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Summary– We give new proofs of three basic theorems on stationary point processes on the
real line – theorems of Khintchine, Korolyuk, and Dobrushin. Moreover we give a direct
construction of the Palm measure for a class of point processes which includes stationary
ones as special cases.

1 Introduction.

The purpose of this note is to give new proofs, based on a same simple idea, to some basic
theorems on stationary point processes on the real line R, as stated in standard treatises on
point processes such as Daley and Vere-Jones (see §3.3 of [3]).

To begin with, let us introduce necessary definitions and notation. By Mp, we denote the
set of all integer-valued Radon measures on R. Namely Mp is the totality of all measures
N(dx) on R such that for any bounded Borel set B, N(B) is a non-negative integer. Let us
call any such measure a counting measure. For a counting measure N ∈ Mp, let us define

X(t) := N((0, t]) (t ≥ 0), := −N((t, 0)) (t < 0). (1)

Then the functionX(t) is right-continuous, integer-valued, locally bounded and non-decreasing.
Hence X(t) is piecewise constant on R and the set ∆, finite or countably infinite, of its points
of discontinuity has no accumulation points other than ±∞. Thus the points in ∆ can be
ordered as

· · · < x−1 < x0 ≤ 0 < x1 < x2 < · · · ,

so that if we let mn := X(xn)−X(xn − 0), then N(dx) can be represented as

N(dx) =
∑
n

mnδxn(dx), (2)

where δa denotes the unit mass placed at a. Each mn is a positive integer and is called the
multiplicity of the point xn. In general, either N([0,∞)) or N((−∞, 0)) can be finite, in
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which case either {xn}n>0 or {xn}n≤0 is a finite sequence. If in the former [resp. latter] case
{xn}n>0 [resp. {xn}n≤0] terminates with xν , then we will set xn = ∞ [resp. xn = −∞] for
n > ν [resp. n < ν]. When mn = 1 for all n such that xn ̸= ±∞, the counting measure
N is said to be simple. For each N ∈ Mp with representation (2), let us associate a simple
counting measure N∗ defined by

N∗(dx) =
∑
n

δxn(dx) . (3)

In order to make Mp a measurable space, we define Mp to be the σ-algebra of subsets of
Mp generated by all mappings of the form

Mp ∋ N 7→ N(B) ∈ [0,∞] (4)

for all Borel sets B ⊂ R. Then we see that xn, mn and N∗ are all measurable functions of
N , as the following lemma shows.

Lemma 1 (i) The set

C := {N ∈ Mp : N((−∞, 0]) = N((0,∞)) = ∞} = {N ∈ Mp : xnis finite for all n}

belongs to Mp.
(ii) For each integer n, xn and mn are Mp-measurable functions of N .
(iii) The mapping Mp ∋ N 7→ N∗ ∈ Mp is Mp/Mp-measurable.

Proof. (i) The assertion is obvious from the definition of Mp, since we can write

C =
∞∩
k=1

∞∪
n=1

{N ∈ Mp : N((−n, 0]) > k, N((0, n]) > k} .

(ii) The measurability of x1 follows from the relation

{N ∈ Mp : x1 > t} = {N ∈ Mp : N((0, t]) = 0} ,

which holds for all t ≥ 0. Now for each k ≥ 1, define

x
(k)
1 :=

∞∑
j=1

j

2n
1((j−1)/2n,j/2n](x1) +∞ · 1{x1=∞} .

Then we see that x
(k)
1 is measurable in N and that x

(k)
1 ↘ x1 as k → ∞. By the right-

continuity of X(t) = N((0, t]) at t > 0, we have, as k → ∞,

1{x1<∞} ·X(x
(k)
1 ) =

∞∑
j=1

1((j−1)/2n,j/2n](x1)X(
j

2k
) −→ X(x1) = m1 ,

which shows the measurability of m1 in N .
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Next let X̃(t) := X(t)−X(t ∧ x1). This is measurable in N for all t ≥ 0, since

X(t ∧ x1) = X(t)1{x1≥t} +X(x1)1{x1<t} .

If we apply the above argument to X̃(t) instead of X(t), we can verify the measurability of
x2 and m2 in N , and the argument can be iterated to give the measurability of all xn and
mn.

(iii) For each j = 0, 1, 2, . . . and t > 0, the sets

{N ∈ Mp : N∗((0, t]) = j} = {N ∈ Mp : xj ≤ t < xj+1}

and
{N ∈ Mp : N∗((−t, 0]) = j} = {N ∈ Mp : x−j ≤ t < x−j+1}

belong to Mp. Now for each n ≥ 1, let Gn be the class of all Borel subsets B of [−n, n] such
that the mapping

Mp ∋ N 7→ N∗(B) ∈ [0,∞) (5)

is measurable. Then Gn is seen to be a λ-system which contains the class of intervals

I := {(0, t] : 0 < t ≤ t} ∪ {(−t, 0] : 0 < t ≤ n}

which forms a π-system. Hence by Dynkin’s π-λ theorem (see e.g. Durrett [2]), Gn contains
all Borel subsets of [−n, n]. Since n ≥ 1 is arbitrary, and since we can write N∗(B) =
limn→∞N∗(B ∩ [−n, n]), the mapping (5) is measurable for all Borel subsets of R.

Remark 1. By an argument similar to (iii), it is easy to show that Mp is generated by
mappings Mp ∋ N 7→ X(t) for all t, where X(t) is defined in (1).

Definition 1 A point process Nω is a random variable defined on a probability space (Ω,F ,P)
and taking values in the measurable space (Mp,Mp).

Definition 2 A point process Nω is said to be crudely stationary if for any bounded interval
I and for any x ∈ R, Nω(I) and Nω(I + x) are identically distributed. Its mean density is
the expectation value m := E[Nω((0, 1])] ≤ ∞.

Definition 3 A point process Nω is said to be stationary if for any C ∈ Mp and x ∈ R,
one has the identity

P(Nω(·) ∈ C) = P(Nω(x+ ·) ∈ C) .

Obviously, Nω is crudely stationary if it is stationary.

Remark 2. By another application of π-λ theorem, one can show without difficulty that
Nω is stationary if and only if for any finite family of Borel subsets B1, . . . , Bn of R, and of
non-negative integers k1, . . . , kn, the identity

P(Nω(Bi) = ki, i = 1, . . . , n) = P(Nω(x+Bi) = ki, i = 1, . . . , n)

holds for any x ∈ R.
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2 Basic theorems and their proofs.

Our argument is based on the following lemma, which is an immediate consequence of
Definition 2.

Lemma 2 Let the point process Nω be crudely stationary. Then for any bounded interval I
and for any non-negative integer k,

P(Nω(I) = k) =

∫ 1

0

P(Nω(x+ I) = k)dx = E
[∫ 1

0

1{Nω(x+I)=k}dx
]
.

Proposition 1 (Khintchine’s theorem) For any crudely stationary point process Nω, the
limit

λ := lim
h↘0

1

h
P(Nω((0, h]) > 0)

exists and satisfies λ ≤ m. λ is called the intensity of the point process Nω.

Proof. Let Nω be represented as (2) and define the point process N∗
ω by (3). If we set

ν(ω) := N∗
ω(0, 1], it satisfies xν(ω)(ω) ≤ 1 < xν(ω)+1(ω). Obviously we have

{x ∈ (0, 1] : Nω((x, x+ h]) > 0} = (0, 1] ∩
[ ∞∪
j=1

[xj(ω)− h, xj(ω))
]

= (0, 1] ∩
[ν(ω)+1∪

j=1

Jω
j (h)

]
=

ν(ω)+1∑
j=1

[
(0, 1] ∩ (Jω

j (h) \ Jω
j−1(h))

]
,

where we have set Jω
j (h) := [xj(ω)− h, xj(ω)) and J0 = ∅. Hence

1

h

∫ 1

0

1{Nω((x,x+h])>0}dx =
1

h

ν(ω)+1∑
j=1

|(0, 1] ∩ (Jω
j (h) \ Jω

j−1(h))|

=

ν(ω)+1∑
j=1

1

h
{(1 ∧ xj(ω))− (0 ∨ xj−1(ω) ∨ (xj(ω)− h)}+ ,

where for a Borel subset B of R, |B| denotes its Lebesgue measure and for a real number a,
a+ := a∨0 = max{a, 0} denotes its positive part. Now it is easy to see that for 1 ≤ j ≤ ν(ω),

1

h
{(1 ∧ xj(ω))− (0 ∨ xj−1(ω) ∨ (xj(ω)− h)}+ ↗ 1

as h ↘ 0, and that for j = ν(ω) + 1,

1

h
{(1 ∧ xν(ω)+1(ω))− (0 ∨ xν(ω)(ω) ∨ (xν(ω)+1(ω)− h))}+
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is bounded by 1 and tends to 0 as h ↘ 0. Thus we can apply the monotone convergence
theorem, the dominated convergence theorem and Lemma 2, to obtain

1

h
P(Nω((0, h]) > 0) = E

[1
h

ν(ω)+1∑
j=1

|(0, 1] ∩ (Jω
j \ Jω

j−1(h))|
]

→ E
[ν(ω)∑
j=1

1
]
= E

[
N∗

ω((0, 1])
]
,

as h ↘ 0. Thus the desired limit λ exists and is equal to E[N∗
ω((0, 1])]. Clearly it satisfies

the inequality λ ≤ E[Nω((0, 1])] = m.

Corollary 1 If Nω is simple, then λ = m. When m < ∞, the converse is also true.

Proof. Nω is simple if and only if N∗
ω = Nω almost surely, which obviously implies λ = m.

On the other hand, if λ = m < ∞, then

E[Nω((0, 1])−N∗
ω((0, 1])] = m− λ = 0 .

But Nω((0, 1])−N∗
ω((0, 1]) ≥ 0 in general, so that Nω((0, 1]) = N∗

ω((0, 1]) almost surely. The
same argument is valid if the interval (0, 1] is replaced by (n, n+1], so that Nω((n, n+1]) =
N∗

ω((n, n+ 1]) almost surely for all integers n, and the simplicity of Nω follows.

Remark 3. In the treatise by Daley and Vere-Jones [3], for example, Proposition 1 is
proved in the following way: If we define ϕ(h) := P(Nω((0, h]) > 0), then by the crude
stationarity, we have for any positive h1 and h2,

ϕ(h1 + h2) = P(Nω((0, h1 + h2]) > 0) = P(Nω((0, h1]) +Nω((h1, h1 + h2]) > 0)

≤ P(Nω((0, h1]) > 0) +P(Nω((h1, h1 + h2]) > 0) = ϕ(h1) + ϕ(h2) ,

so that ϕ(h) is a sub-additive function defined on [0,∞) satisfying ϕ(0) = 0. To show the
existence of the intensity λ, it suffices to apply the following well known lemma.

Lemma 3 Let g(x) be a sub-additive function defined on [0,∞) such that g(0) = 0. Then
one has

lim
x↘0

g(x)

x
= sup

x>0

g(x)

x
≤ ∞ .

However, this argument does not provide the representation λ = E[N∗
ω((0, 1])], so that

the proof of Corollary 1 requires some extra work. Our proof above is closer to that of
Leadbetter [5]. See also Chung [1].

Definition 4 A crudely stationary point process Nω is said to be orderly when

P(Nω((0, h]) ≥ 2) = o(h) (h ↘ 0) .
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Proposition 2 (Dobrushin’s theorem) If a crudely stationary point process Nω is simple
and if λ < ∞, then Nω is orderly.

Proof. By Lemma 2, we can write

P(Nω((0, h]) ≥ 2) = E
[∫ 1

0

1{Nω((x,x+h])≥2}dx
]
.

As can be seen from the proof of Proposition 1, we have

1

h

∫ 1

0

1{Nω((x,x+h])≥2}dx ≤ 1

h

∫ 1

0

1{Nω((x,x+h])>0}dx

=

ν(ω)∑
j=1

1

h
|(0, 1] ∩ (Jω

j (h) \ Jω
j−1(h))|+

1

h
|(0, 1] ∩ (Jν(ω)+1(h) \ Jν(ω)(h)|

≤ N∗
ω((0, 1]) + 1 ,

and

lim
h↘0

1

h

∫ 1

0

1{Nω((x,x+h])≥2}dx = ♯{j : xj(ω) ∈ (0, 1], mj(ω) ≥ 2} .

Since E[N∗
ω((0, 1])] = λ < ∞, we can apply the dominated convergence theorem, to obtain

lim
h↘0

1

h
P(Nω((0, h]) ≥ 2) = E[♯{j : xj(ω) ∈ (0, 1], mj(ω) ≥ 2}] ,

which is equal to 0 if Nω is simple.

Remark 4. The condition λ < ∞ cannot be dropped. For a counter example, see Exercise
3.3.2 of [3].

Proposition 3 (Korolyuk’s theorem) A crudely stationary, orderly point process is sim-
ple.

Proof. By Fatou’s lemma and the orderliness of Nω,

E[♯{j : xj(ω) ∈ (0, 1], mj(ω) ≥ 2}] = E
[
lim inf
h↘0

1

h

∫ 1

0

1{Nω((x,x+h])≥2}dx
]

≤ lim inf
h↘0

1

h
P(Nω((0, h]) ≥ 2) = 0 ,

so that with probability one, Nω has no multiple points in (0, 1]. By crude stationarity, the
above argument is also valid if (0, 1] is replaced by (n, n+ 1] for any integer n. Hence Nω is
simple.
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Proposition 4 For a crudely stationary point process Nω with finite intensity λ, the limits

λk := lim
h↘0

1

h
P(1 ≤ Nω((0, h]) ≤ k)

exists for k = 1, 2, . . ., and satisfy λk ↗ λ as k → ∞. Moreover for k = 1, 2, . . .,

πk :=
λk − λk−1

λ
= lim

h↘0
P(Nω((0, h]) = k | Nω((0, h]) > 0) ,

where we set λ0 := 0.

Proof. As before, one has

1

h

∫ 1

0

1{1≤Nω((x,x+h])≤k}dx ≤ 1 +N∗
ω((0, 1]) ,

and

lim
h↘0

1

h

∫ 1

0

1{1≤Nω((x,x+h])≤k}dx = ♯{j : xj(ω) ∈ (0, 1], mj(ω) ≤ k} .

Since λ = E[N∗
ω((0, 1])] < ∞, we can apply the dominated convergence theorem and Lemma

2, to obtain

λk = lim
h↘0

1

h
E
[∫ 1

0

1{1≤Nω((x,x+h])≤k}dx
]
= E[♯{j : xj(ω) ∈ (0, 1], mj(ω) ≤ k}] .

This representation of λk immediately gives

lim
k→∞

λk = E[♯{j : xj(ω) ∈ (0, 1]}] = E[N∗((0, 1])] = λ ,

by the monotone convergence theorem. The last statement of the proposition is obvious.

Corollary 2 For a crudely stationary point process with finite intensity, we have

λ
∞∑
k=1

kπk = E[Nω((0, 1])] = m .

3 The Palm measure

Let us assume that the probability space (Ω,F ,P), on which our point process Nω is defined,
is equipped with a measurable flow {θt}t∈R. Here a measurable flow {θt} is, by definition, a
family of bijections θt : Ω → Ω such that

(a) θ0 is the identity mapping, and for any s, t ∈ R, θs ◦ θt = θs+t holds;

(b) the mapping (t, ω) 7→ θt(ω) from R × Ω into Ω is jointly measurable with respect to
B(R)×F , where B(R) is the Borel σ-algebra on R.
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Let us further assume that the relation∫
R

Nθtω(dx)φ(x) =

∫
R

Nω(dx)φ(x− t) (6)

holds for any t ∈ R and any continuous function φ with compact support. If the probability
measure P is {θt}-invariant in the sense P ◦ θ−1

t = P for all t ∈ R, then by (6), our point
process Nω is stationary.

Definition 5 The Palm measure of a point process Nω(dx) is a measure kernel Q(x, dω) on
R× Ω such that for any jointly measurable, non-negative function f(x, ω), the relation∫

Ω

P(dω)

∫
R

Nω(dx)f(x, ω) =

∫
R

λ(dx)

∫
Ω

Q(x, dω)f(x, ω) (7)

holds, where λ(dx) is the mean measure of Nω which is defined by λ(B) = E[Nω(B)] for
B ∈ B(R) and which we assume to be finite for bounded Borel sets B.

Now let u(t) be a probability density function on R. Define a new probability measure Pu

by ∫
Ω

Pu(dω)g(ω) =

∫
R

u(t)dt
(∫

Ω

P(dω)g(θtω)
)
, (8)

where g(ω) is an arbitrary non-negative measurable function on Ω. Then the following result
holds.

Theorem 1 For any probability density u(t) on R, the Palm measure Qu(x, dω) exists for
the point process Nω defined on the probability space (Ω,F ,Pu).

Proof. Let f(x, ω) ≥ 0 be jointly measurable on R × Ω. Then we can rewrite the left
hand side of (7) in the following way:∫

Ω

Pu(dω)

∫
R

Nω(dx)f(x, ω) =

∫
R

u(t)dt

∫
Ω

P(dω)

∫
R

Nθtω(dx)f(x, θtω)

=

∫
R

u(t)dt

∫
Ω

P(dω)

∫
R

Nω(dx)f(x− t, θtω)

=

∫
Ω

P(dω)

∫
R

Nω(dx)

∫
R

u(t)dtf(x− t, θtω)

=

∫
Ω

P(dω)

∫
R

Nω(dx)

∫
R

u(x− s)dsf(s, θx−sω)

=

∫
R

ds

∫
Ω

P(dω)

∫
R

Nω(dx)u(x− s)f(s, θx−sω) . (9)

At this stage, take f(x, ω) = φ(x). Then (9) reduces to∫
R

φ(s)λ(ds) =

∫
R

φ(s)ℓu(s)ds (10)
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with

ℓu(s) =

∫
Ω

P(dω)

∫
R

Nω(dx)u(x− s) . (11)

If we define, for each s ∈ R, the measure Qu(s, dω) on (Ω,F) by∫
Ω

Qu(s, dω)g(ω) =
1(0,∞)(ℓu(s))

ℓu(s)

∫
Ω

P(dω)

∫
R

Nω(dx)u(x− s)g(θx−sω) , (12)

then (9) takes the form of (7), and the theorem is proved.

When P is {θt}-invariant, then we have Pu = P for any probability density u on R, and

ℓu(s) =

∫
Ω

P(dω)

∫
R

Nθsω(dx)u(x) =

∫
Ω

P(dω)

∫
R

Nω(dx)u(x) =: ℓ > 0

is a constant. Moreover one can compute as∫
Ω

Qu(s, dω)g(ω) =
1

ℓ

∫
Ω

P(dω)

∫
R

Nθsω(dx)u(x)g(θxω)

=
1

ℓ

∫
Ω

P(dω)

∫
R

Nθsω(dx)u(x)g(θx−s(θsω)) =
1

ℓ

∫
Ω

P(dω)

∫
R

Nω(dx)u(x)g(θx−sω) .

Hence if we define a measure P̂(dω) on (Ω,F) by∫
Ω

P̂(dω)g(ω) =

∫
Ω

P(dω)

∫
R

Nω(dx)u(x)g(θxω) ,

then we get

Qu(s, dω) =
1

ℓ
(P̂ ◦ θs)(dω) ,

and (7) can be written in the form∫
Ω

P(dω)

∫
R

Nω(dx)f(x, ω) =

∫
R

dx

∫
Ω

P̂(dω)f(x, θ−xω) , (13)

which is the defining relation of the Palm measure in the stationary case (see [6]). (13) shows
in particular that the definition of P̂ is independent of the choice of u.

Our consideration of the probability measure Pu is motivated by the following observa-
tion.

Proposition 5 The probability measure P is {θt}-invariant if and only if the following two
conditions hold:

(i) Pu = P for any probability density function u(t) on R;

(ii) the set H of all bounded measurable functions φ(ω) on Ω such that t 7→ φ(θtω) is
continuous for all ω ∈ Ω is dense in L2(Ω,P).
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Proof. The necessity of (i) is obvious. That (ii) also follows from the {θt}-invariance of
P is proved in [6] (see Lemma II. 3). To prove the sufficiency of (i) and (ii), fix an arbitrary
t0 ∈ R and take a sequence of probability density {un}n so that un(t)dt → δt0(dt) weakly.
Now for any φ ∈ H, t 7→ φ(θtω) is continuous and bounded by ∥φ∥∞ := supΩ |φ(ω)|. Hence
we can apply the dominated convergence theorem, to get∫

Ω

P(dω)φ(θt0ω) =

∫
Ω

P(dω)

(
lim
n→∞

∫
R

φ(θtω)un(t)dt

)
= lim

n→∞

∫
R

(∫
Ω

P(dω)φ(θtω)

)
un(t)dt

= lim
n→∞

∫
Ω

Pun(dω)φ(ω) =

∫
Ω

P(dω)φ(ω)

by condition (i). But if H is dense in L2(Ω,P), we can approximate an arbitrary bounded
measurable function g(ω) by the elements of H, to obtain∫

Ω

P(dω)g(θt0ω) =

∫
Ω

P(dω)g(ω)

for any t0 ∈ R. This sows the {θt}-invariance of P.

In most cases of application, Ω itself is a topological space with F the Baire σ-algebra
generated by that topology and t 7→ θtω is continuous for all ω ∈ Ω. In such a case,
H contains the class Cb(Ω) of all bounded continuous functions on Ω, which is dense in
L2(Ω,P). Hence condition (ii) is not as restrictive as it may appear.

See [4] for a general treatment of stationary random measures on a topological group.
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