New Proofs of Some Basic Theorems on Stationary Point Processes

Nariyuki MINAMI*

Summary– We give new proofs of three basic theorems on stationary point processes on the real line – theorems of Khintchine, Korolyuk, and Dobrushin. Moreover we give a direct construction of the Palm measure for a class of point processes which includes stationary ones as special cases.

1 Introduction.

The purpose of this note is to give new proofs, based on a same simple idea, to some basic theorems on stationary point processes on the real line \mathbf{R} , as stated in standard treatises on point processes such as Daley and Vere-Jones (see §3.3 of [3]).

To begin with, let us introduce necessary definitions and notation. By M_p , we denote the set of all integer-valued Radon measures on **R**. Namely M_p is the totality of all measures N(dx) on **R** such that for any bounded Borel set B, N(B) is a non-negative integer. Let us call any such measure a *counting measure*. For a counting measure $N \in M_p$, let us define

$$X(t) := N((0,t]) \quad (t \ge 0), \qquad := -N((t,0)) \quad (t < 0).$$
(1)

Then the function X(t) is right-continuous, integer-valued, locally bounded and non-decreasing. Hence X(t) is piecewise constant on **R** and the set Δ , finite or countably infinite, of its points of discontinuity has no accumulation points other than $\pm \infty$. Thus the points in Δ can be ordered as

$$\cdots < x_{-1} < x_0 \le 0 < x_1 < x_2 < \cdots,$$

so that if we let $m_n := X(x_n) - X(x_n - 0)$, then N(dx) can be represented as

$$N(dx) = \sum_{n} m_n \delta_{x_n}(dx), \tag{2}$$

where δ_a denotes the unit mass placed at a. Each m_n is a positive integer and is called the *multiplicity* of the point x_n . In general, either $N([0,\infty))$ or $N((-\infty,0))$ can be finite, in

^{*}南 就将, 慶應義塾大学医学部数学教室(〒223-8521 横浜市港北区日吉4-1-1): School of medicine, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan

which case either $\{x_n\}_{n>0}$ or $\{x_n\}_{n\leq 0}$ is a finite sequence. If in the former [resp. latter] case $\{x_n\}_{n>0}$ [resp. $\{x_n\}_{n\leq 0}$] terminates with x_{ν} , then we will set $x_n = \infty$ [resp. $x_n = -\infty$] for $n > \nu$ [resp. $n < \nu$]. When $m_n = 1$ for all n such that $x_n \neq \pm \infty$, the counting measure N is said to be *simple*. For each $N \in M_p$ with representation (2), let us associate a simple counting measure N^* defined by

$$N^*(dx) = \sum_n \delta_{x_n}(dx) \ . \tag{3}$$

In order to make M_p a measurable space, we define \mathcal{M}_p to be the σ -algebra of subsets of M_p generated by all mappings of the form

$$M_p \ni N \mapsto N(B) \in [0, \infty] \tag{4}$$

for all Borel sets $B \subset \mathbf{R}$. Then we see that x_n , m_n and N^* are all measurable functions of N, as the following lemma shows.

Lemma 1 (i) The set

$$C := \{ N \in M_p : N((-\infty, 0]) = N((0, \infty)) = \infty \} = \{ N \in M_p : x_n \text{ is finite for all } n \}$$

belongs to \mathcal{M}_p .

(ii) For each integer n, x_n and m_n are \mathcal{M}_p -measurable functions of N.

(iii) The mapping $M_p \ni N \mapsto N^* \in M_p$ is $\mathcal{M}_p/\mathcal{M}_p$ -measurable.

Proof. (i) The assertion is obvious from the definition of \mathcal{M}_p , since we can write

$$C = \bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \{ N \in M_p : N((-n,0]) > k, N((0,n]) > k \} .$$

(ii) The measurability of x_1 follows from the relation

$$\{N \in M_p: x_1 > t\} = \{N \in M_p: N((0,t]) = 0\},\$$

which holds for all $t \ge 0$. Now for each $k \ge 1$, define

$$x_1^{(k)} := \sum_{j=1}^{\infty} \frac{j}{2^n} \mathbf{1}_{((j-1)/2^n, j/2^n]}(x_1) + \infty \cdot \mathbf{1}_{\{x_1 = \infty\}} .$$

Then we see that $x_1^{(k)}$ is measurable in N and that $x_1^{(k)} \searrow x_1$ as $k \to \infty$. By the rightcontinuity of X(t) = N((0, t]) at t > 0, we have, as $k \to \infty$,

$$\mathbf{1}_{\{x_1 < \infty\}} \cdot X(x_1^{(k)}) = \sum_{j=1}^{\infty} \mathbf{1}_{((j-1)/2^n, j/2^n]}(x_1) X(\frac{j}{2^k}) \longrightarrow X(x_1) = m_1 ,$$

which shows the measurability of m_1 in N.

Next let $\tilde{X}(t) := X(t) - X(t \wedge x_1)$. This is measurable in N for all $t \ge 0$, since

$$X(t \wedge x_1) = X(t)\mathbf{1}_{\{x_1 \ge t\}} + X(x_1)\mathbf{1}_{\{x_1 < t\}} .$$

If we apply the above argument to $\tilde{X}(t)$ instead of X(t), we can verify the measurability of x_2 and m_2 in N, and the argument can be iterated to give the measurability of all x_n and m_n .

(iii) For each $j = 0, 1, 2, \ldots$ and t > 0, the sets

$$\{N \in M_p : N^*((0,t]) = j\} = \{N \in M_p : x_j \le t < x_{j+1}\}$$

and

$$\{N \in M_p : N^*((-t,0]) = j\} = \{N \in M_p : x_{-j} \le t < x_{-j+1}\}$$

belong to \mathcal{M}_p . Now for each $n \geq 1$, let \mathcal{G}_n be the class of all Borel subsets B of [-n, n] such that the mapping

$$M_p \ni N \mapsto N^*(B) \in [0, \infty) \tag{5}$$

is measurable. Then \mathcal{G}_n is seen to be a λ -system which contains the class of intervals

$$\mathcal{I} := \{ (0, t] : 0 < t \le t \} \cup \{ (-t, 0] : 0 < t \le n \}$$

which forms a π -system. Hence by Dynkin's π - λ theorem (see e.g. Durrett [2]), \mathcal{G}_n contains all Borel subsets of [-n, n]. Since $n \geq 1$ is arbitrary, and since we can write $N^*(B) = \lim_{n \to \infty} N^*(B \cap [-n, n])$, the mapping (5) is measurable for all Borel subsets of **R**.

Remark 1. By an argument similar to (iii), it is easy to show that \mathcal{M}_p is generated by mappings $M_p \ni N \mapsto X(t)$ for all t, where X(t) is defined in (1).

Definition 1 A point process N_{ω} is a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and taking values in the measurable space (M_p, \mathcal{M}_p) .

Definition 2 A point process N_{ω} is said to be crudely stationary if for any bounded interval I and for any $x \in \mathbf{R}$, $N_{\omega}(I)$ and $N_{\omega}(I+x)$ are identically distributed. Its mean density is the expectation value $m := \mathbf{E}[N_{\omega}((0,1])] \leq \infty$.

Definition 3 A point process N_{ω} is said to be stationary if for any $C \in \mathcal{M}_p$ and $x \in \mathbf{R}$, one has the identity

$$\mathbf{P}(N_{\omega}(\cdot) \in C) = \mathbf{P}(N_{\omega}(x+\cdot) \in C) .$$

Obviously, N_{ω} is crudely stationary if it is stationary.

Remark 2. By another application of π - λ theorem, one can show without difficulty that N_{ω} is stationary if and only if for any finite family of Borel subsets B_1, \ldots, B_n of **R**, and of non-negative integers k_1, \ldots, k_n , the identity

$$\mathbf{P}(N_{\omega}(B_i) = k_i, \ i = 1, \dots, n) = \mathbf{P}(N_{\omega}(x + B_i) = k_i, \ i = 1, \dots, n)$$

holds for any $x \in \mathbf{R}$.

2 Basic theorems and their proofs.

Our argument is based on the following lemma, which is an immediate consequence of Definition 2.

Lemma 2 Let the point process N_{ω} be crudely stationary. Then for any bounded interval I and for any non-negative integer k,

$$\mathbf{P}(N_{\omega}(I) = k) = \int_0^1 \mathbf{P}(N_{\omega}(x+I) = k) dx = \mathbf{E}\left[\int_0^1 \mathbf{1}_{\{N_{\omega}(x+I) = k\}} dx\right] \,.$$

Proposition 1 (Khintchine's theorem) For any crudely stationary point process N_{ω} , the limit

$$\lambda := \lim_{h \searrow 0} \frac{1}{h} \mathbf{P}(N_{\omega}((0,h]) > 0)$$

exists and satisfies $\lambda \leq m$. λ is called the intensity of the point process N_{ω} .

Proof. Let N_{ω} be represented as (2) and define the point process N_{ω}^* by (3). If we set $\nu(\omega) := N_{\omega}^*(0, 1]$, it satisfies $x_{\nu(\omega)}(\omega) \leq 1 < x_{\nu(\omega)+1}(\omega)$. Obviously we have

$$\{x \in (0,1]: N_{\omega}((x,x+h]) > 0\} = (0,1] \cap \left[\bigcup_{j=1}^{\infty} [x_j(\omega) - h, x_j(\omega))\right]$$
$$= (0,1] \cap \left[\bigcup_{j=1}^{\nu(\omega)+1} J_j^{\omega}(h)\right] = \sum_{j=1}^{\nu(\omega)+1} \left[(0,1] \cap (J_j^{\omega}(h) \setminus J_{j-1}^{\omega}(h))\right],$$

where we have set $J_j^{\omega}(h) := [x_j(\omega) - h, x_j(\omega))$ and $J_0 = \emptyset$. Hence

$$\frac{1}{h} \int_0^1 \mathbf{1}_{\{N_\omega((x,x+h])>0\}} dx = \frac{1}{h} \sum_{j=1}^{\nu(\omega)+1} |(0,1] \cap (J_j^\omega(h) \setminus J_{j-1}^\omega(h))| \\
= \sum_{j=1}^{\nu(\omega)+1} \frac{1}{h} \{(1 \wedge x_j(\omega)) - (0 \vee x_{j-1}(\omega) \vee (x_j(\omega) - h))\}_+,$$

where for a Borel subset B of **R**, |B| denotes its Lebesgue measure and for a real number a, $a_+ := a \lor 0 = \max\{a, 0\}$ denotes its positive part. Now it is easy to see that for $1 \le j \le \nu(\omega)$,

$$\frac{1}{h}\{(1 \wedge x_j(\omega)) - (0 \lor x_{j-1}(\omega) \lor (x_j(\omega) - h)\}_+ \nearrow 1$$

as $h \searrow 0$, and that for $j = \nu(\omega) + 1$,

$$\frac{1}{h} \{ (1 \land x_{\nu(\omega)+1}(\omega)) - (0 \lor x_{\nu(\omega)}(\omega) \lor (x_{\nu(\omega)+1}(\omega) - h)) \}_{+}$$

is bounded by 1 and tends to 0 as $h \searrow 0$. Thus we can apply the monotone convergence theorem, the dominated convergence theorem and Lemma 2, to obtain

$$\frac{1}{h} \mathbf{P}(N_{\omega}((0,h]) > 0) = \mathbf{E}\left[\frac{1}{h} \sum_{j=1}^{\nu(\omega)+1} |(0,1] \cap (J_{j}^{\omega} \setminus J_{j-1}^{\omega}(h))|\right]$$
$$\rightarrow \mathbf{E}\left[\sum_{j=1}^{\nu(\omega)} 1\right] = \mathbf{E}\left[N_{\omega}^{*}((0,1])\right],$$

as $h \searrow 0$. Thus the desired limit λ exists and is equal to $\mathbf{E}[N^*_{\omega}((0,1])]$. Clearly it satisfies the inequality $\lambda \leq \mathbf{E}[N_{\omega}((0,1])] = m$.

Corollary 1 If N_{ω} is simple, then $\lambda = m$. When $m < \infty$, the converse is also true.

Proof. N_{ω} is simple if and only if $N_{\omega}^* = N_{\omega}$ almost surely, which obviously implies $\lambda = m$. On the other hand, if $\lambda = m < \infty$, then

$$\mathbf{E}[N_{\omega}((0,1]) - N_{\omega}^{*}((0,1])] = m - \lambda = 0$$

But $N_{\omega}((0,1]) - N_{\omega}^*((0,1]) \ge 0$ in general, so that $N_{\omega}((0,1]) = N_{\omega}^*((0,1])$ almost surely. The same argument is valid if the interval (0,1] is replaced by (n, n+1], so that $N_{\omega}((n, n+1]) = N_{\omega}^*((n, n+1])$ almost surely for all integers n, and the simplicity of N_{ω} follows.

Remark 3. In the treatise by Daley and Vere-Jones [3], for example, Proposition 1 is proved in the following way: If we define $\phi(h) := \mathbf{P}(N_{\omega}((0,h]) > 0)$, then by the crude stationarity, we have for any positive h_1 and h_2 ,

$$\begin{aligned} \phi(h_1 + h_2) &= \mathbf{P}(N_{\omega}((0, h_1 + h_2]) > 0) = \mathbf{P}(N_{\omega}((0, h_1]) + N_{\omega}((h_1, h_1 + h_2]) > 0) \\ &\leq \mathbf{P}(N_{\omega}((0, h_1]) > 0) + \mathbf{P}(N_{\omega}((h_1, h_1 + h_2]) > 0) = \phi(h_1) + \phi(h_2) , \end{aligned}$$

so that $\phi(h)$ is a sub-additive function defined on $[0, \infty)$ satisfying $\phi(0) = 0$. To show the existence of the intensity λ , it suffices to apply the following well known lemma.

Lemma 3 Let g(x) be a sub-additive function defined on $[0, \infty)$ such that g(0) = 0. Then one has

$$\lim_{x \searrow 0} \frac{g(x)}{x} = \sup_{x > 0} \frac{g(x)}{x} \le \infty .$$

However, this argument does not provide the representation $\lambda = \mathbf{E}[N^*_{\omega}((0,1])]$, so that the proof of Corollary 1 requires some extra work. Our proof above is closer to that of Leadbetter [5]. See also Chung [1].

Definition 4 A crudely stationary point process N_{ω} is said to be orderly when

$$\mathbf{P}(N_{\omega}((0,h]) \ge 2) = o(h) \quad (h \searrow 0) .$$

Proposition 2 (Dobrushin's theorem) If a crudely stationary point process N_{ω} is simple and if $\lambda < \infty$, then N_{ω} is orderly.

Proof. By Lemma 2, we can write

$$\mathbf{P}(N_{\omega}((0,h]) \ge 2) = \mathbf{E}\left[\int_{0}^{1} \mathbf{1}_{\{N_{\omega}((x,x+h]) \ge 2\}} dx\right].$$

As can be seen from the proof of Proposition 1, we have

$$\frac{1}{h} \int_{0}^{1} \mathbf{1}_{\{N_{\omega}((x,x+h]) \ge 2\}} dx \le \frac{1}{h} \int_{0}^{1} \mathbf{1}_{\{N_{\omega}((x,x+h]) > 0\}} dx$$

$$= \sum_{j=1}^{\nu(\omega)} \frac{1}{h} |(0,1] \cap (J_{j}^{\omega}(h) \setminus J_{j-1}^{\omega}(h))| + \frac{1}{h} |(0,1] \cap (J_{\nu(\omega)+1}(h) \setminus J_{\nu(\omega)}(h)|)$$

$$\le N_{\omega}^{*}((0,1]) + 1,$$

and

$$\lim_{h \searrow 0} \frac{1}{h} \int_0^1 \mathbf{1}_{\{N_\omega((x,x+h]) \ge 2\}} dx = \sharp \{j : x_j(\omega) \in (0,1], m_j(\omega) \ge 2\} .$$

Since $\mathbf{E}[N^*_{\omega}((0,1])] = \lambda < \infty$, we can apply the dominated convergence theorem, to obtain

$$\lim_{h \searrow 0} \frac{1}{h} \mathbf{P}(N_{\omega}((0,h]) \ge 2) = \mathbf{E}[\sharp\{j : x_j(\omega) \in (0,1], m_j(\omega) \ge 2\}],$$

which is equal to 0 if N_{ω} is simple.

Remark 4. The condition $\lambda < \infty$ cannot be dropped. For a counter example, see Exercise 3.3.2 of [3].

Proposition 3 (Korolyuk's theorem) A crudely stationary, orderly point process is simple.

Proof. By Fatou's lemma and the orderliness of N_{ω} ,

$$\mathbf{E}[\sharp\{j: x_j(\omega) \in (0,1], m_j(\omega) \ge 2\}] = \mathbf{E}\left[\liminf_{h \searrow 0} \frac{1}{h} \int_0^1 \mathbf{1}_{\{N_\omega((x,x+h])\ge 2\}} dx\right] \\ \le \liminf_{h \searrow 0} \frac{1}{h} \mathbf{P}(N_\omega((0,h]) \ge 2) = 0 ,$$

so that with probability one, N_{ω} has no multiple points in (0, 1]. By crude stationarity, the above argument is also valid if (0, 1] is replaced by (n, n + 1] for any integer n. Hence N_{ω} is simple.

Proposition 4 For a crudely stationary point process N_{ω} with finite intensity λ , the limits

$$\lambda_k := \lim_{h \searrow 0} \frac{1}{h} \mathbf{P}(1 \le N_\omega((0, h]) \le k)$$

exists for k = 1, 2, ..., and satisfy $\lambda_k \nearrow \lambda$ as $k \to \infty$. Moreover for k = 1, 2, ...,

$$\pi_k := \frac{\lambda_k - \lambda_{k-1}}{\lambda} = \lim_{h \searrow 0} \mathbf{P}(N_{\omega}((0,h]) = k \mid N_{\omega}((0,h]) > 0) ,$$

where we set $\lambda_0 := 0$.

Proof. As before, one has

$$\frac{1}{h} \int_0^1 \mathbf{1}_{\{1 \le N_\omega((x,x+h]) \le k\}} dx \le 1 + N_\omega^*((0,1]) ,$$

and

$$\lim_{h \searrow 0} \frac{1}{h} \int_0^1 \mathbf{1}_{\{1 \le N_\omega((x,x+h]) \le k\}} dx = \sharp \{j : x_j(\omega) \in (0,1], m_j(\omega) \le k\}$$

Since $\lambda = \mathbf{E}[N_{\omega}^*((0,1])] < \infty$, we can apply the dominated convergence theorem and Lemma 2, to obtain

$$\lambda_k = \lim_{h \searrow 0} \frac{1}{h} \mathbf{E} \Big[\int_0^1 \mathbf{1}_{\{1 \le N_\omega((x,x+h]) \le k\}} dx \Big] = \mathbf{E} [\sharp \{j : x_j(\omega) \in (0,1], m_j(\omega) \le k\}]$$

This representation of λ_k immediately gives

$$\lim_{k \to \infty} \lambda_k = \mathbf{E}[\sharp\{j : x_j(\omega) \in (0,1]\}] = \mathbf{E}[N^*((0,1])] = \lambda$$

by the monotone convergence theorem. The last statement of the proposition is obvious.

Corollary 2 For a crudely stationary point process with finite intensity, we have

$$\lambda \sum_{k=1}^{\infty} k \pi_k = \mathbf{E}[N_{\omega}((0,1])] = m .$$

3 The Palm measure

Let us assume that the probability space $(\Omega, \mathcal{F}, \mathbf{P})$, on which our point process N_{ω} is defined, is equipped with a measurable flow $\{\theta_t\}_{t \in \mathbf{R}}$. Here a measurable flow $\{\theta_t\}$ is, by definition, a family of bijections $\theta_t : \Omega \to \Omega$ such that

- (a) θ_0 is the identity mapping, and for any $s, t \in \mathbf{R}$, $\theta_s \circ \theta_t = \theta_{s+t}$ holds;
- (b) the mapping $(t, \omega) \mapsto \theta_t(\omega)$ from $\mathbf{R} \times \Omega$ into Ω is jointly measurable with respect to $\mathcal{B}(\mathbf{R}) \times \mathcal{F}$, where $\mathcal{B}(\mathbf{R})$ is the Borel σ -algebra on \mathbf{R} .

Let us further assume that the relation

$$\int_{\mathbf{R}} N_{\theta_t \omega}(dx)\varphi(x) = \int_{\mathbf{R}} N_{\omega}(dx)\varphi(x-t)$$
(6)

holds for any $t \in \mathbf{R}$ and any continuous function φ with compact support. If the probability measure \mathbf{P} is $\{\theta_t\}$ -invariant in the sense $\mathbf{P} \circ \theta_t^{-1} = \mathbf{P}$ for all $t \in \mathbf{R}$, then by (6), our point process N_{ω} is stationary.

Definition 5 The Palm measure of a point process $N_{\omega}(dx)$ is a measure kernel $Q(x, d\omega)$ on $\mathbf{R} \times \Omega$ such that for any jointly measurable, non-negative function $f(x, \omega)$, the relation

$$\int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) f(x,\omega) = \int_{\mathbf{R}} \lambda(dx) \int_{\Omega} Q(x,d\omega) f(x,\omega)$$
(7)

holds, where $\lambda(dx)$ is the mean measure of N_{ω} which is defined by $\lambda(B) = \mathbf{E}[N_{\omega}(B)]$ for $B \in \mathcal{B}(\mathbf{R})$ and which we assume to be finite for bounded Borel sets B.

Now let u(t) be a probability density function on **R**. Define a new probability measure \mathbf{P}_u by

$$\int_{\Omega} \mathbf{P}_{u}(d\omega)g(\omega) = \int_{\mathbf{R}} u(t)dt \left(\int_{\Omega} \mathbf{P}(d\omega)g(\theta_{t}\omega)\right), \tag{8}$$

where $g(\omega)$ is an arbitrary non-negative measurable function on Ω . Then the following result holds.

Theorem 1 For any probability density u(t) on **R**, the Palm measure $Q_u(x, d\omega)$ exists for the point process N_{ω} defined on the probability space $(\Omega, \mathcal{F}, \mathbf{P}_u)$.

Proof. Let $f(x, \omega) \ge 0$ be jointly measurable on $\mathbf{R} \times \Omega$. Then we can rewrite the left hand side of (7) in the following way:

$$\int_{\Omega} \mathbf{P}_{u}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) f(x,\omega) = \int_{\mathbf{R}} u(t) dt \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\theta_{t}\omega}(dx) f(x,\theta_{t}\omega) \\
= \int_{\mathbf{R}} u(t) dt \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) f(x-t,\theta_{t}\omega) \\
= \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) \int_{\mathbf{R}} u(t) dt f(x-t,\theta_{t}\omega) \\
= \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) \int_{\mathbf{R}} u(x-s) ds f(s,\theta_{x-s}\omega) \\
= \int_{\mathbf{R}} ds \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) u(x-s) f(s,\theta_{x-s}\omega) . \quad (9)$$

At this stage, take $f(x, \omega) = \varphi(x)$. Then (9) reduces to

$$\int_{\mathbf{R}} \varphi(s)\lambda(ds) = \int_{\mathbf{R}} \varphi(s)\ell_u(s)ds \tag{10}$$

with

$$\ell_u(s) = \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_\omega(dx) u(x-s) \ . \tag{11}$$

If we define, for each $s \in \mathbf{R}$, the measure $Q_u(s, d\omega)$ on (Ω, \mathcal{F}) by

$$\int_{\Omega} Q_u(s, d\omega) g(\omega) = \frac{\mathbf{1}_{(0,\infty)}(\ell_u(s))}{\ell_u(s)} \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_\omega(dx) u(x-s) g(\theta_{x-s}\omega) , \qquad (12)$$

then (9) takes the form of (7), and the theorem is proved.

When **P** is $\{\theta_t\}$ -invariant, then we have $\mathbf{P}_u = \mathbf{P}$ for any probability density u on **R**, and

$$\ell_u(s) = \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\theta_s \omega}(dx) u(x) = \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) u(x) =: \ell > 0$$

is a constant. Moreover one can compute as

$$\begin{split} &\int_{\Omega} Q_u(s,d\omega)g(\omega) = \frac{1}{\ell} \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\theta_s\omega}(dx)u(x)g(\theta_x\omega) \\ &= \frac{1}{\ell} \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\theta_s\omega}(dx)u(x)g(\theta_{x-s}(\theta_s\omega)) = \frac{1}{\ell} \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx)u(x)g(\theta_{x-s}\omega) \; . \end{split}$$

Hence if we define a measure $\mathbf{\hat{P}}(d\omega)$ on (Ω, \mathcal{F}) by

$$\int_{\Omega} \hat{\mathbf{P}}(d\omega) g(\omega) = \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) u(x) g(\theta_x \omega) ,$$

then we get

$$Q_u(s,d\omega) = \frac{1}{\ell} (\hat{\mathbf{P}} \circ \theta_s)(d\omega) ,$$

and (7) can be written in the form

$$\int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) f(x,\omega) = \int_{\mathbf{R}} dx \int_{\Omega} \hat{\mathbf{P}}(d\omega) f(x,\theta_{-x}\omega) , \qquad (13)$$

which is the defining relation of the Palm measure in the stationary case (see [6]). (13) shows in particular that the definition of $\hat{\mathbf{P}}$ is independent of the choice of u.

Our consideration of the probability measure \mathbf{P}_u is motivated by the following observation.

Proposition 5 The probability measure **P** is $\{\theta_t\}$ -invariant if and only if the following two conditions hold:

- (i) $\mathbf{P}_u = \mathbf{P}$ for any probability density function u(t) on \mathbf{R} ;
- (ii) the set H of all bounded measurable functions $\varphi(\omega)$ on Ω such that $t \mapsto \varphi(\theta_t \omega)$ is continuous for all $\omega \in \Omega$ is dense in $L^2(\Omega, \mathbf{P})$.

Proof. The necessity of (i) is obvious. That (ii) also follows from the $\{\theta_t\}$ -invariance of **P** is proved in [6] (see Lemma II. 3). To prove the sufficiency of (i) and (ii), fix an arbitrary $t_0 \in \mathbf{R}$ and take a sequence of probability density $\{u_n\}_n$ so that $u_n(t)dt \to \delta_{t_0}(dt)$ weakly. Now for any $\varphi \in H$, $t \mapsto \varphi(\theta_t \omega)$ is continuous and bounded by $\|\varphi\|_{\infty} := \sup_{\Omega} |\varphi(\omega)|$. Hence we can apply the dominated convergence theorem, to get

$$\int_{\Omega} \mathbf{P}(d\omega)\varphi(\theta_{t_0}\omega) = \int_{\Omega} \mathbf{P}(d\omega) \left(\lim_{n \to \infty} \int_{\mathbf{R}} \varphi(\theta_t\omega) u_n(t) dt\right)$$
$$= \lim_{n \to \infty} \int_{\mathbf{R}} \left(\int_{\Omega} \mathbf{P}(d\omega)\varphi(\theta_t\omega)\right) u_n(t) dt$$
$$= \lim_{n \to \infty} \int_{\Omega} \mathbf{P}_{u_n}(d\omega)\varphi(\omega) = \int_{\Omega} \mathbf{P}(d\omega)\varphi(\omega)$$

by condition (i). But if H is dense in $L^2(\Omega, \mathbf{P})$, we can approximate an arbitrary bounded measurable function $g(\omega)$ by the elements of H, to obtain

$$\int_{\Omega} \mathbf{P}(d\omega) g(\theta_{t_0}\omega) = \int_{\Omega} \mathbf{P}(d\omega) g(\omega)$$

for any $t_0 \in \mathbf{R}$. This sows the $\{\theta_t\}$ -invariance of \mathbf{P} .

In most cases of application, Ω itself is a topological space with \mathcal{F} the Baire σ -algebra generated by that topology and $t \mapsto \theta_t \omega$ is continuous for all $\omega \in \Omega$. In such a case, H contains the class $C_b(\Omega)$ of all bounded continuous functions on Ω , which is dense in $L^2(\Omega, \mathbf{P})$. Hence condition (ii) is not as restrictive as it may appear.

See [4] for a general treatment of stationary random measures on a topological group.

References

- CHUNG, K. L.: Crudely stationary point processes, Amer. Math. Monthly 79, (1972) 867–877.
- [2] DURRETT, R.: Probability: theory and examples, Second edition, Duxbury Press, Belmont, CA, 1996
- [3] DALEY, D.J. AND VERE-JONES, D.: An introduction to the theory of point processes. I: Elementary theory and methods, 2nd ed., Probab. Appl. (N. Y.), Springer, New York, 2003
- [4] LAST, G.: Modern random measures: Palm theory and related models, in *New perspectives in stochastic geometry* (W. S. Kendall and I. Molchanov, eds.), Oxford 2010
- [5] LEADBETTER, M.R.: On three basic results in the theory of stationary point processes, Proc. Amer. Math. Soc. 19, (1968) 115–117.
- [6] NEVEU, J.: Processus ponctuels, École d'Été de Probabilités de Saint-Flour VI. Lecture Notes in Mathematics 598, 249–445, Springer, Berlin.