements of *H*, to obtain

$$
\int_{\Omega} \mathbf{P}(d\omega)g(\theta_{t_0}\omega) = \int_{\Omega} \mathbf{P}(d\omega)g(\omega)
$$

for any $t_0 \in \mathbf{R}$. This sows the $\{\theta_t\}$ -invariance of **P**.

In most cases of application, Ω itself is a topological space with $\mathcal F$ the Baire σ -algebra generated by that topology and $t \mapsto \theta_t \omega$ is continuous for all $\omega \in \Omega$. In such a case, *H* contains the class $C_b(\Omega)$ of all bounded continuous functions on Ω , which is dense in $L^2(\Omega, \mathbf{P})$. Hence condition (ii) is not as restrictive as it may appear.

See [4] for a general treatment of stationary random measures on a topological group.

References

- [1] Chung, K. L.: Crudely stationary point processes, *Amer. Math. Monthly* **79**, (1972) 867–877.
- [2] Durrett, R.: *Probability: theory and examples*, Second edition, Duxbury Press, Belmont, CA, 1996
- [3] Daley, D.J. and Vere-Jones, D.: *An introduction to the theory of point processes. I: Elementary theory and methods*, 2nd ed., Probab. Appl. (N. Y.), Springer, New York, 2003
- [4] Last, G.: Modern random measures: Palm theory and related models, in *New perspectives in stochastic geometry* (W. S. Kendall and I. Molchanov, eds.), Oxford 2010
- [5] LEADBETTER, M.R.: On three basic results in the theory of stationary point processes, *Proc. Amer. Math. Soc.* **19**, (1968) 115–117.
- [6] NEVEU, J.: Processus ponctuels, École d'Eté de Probabilités de Saint-Flour VI. *Lecture Notes in Mathematics* **598**, 249–445, Springer, Berlin.