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Sound symbolism can count three segments

(whereas phonological constraints presumably cannot)’
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Abstract

Some researchers have recently argued that sound symbolic requirements can cause phono-
logical alternations, suggesting that sound symbolic patterns and phonological patterns may
be governed by similar—or perhaps the same—mechanisms. Against this theoretical devel-
opment, this paper further addresses the question of how similar phonological systems and
sound symbolic systems are, by focusing on their counting capability. It has been known that
phonological constraints can count only up to two segments. To examine whether a similar
sort of restriction holds in sound symbolic patterns, we experimentally addressed the ques-
tion of whether three segments of the same sort can cause stronger sound symbolic images
than two segments. The results of three experiments using Pokémon names demonstrate that
three segments do indeed cause stronger sound symbolic meanings than two segments. The
overall results suggest that phonological systems and sound symbolic systems have a distinct

characteristic, in that only the latter systems have a certain type of counting capability.
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1 Introduction

1.1 The relationship between phonology and sound symbolism

Sound symbolism refers to systematic connections between sounds and meanings (e.g. Akita
2015; Dingemanse et al.|2015; Hinton et al.[2006; Perniss et al.|2010; Sidhu & Pexman!2018). For
example, in many languages, low vowels like /a/ tend to be associated with images larger than
high vowels like /i/ (Newman//1933; Sapir|1929; Thompson & Estes [2011). However, in modern
linguistic theories, sound symbolic patterns had usually been considered to lie outside the realm
of linguistic inquiry, perhaps due to the influence of the Saussurian theorem of arbitrariness that
the connections between sounds and meanings in natural languages are in principle arbitrary
(Saussure|1916) (see also Hockett 1959/ for another influential paper on arbitrariness).

However, the field has recently witnessed a rapidly increasing rise of interest on sound sym-
bolic patterns and related phenomena (see in particular Nielsen & Dingemanse|2021| for some
quantitative evidence). Some scholars now explicitly argue that exploration of sound symbolic
patterns can—and should—be a part of phonological research (see Kawaharal2020a for a review
of the arguments for this view).

For instance, |Alderete & Kochetov| (2017) point out that expressive palatalization—e.g. pat-
terns of palatalization observed in child-directed speech—is caused by a formal requirement to
use particular types of sounds (e.g. palatal consonants and high front vowels) to express particular
types of meanings, such as smallness. They propose a family of Optimality Theoretic constraints
(Prince & Smolensky|1993/2004)—ExPrEss(X)—and argue that this family of constraints interacts
with other phonological constraints within a single grammatical system. See also Akinbo|(2021),
Akinbo & Bulkaam| (2024), |Akita (2020), Klamer| (2002), Dingemanse & Thompson|(2020), Kuma-
gai| (2019} 2023)) and Jang (2021) for other possible cases in which sound symbolic requirements
affect—or at least, interact with—phonological patterns; see also Mithun| (1982) and Monaghan &
Roberts (2021) for possible influences of sound symbolic effects on diachronic changes, where ex-
pressive vocabularies resisted diachronic sound changes that applied to other regular, non-iconic
vocabulary items.

Approaching this issue from a slightly different perspective, Kawahara (2020b) compared
particular quantitative signatures of patterns of sound symbolic judgments and those found in
stochastic phonological patterns, and argued that there appears to exist an interesting parallel
between the two patterns. More concretely, he argues that both sound symbolic patterns and
stochastic phonological patterns exhibit what Hayes|(2020}2022) refers to as “wug-shaped curves,”
a quantitative signature that is predicted by Maximum Entropy Harmonic Grammar (MaxEnt
HG), a framework that is now widely deployed to model a wide range of phonological—and other
linguistic—patterns (Goldwater & Johnson 2003; Hayes|[2022; Hayes & Wilson|[2008; McPherson
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& Hayes|[2016; Shih|[2017; |Smolensky|[1986; |Zuraw & Hayes||2017).
In short, an increasing number of studies have recently argued that sound symbolic patterns

and phonological patterns are governed by similar—or perhaps, the same—mechanisms.

1.2 Counting capability of phonology or lack thereof

Building on these recent proposals which treat sound symbolic patterns on a par with phono-
logical patterns, the current experiments examine the similarity—or dissimilarity—between the
two, by focusing on the counting capability (or lack thereof) of the two systems. To preview
the conclusions that follow from the current experimentation, we will show in this paper that
phonological systems and sound symbolic systems have a clearly distinct characteristic, in that
only the sound symbolic systems have a certain type of counting capability.

In order to address the (dis)similarity between the phonological systems and sound symbolic
systems, the current experiments make use of the classic observation that phonological systems
may count up to two but no more (e.g. Goldsmith|1976; Hayes| 1995; Hewitt & Prince1989; Ito &
Mester|2003; McCarthy & Prince||1986; Myers|(1997; Nelson & Toivonen|2000; Prince & Smolen-
sky|[1993/2004; Walker| 2001 among many others)[| While some apparent cases of counting have
recently been pointed out in the literature, the following generalizations still hold robustly across

known languages:

(1)  No counting in phonology

a. No phonological constraints require the presence of three segments/features.

b.  No phonological constraints prohibit three occurrences of the same feature/segment.

Let us now review the critical observations made in the literature on this topic in further detail.
This now-classic thesis of “no-counting” in phonology was tacitly assumed in many phonological

analyses, but was clearly expressed by McCarthy & Prince (1986: 1), who stated:

Consider first the role of counting in grammar. How long may a count run? Gen-
eral considerations of locality, now the common currency in all areas of linguistic
thought, suggest that the answer is probably ‘up to two’: a rule may fix on one spec-

ified element and examine a structurally adjacent element and no other.

'The same thesis is likely to hold in syntax (Chomsky|1965; Haspelmath|2014). In Aspects of the Theory of Syntax,
Chomsky (1965) lists a number of syntactic operations that would be possible if syntax had the capability to count,
which seem nevertheless be impossible in natural languages. To quote, “reflection of an arbitrary string (that is,
replacement of any string a;....a,,, where each a; is a single symbol, by a,,...a;), or interchange of the (2n — 1)*"
word with the 2n*" word throughout a string of arbitrary length, or insertion of a symbol in the middle of a string
of even length (pp. 55-56).
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To be more concrete, McCarthy & Prince (1986) for instance argue that there exist no redu-
plicative patterns which copy exactly three segments from the base. Schematically, such a redu-
plicative pattern would look like [bad-badupi], [bia-biadupi], [adu-adupi] and [bla-bladupi], with
the reduplicant’s shape varing from CVC, CVV, VCV to CCV. To the best of our knowledge, no
such reduplicative patterns have been found even after 1986.

Also, there are many languages that prohibit two occurrences of the same segments or fea-
tures (i.e. dissimilation patterns: see Bennett/ 2015, Hansson |2001 and Suzuki|[1998| for extensive
typological surveys), but no known languages prohibit three occurrences while allowing for two
(Ito & Mester 2003: 265). A well-known example comes from the native phonology of Japanese,
which prohibits morphemes with two voiced obstruents; on the other hand, no known languages
prohibit morphemes with three voiced obstruents, while allowing for two. Further, an experi-
mental investigation by Kawahara & Kumagai (2023a) using nonce words shows that Japanese
speakers do not distinguish between forms with two voiced obstruents and those with three
voiced obstruents—forms with three voiced obstruents were treated on a par with forms with
two voiced obstruents.

Prince & Smolensky! (1993/2004), as they proposed Optimality Theory (OT), spend some good
portions of their book discussing why their proposed system does not involve counting; for ex-
ample, they state that a comparison between two candidates based on the numbers of violations
of a particular constraint “is not numerical counting, but simply comparisons of more and less”
(p. 83) (see also their §10.1.1). McCarthy (2003) also argues that OT constraints should not count
or assess “degrees of violations”, stating that “no language requires the presence of at least three
round vowels to initiate rounding harmony, nor do we ever find that complementisers may be
doubly but not trebly filled” (p. 80).

However, some possible exceptions to the non-counting thesis have been pointed out in some
recent work, although as we will see, the generalizations in (1) still seem to hold. First, Paster
(2019) challenged the thesis that phonology can only count up to two, demonstrating that there
are cases that apparently involve counting. She, for example, proposes a tonal association rule for
Kuria, by which the H-tone is associated with the fourth mora from the left edge of a stem. How-
ever, Paster| also points out that all those patterns that apparently count are limited to supraseg-
mental patterns, and none involves segmental patterns (see §3 of Paster|[2019).

Another challenge to the classic no-counting thesis recently came from Kim (2022), who ar-
gues that Japanese disprefers a configuration in which a voiced obstruent is followed by two nasal
consonants, implying the presence of a constraint that apparently involves counting three seg-
ments (i.e. *[D...N...N]). However, a later examination demonstrates that evidence for this claim
in the existing words is very weak at best; neither can the productivity of this alleged restriction

be identified in a nonce word experiment (Kawahara & Kumagai|2023b).
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Finally, some studies have demonstrated that multiple reduplications can induce more in-
tensified meanings, for instance in Fungwa (Akinbo|[2023). These patterns may mean that mor-
phological operations (i.e. reduplication) can apply multiple times, and that each operation has
a semantic impact. However, these patterns do not necessarily imply that a single phonological
constraint has a capability to count beyond two segments.

To summarize, to the best of our knowledge, it is still safe to assume that the general “no-
counting” principles, or at least those specific implementations stated in (1), hold as a property
of the phonological systems at the segmental level in natural languages. Put from a slightly
different perspective, phonological constraints—as we formulate them in OT analyses—related to
segmental phonology can count up to two segments, but not three or more in their structural
description (McCarthy|2003)F|

1.3 The background about the current experiments: Pokémonastics

In the experiments reported below, we examined whether the non-counting nature observed
in phonological systems would hold or not in sound symbolic patterns, by specifically testing
whether three segments can invoke stronger sound symbolic images than two segments. We
took advantage of the Pokémonastics research paradigm, which explores the nature of sound
symbolism in the context of Pokémon names (Kawahara et al. 2018) (for a discussion of why it
is useful to use specifically Pokémon names to explore sound symbolic patterns in general, see
e.g. Kawahara & Breiss| 2021 for a summary). In the Pokémon world, some characters, when
they get stronger, can evolve into a different character, and in so doing their names change (e.g.
[iwaaku] — [hageneeru] and [messon] — [zimereon]).

A quantitative study of the names of the existing Pokémon names (including those up to the
6th generation) reported by Kawahara et al[(2018) shows that the number of voiced obstruents
contained in their names tend to increase as Pokémon characters evolve, a correlation which was
later replicated with a larger set of data by Shih et al.|(2019). A number of experimental studies
that followed used nonce words and demonstrated that Japanese speakers judge nonce names
with voiced obstruents to be more likely as those of post-evolution characters than nonce names
without voiced obstruents (Kawahara|2020b; Kawahara & Kumagai 2019a). The first experiment
reported below took advantage of this sound symbolic connection between voiced obstruents
and Pokémon evolution status to address the question of whether three segments cause stronger

sound symbolic images than two segments.

2One candidate for a constraint that appears to require counting three segments in its structural description is
the one that is responsible for intervocalic lenition, which needs to prohibit a configuration in which the target
consonant is flanked by two vowels (e.g. *[VTV]). However, see |Katz (2021) for arguments that intervocalic lenition
is a matter of phonetic implementation rather than being a phonological process.
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1.4 Previous observations about sound symbolisms

Before moving on, we review some previous studies which addressed the counting capability of
sound symbolism. First, Thompson & Estes|(2011) built upon the observations that some sounds
are associated with images of largeness (e.g. |Sapir| 1929 et seq.). In one of their experiments,
they presented native speakers of English with pictures of an imaginary creature (referred to as
“greeble”: Gauthier & Tarr|1997) in different sizes, and different nonce names containing different
numbers of “large phonemes.” Their results showed that the larger the size of the named objects,
the more “large phonemes” were contained in their chosen names. Their result, reproduced below
as Figure|l} shows that the counting behavior goes well beyond two; e.g. the largest greebles were

assigned names with about 4.5 “large phonemes” on average.

Mean Number of "Large” Phonemes

0 10 33 50 66 100

Greeble size as a percentage of largest greeble

Figure 1: Results of Thompson and Estes 2011 (their Figure 3), in which the larger the named
objects, the more “large phonemes” their names contained.

However, this analysis collapsed three different classes of sounds (i.e. back vowels, sonorants,
and voiced stops) into one set of “large phonemes,” and therefore it is impossible to tell whether it
truly instantiates an unambiguous case of counting—the pattern was instead likely to have arisen
from additive effects of three different factors influencing the judgment patterns Similarly, there
exist several other studies which showed cumulative effects of sound symbolism (Cuskley||2013;
D’Onofrio|2014; Dingemanse & Thompson|2020; Priestly|1994), but their results are likely to have
arisen from additive effects of different factors, just like the results of Thompson & Estes (2011)
in Figure

The first two experiments reported below improve upon this aspect by using a class of sounds

that is unambiguously a natural class, both from the phonetic and phonological perspectives. The

%In the parlance of recent linguistic theorization, this would be comparable to a case of ganging-up cumulativity
(Jager|2007; Jager & Rosenbach|2006).
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third experiment used only one kind of segment to unambiguously exclude the possibility that
the counting behavior arise from influences of different types of segments adding up

Another candidate of counting in sound symbolism in the previous literature comes from the
Pokémonastics experiments reported in Kawahara| (2020b), in which he varied the numbers of
moras from two to six. The results showed that each mora count increased the post-evolution
responses. However, to the extent that a mora is a suprasegmental property—which seems to
be a fair assumption to make (McCarthy & Prince||1986)—it is not clear whether these results
truly instantiate a case of counting at the segmental level: recall that Paster (2019) identifies
phonological systems may be able to count, but only at the suprasegmental level. Moreover, given
the well-established status of bimoraic feet in Japanese phonology (Ito|1990; Mester|[1990; Poser
1990) and the possibility of recursive prosodic phrasing (Ito & Mester|[2012, 2013), the apparent
counting behavior may be recast in terms of different foot and prosodic word structures.

In short, the current experiments attempted to address the counting capability of sound sym-
bolism at the segmental level in the least unambiguous way possible. The first two experiments
also had an advantage of being able to make a fairly direct within-language comparison with a
phonological pattern, against the recent result reported by Kawahara & Kumagai (2023a)), who

tested the counting behavior of voiced obstruents in Japanese phonology.

2 Experiment I

In this experiment, the participants were given one nonce word per trial and were asked to judge
whether that name is more suitable for a pre-evolution Pokémon character or a post-evolution
Pokémon character. The aim was to explore whether the numbers of voiced obstruents contained
in nonce names, ranging from zero to three, would impact the sound symbolic judgment of these
names, and more importantly, how. A previous study has shown that nonce words containing one

voiced obstruent is more likely to be judged as post-evolution names than those without a voiced

*One way to understand the current framing of the question from the perspective of modern phonological theo-
rization may be that our experiments reported below address the question of whether sound symbolic patterns would
show a pattern of counting cumulativity. We hasten to reiterate here, however, that while phonological patterns may
show evidence for counting cumulativity (Breiss|2020; Hayes|2022), it still holds true that a single constraint cannot
count three segments in their structural description, as discussed in detail in

The cases of counting cumulativity in phonology may raise the question of whether phonology may indeed be
able to count. However, there are no convincing case of counting cumulativity that involves three loci, either in
phonological alternations or in phonotactics (McCarthy[2003—see Breiss|2020, for an informative review of the cases
of cumulativity), and therefore, in this sense, the counting capability of phonological systems has to be limited.

If we are to deploy a theoretical mechanism like MaxEnt HG which allows for counting cumulativity, then we
would have to make sure that constraints do not assign a violation mark based on a structural description that
involves more than two segments. In other words, the grammar may be able to count the number of violations so
that it can multiply them by the constraint weights, but the constraints themselves cannot count the number of
segments to calculate their violations. See Kawahara & Kumagail (2023a)) for further discussion on this point.
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obstruent (Kawaharal[2020b), and other studies have found that, in addition to that difference,
those words containing two voiced obstruents are more likely to be judged as post-evolution
names than those containing only one (e.g. Kawahara & Kumagai|2019a)).

The novel addition of the current experiment is therefore to have explored the difference be-
tween the two voiced obstruent condition and the three voiced obstruent condition. This addition
is an important one, however, because it will address the question of how (dis-)similar sound sym-
bolic patterns are with respect to the nature of segmental, phonological constraints, as discussed
in §1.T]and

If sound symbolic patterns can count only up to two, just like phonological constraints, we
should not expect a difference between those words with two voiced obstruents and those with
three voiced obstruents—recall that in terms of phonological Lyman’s Law, three voiced obstru-
ents are no different from two voiced obstruents. On the other hand, if sound symbolic patterns
simply count without a restriction, and then we should observe a difference between the two

conditions.

2.1 Method

The raw data, the R markdown file as well as the Bayesian posterior samples are available at the
OSF repository (for the importance of the open science policy in linguistic studies, see e.g. Cho
2021, |Garellek et al. 2020 and [Winter|2019). The link to this repository is provided at the end of
the paper.

2.1.1 Stimuli

The experiment had four conditions, differing in the numbers of voiced obstruents that they con-
tain (zero, one, two and three). Each condition consisted of 10 items, and they were all nonce
names in Japanese. They consisted of three light CV syllables. The position of voiced obstruents
was controlled within each condition; e.g. in one voiced obstruent condition, they were all placed
at the word-initial position (see/Adelman et al.[2018|for the importance of word-initial position in
sound symbolism). Because [p] is known to have a sound symbolic effect associated with cutenes
(Kumagai 2019, 2022, [2023; see also Experiment III), it was not used in the current stimulus set.
The actual list of the stimuli is shown in Table
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Table 1: The list of stimuli used in the first two experiments.

VedObs=0 | VedObs=1 | VedObs=2 | VedObs=3
[kugiju] [bitare] [gebiki] [dagigo]
[su¢uma] | [birejo] [dedara] [bigade]
[neduri] | [ganija] [zodotci] | [zabade]
[neriru] [bejumi] | [zugawa] | [zegizo]
[cihone] | [bojatei] [zudani] [buzido]
[karutsu] | [bikohe] [zocike] [bogebi]
[jakama] | [baheho] | [zadoja] [gegige]
[sawake] | [geseci] [ziboru] [bazizu]
[rihojo] [zihana] [babohi] [gubebi]
[sojuki] [bijuri] [gibuse] [bibogo]

2.1.2 Procedure

The experiment was administered online using SurveyMonkey. The participants were first pre-
sented with the basic background about the Pokémon world, namely, that some Pokémon char-
acters can evolve, and that when they evolve, they tend to get heavier, bigger and stronger.
In the main session, within each trial, the participants were presented with one nonce name
and were asked to judge whether each name is suitable for a pre-evolution character or a post-
evolution character. The stimuli were presented in the katakana orthography, which is used for
real Pokémon names in general. Although the stimuli were presented in written forms, the par-
ticipants were asked to read and pronounce each stimulus before they register each response.

The order of the stimuli was automatically randomized for each participant by SurveyMonkey.

2.1.3 Participants

We obtained data from 110 native speakers of Japanese using the Buy Response function of Sur-
veyMonkey. The qualification requirements for participation were that (1) they had to be a native
speaker of Japanese, (2) they had not previously participated in an experiment on Pokémon names
and (3) they had not studied sound symbolism before. Additional data from 38 native speakers
of Japanese were collected using a snowball sampling method on the first author’s X account

(formerly Twitter).

2.1.4 Statistics

For statistical analyses, we made use of a Bayesian mixed effects logistic regression model, using

the brms package (Burkner 2017). We will not attempt to explicate the mechanics of Bayesian
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analyses in detail here, but instead refer the interested readers to accessible introductory articles,
including [Franke & Roettger (2019), Kruschke & Liddell (2018) and Vasishth et al|(2018). In a
nutshell, Bayesian analyses combine prior information (if any) with the obtained experimental
data and produce a range of possible values—which are referred to as posterior distributions—for
each estimated parameter.

One advantage of Bayesian analyses is that we can interpret the posterior distributions as
directly representing the likely values of the estimated parameters. One heuristic to interpret the
results of Bayesian modeling is to examine the middle 95% of the posterior distribution, known
as 95% Credible Interval (henceforth, abbreviated as “95% CrI”), of the coefficient we are inter-
ested in. If the 95% CrI of a parameter does not include 0, then that parameter can be considered
to be credible/meaningful. However, unlike in a frequentist analysis, we do not have to rely on
a strict—but yet arguably arbitrary—dichotomy (i.e. “significant” vs. “non-significant” or “credi-
ble/meaningful” vs. “not credible/meaningful”). We can instead examine how many samples in
the posterior distribution are in the expected direction, which reflect the probability of a partic-
ular hypothesis being true.

Another advantage of Bayesian analysis is that we can also address the question regarding
with how much confidence we can conclude a null effect (Gallistel 2009), which is impossible in
frequentist analyses. This feature of Bayesian analysis is particularly important for the case at
hand, because if sound symbolism were to behave like phonological patterns, we would expect
a null difference between the two voiced obstruent condition and the three voiced obstruent
condition (cf. Kawahara & Kumagai|2023a). If it turned out to be that way, we wanted to explore
how likely it is that there are truly no differences, which is impossible to test with a frequentist
regression analysis.

Moving on to the specifics of the model specifications for the current experiment, the binary
dependent variable was whether each item was judged as a post-evolution character name (=1)
or not (=0). The fixed independent variable was the number of voiced obstruents contained in the
stimuli. This factor was contrast-coded using the backward-reference coding method, in which
a particular level is compared against the prior adjacent level, i.e. 3 is compared against 2; 2 is
compared against 1; 1 is compared against 0. In addition to this fixed factor, a random intercept
of items and participants as well as the random slopes of participants for the fixed factor were
included in the model. For prior specifications, a Normal(0, 1) weakly informative prior for the
intercept (Lemoine 2019) and a Cauchy prior with scale of 2.5 for the slope (Gelman et al.[[2018)
were used.

Four chains with 2,000 iterations were run, and the first 1,000 iterations from each chain were
discarded as warmups. All the R-values for the fixed effects were 1.00 and there were no divergent

transitions. See the R markdown file available at the OSF repository for further details.

10
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2.2 Results

Figure [2[shows the distribution of the proportion of the post-evolution responses for each voiced
obstruent condition in the form of violin plots, in which the widths represent normalized prob-
ability distributions. Transparent light-blue circles, jittered slightly to avoid overlap, represent
the average response for each condition from each participant. Solid red circles are the grand av-
erages in each condition, with their 95% confidence intervals calculated by ggplot: (Wickham
2016).
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0.50 + +

0.254

©
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Proportion of post-evolution response

0 1 2 3
Number of ved obs

Figure 2: The results of Experiment 1, showing the distribution of the proportion of the post-
evolution responses for each number of voiced obstruents contained in the stimuli.

We observe a steady increase in the post-evolution responses, as the number of the voiced ob-
struents contained in the stimuli increase: the four conditions resulted in the following averages:
0.32 vs. 0.37 vs. 0.49 vs. 0.53F] The central coefficient estimate of the difference between the zero
voiced obstruent condition and the one voiced obstruent condition is 0.35, with its 95% Crl being
[-0.09, 0.78]. Although this 95% CrI interval includes zero, the posterior distribution is heavily
skewed toward positive values, and about 94% of the posterior samples were positive.

More importantly, the comparison between the two voiced obstruent condition and three
voiced obstruent condition shows that the central coefficient estimate for this difference is 0.39

with its 95% CrI being [0.08, 0.72] and the posterior probability supporting this difference is 0.99.

SEven those nonce words that contain three voiced obstruents were judged to be post-evolution names only
slightly above 50%, which was a bit surprising. Some participants reported after the experiment that post-evolution
names should be longer than three moras. See Kawahara et al.|(2018) and [Kawahara| (2020b) for the effects of name
length.
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Finally, the difference between one voiced obstruent condition and the two voiced obstruent
condition was also robust, with its central coefficient and 95% Crl being 0.78 and [0.40, 1.17],
respectively. Its posterior probability being positive was 1.00.

In short, we observe that each difference between the four conditions was meaningful (al-

though we can be only 94% confident about the difference between the first two conditions).

2.3 Discussion

The current experiment first of all replicated the findings of the previous studies that given nonce
words, Japanese speakers do indeed generally associate voiced obstruents with post-evolution
Pokémon names (Kawahara|[2020b; Kawahara & Kumagai 2019a). It moreover found that names
with three voiced obstruents were more likely to be associated with post-evolution characters
than those with two voiced obstruents, suggesting that sound symbolic patterns can function in
an additive fashion, and count at least up to three (cf. Thompson & Estes 2011).

The current result is particularly interesting in the light of the general question regarding
how similar phonological patterns and sound symbolic patterns are, given the recent propos-
als that these two systems may have more in common than previously thought (e.g. Alderete &
Kochetov||2017; Kawaharal[2020alb), as reviewed in Assuming that it is indeed a true prop-
erty of phonological constraints that it can count only up to two segments (e.g. Ito & Mester
2003; McCarthy|2003; | McCarthy & Prince|1986; Prince & Smolensky|1993/2004), just as Japanese
phonology counts only up to two voiced obstruents (Ito & Mester|2003; Kawahara & Kumagai
2023a), the fact that sound symbolic patterns related to voiced obstruents can count up to three
would instantiate a non-trivial difference between the two systems. At least within Japanese, the
way its phonology handles voiced obstruents and the way voiced obstruents invoke their sound
symbolic images differ from one another.

An anonymous reviewer has asked if the current results—especially the most crucial differ-
ence between the two voiced obstruent condition and the three voiced obstruent condition—could
have arisen from the knowledge that the participants had about the existing Pokémon names. This
interpretation is unlikely, because there are only 12 existing Pokémon characters whose name
contains three voiced obstruents (e.g. [diguda]), and 6 of them are post-evolution characters (the
ratio is 0.5, with its binomial 95% confidence interval being [0.25—0.75])F_’] On the other hand, there
are 121 characters whose names contain two voiced obstruents, and 81 of them are post-evolution

characters (the ratio is 0.67, with its binomial 95% confidence interval being [0.58-0.75]).

®This analysis is based on the data gathered by Kawahara et al. (2018), which includes more than 700 characters.
Pokémon characters can actually evolve twice in the actual Pokémon world, but we collapsed this distinction between
“evolved once” and “evolved twice”, because in the experiment, we asked the participants to make a binary “pre-
evolution” vs. “post-evolution™ judgment. The confidence interval was calculated using the binom. confint
function of the binom package (Dorai-Raj|2022), whose syntax is available at the osf repository mentioned above.
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Thus, there are not many examples from the existing names that support the association
between “three voiced obstruents” and “post-evolution” in the first place—the confidence interval
for this estimate ([0.25-0.75]) is very large, suggesting that the pattern found in the existing names
is not very informative about this association. And if anything, the evidence from the existing
names goes in the opposite way from the experimental result: those with two voiced obstruents
are more likely to be post-evolution characters than those with three voiced obstruents, although
we note that the latter confidence interval is properly contained in the former confidence interval
([0.58-0.75] vs. [0.25-0.75]).

3 ExperimentIl

3.1 Preamble

To extend the scope of the findings from Experiment I, we tested another semantic dimension that
can be symbolically signaled by voiced obstruents. In Japanese (and perhaps other languages),
voiced obstruents are associated with general negative images (Hamano|[1998; Kubozono|/1999;
Suzuki [1962), and in the context of Pokémon names, they are overrepresented in the names of
villainous characters (Hosokawa et al.[[2018; Uno et al|2020). More specifically, some Pokémon
characters belong to particular “types”, and it has been found that voiced obstruents are over-
represented in the names of the “dark type” characters. The productivity of this sound symbolic
relationship has been confirmed by an experiment using nonce words (Kawahara & Kumagai
2019b). Experiment II made use of this previously identified sound symbolic relationship to fur-
ther address the counting capability of sound symbolic patterns.

There are a few differences between Experiment I and Experiment II. In Experiment II, the
participants were asked whether each name was suitable for a dark-type character or normal-
type character. Before the main trials, they were told that all Pokémon characters belong to at
least one type, with two examples; [citokage] ‘Charmander (fire lizard)’ belong to the “fire” type,
and [goosu] belong to both “ghost” type and “dark” type. The stimuli used in the experiment
were identical to those used in Experiment I. The participants were university students from Meiji
University[| After excluding data from those who were not native speakers of Japanese and those
who were familiar with research on sound symbolism, the data from 141 native speakers entered
into the subsequent statistical analysis. The details of the statistical modeling were identical to

those of Experiment 1.

"We would like to thank Tomoko Monou for her assistance with the participant recruitment for this experiment.
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3.2 Results

Figure [3| shows the results of Experiment II. As with Experiment I, we observe a steady increase
in the dark-type responses, as the number of voiced obstruents contained in the stimuli increase.

The grand averages for each conditions were 0.18 vs. 0.43 vs. 0.71 vs. 0.79.

1.00 1

0.754

0.50 1

0.254

Proportion of dark type response

0.00 1

0 1 2 3
Number of ved obs

Figure 3: The results of Experiment II. The proportion of the dark-type responses for each voiced
obstruent condition.

This effect of voiced obstruents between each level is very robust according to the Bayesian
modeling. The difference between the no voiced obstruent condition and one voiced obstruent
was very credible, with its central coefficient estimate and its 95% Crl being 1.61 and [0.95, 2.27],
respectively. All the posterior samples were positive.

More importantly, the difference between the two voiced obstruent condition and the three
voiced obstruent condition was also fairly credible. The central coefficient estimate is 0.59 and
its 95% Crl is [-0.03, 1.22]. The posterior probability of this crucial comparison being positive is
0.97. The difference between the one voiced obstruent and two voiced obstruents was also robust
(the central coefficient estimate = 1.54, its 95% CrlI=[0.89, 2.19], the posterior probability being

positive = 1).

3.3 Discussion

The sound symbolic effects of voiced obstruent were clearer in Experiment II than in Experiment
I—names with zero voiced obstruents were unlikely to be judged as dark-type characters, whereas

names with three voiced obstruents were very likely to be judged as dark-type characters. And
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most importantly for the current purpose, we have found a solid distinction between the two
voiced obstruent condition and the three voiced obstruent condition. The fact that this difference
holds is unlike how voiced obstruents are treated by the Japanese phonological system (Ito &
Mester|2003; Kawahara & Kumagai|2023a), which is arguably a general property of phonological
constraints at the segmental level in natural languages (McCarthy|2003; McCarthy & Prince|1986;
Prince & Smolensky|[1993/2004).

The observed difference between the two voiced obstruent condition and the three voiced
obstruent condition in this experiment could not have arisen from an analogical inference from
existing Pokémon names, because there were no dark type Pokémon characters whose name

contains three voiced obstruents.

4 Experiment III

4.1 Introduction

The previous two experiments have shown that a distinction between two segments and three
segments matters when it comes to sound symbolic patterns—a distinction that phonological
constraints arguably do not make. However, in both experiments, the target sounds were voiced
obstruents, so it seemed important to us to examine how generalizable this counting property is,
i.e. whether this counting capability is observed for sound symbolic patterns that are caused by
segments other than voiced obstruents.

Also, we felt it useful to address the possibility that the patterns we observed in the previous
two experiments arose from different types of voiced obstruents—e.g. [b] and [d]—“ganging-up”
rather than the patterns arising from pure counting (cf. Jager & Rosenbach!|2006; Jager 2007).
We reiterate that it is safe to say that a voiced obstruent is a coherent set of sounds both from
the phonetic and phonological perspective in Japanese (Ito & Mester||1986, 2003; Hamano| 1998;
Kubozono|1999; Suzukil(1962).

Nevertheless, it is safer to be conservative and entertain the possibility that effects of different
voiced obstruents are governed by different sound symbolic forces. To this end, we took advan-
tage of the sound symbolic connection between [p] and “cuteness” (Kumagai 2019, [2022, 2023),
which also manifests itself in the fact that labial sounds, including [p] are, overrepresented in
the cute, fairy type Pokémon characters (Hosokawa et al.|2018; Kawahara & Kumagai/2019b; Uno
et al.|2020).
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4.2 Method

Experiment III used the set of stimuli shown in Table [2| The experiment, like Experiments I and
II, varied the number of [p]s that are contained in the stimuli. The position of [p] was controlled
within each condition. Each condition consisted of 10 items, all of which contain only light
CV syllables. Since there could be a difference between sonorants and obstruents in terms of
their impact on cuteness judgments (Perfors|2004; Shinohara & Kawahara|2013), the syllables not

containing [p] all had a voiceless obstruent onset.

Table 2: The list of stimuli used in Experiment III.

[p]=0 [p]=1 [p]=2 [p]=3

[kugisu] | [pitahe] | [pepiki] | [papipe]
[sutsuka] | [piketo] | [papeka] | [pipape]
[kusuki] | [pateiha] | [pepotei] | [popape]
[teciku] | [pekugi] | [pupata] | [pepipo]
[¢ihake] | [posatci] | [popaci] | [pupipo]
[kesutsu] | [pikohe] | [popike] | [popepi]
[tokaha] | [paheto] | [papoka] | [pepipe]
[sahake] | [peseki] | [popitsu] | [papupi]
[teihoto] | [pihaka] | [papoci] | [pupepi]
[sokuki] | [pisutci] | [pipuse] | [pipope]

The responses were gathered using the Buy Response function of SurveyMonkey. Data from
a total of 150 native speakers of Japanese were obtained. In this experiment, the participants were
asked, for each name, whether the name is more suitable for a normal type character or a cute
fairy type character. The details of the statistical analysis were identical to those of Experiments
I and II, except that in this analysis, we ran, for each chain, 5000 iterations with 4000 warm-ups

in order to avoid inappropriate ESS (effective sample size) values and divergent transitions.

4.3 Results

The results are presented in Figure |4, which shows the distribution of the proportions of the fairy
type character responses for each condition having different numbers of [p]. Similar to the two
previous experiments, we observe a steady increase in the fairy response, as the number of [p]s
contained in the names increases. The grand averages were: the zero-[p] condition = 0.21; the

one-[p] condition = 0.39; the two-[p] condition = 0.47; the three-[p] condition = 0.57.
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Figure 4: The results of Experiment IIl. The distribution of the proportion of the fairy type re-
sponses for each condition, which contained different numbers of [p]s.

The results of the Bayesian logistic regression show that there is a clear difference between
the zero-[p] condition and the one-[p] condition (the central coefficient estimate =1.60, its 95%
CrI = [1.06, 2.17]), with all their posterior samples supporting the difference.

The difference between the two-[p] condition and the three-[p] condition, which is most im-
portant for the purpose of the current study, was also very robust (the central coefficient estimate
= 0.80 with its 95% Crl being [0.30, 1.29], and 99.9% of the posterior samples support this differ-
ence). To be complete, the difference between the one-[p] condition and the two-[p] condition
was also a reliable one (central coefficient estimate = 0.47, its 95% CrI [0.03, 1.29] and 98% of the
posterior samples support this difference). In short, every addition of [p] in the names reliably

increased the fairy-type responses.

4.4 Discussion

This experiment again shows that sound symbolism can count up to three. In order words, the
counting capability is not a specific property of voiced obstruents, possibly different kinds of
voiced obstruents “ganging-up” (Jager & Rosenbach|2006; Jager 2007), but it holds with one kind
of segment—[p]—invoking the image of cuteness. The difference between the two-[p] condition
and the three-[p] condition could not have arisen from the analogical extension from existing

names, because there were no fairy characters whose names contain three [p]s.
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5 General discussion

5.1 Summary of the results

We started with a general question—how (dis-)similar sound symbolic patterns are with respect
to phonological patterns. To address this question, we focused on one property of phonological
constraints which seems to hold robustly across languages; at least when it comes to the con-
straints related to segmental phonology, it can count only up to two segments, but no more. No
known languages have been identified to prohibit three occurrences of the same segment/feature,
whereas there are a plethora of examples in which two occurrences of the same segment are
banned. Japanese precisely instantiates a case of this kind in which two voiced obstruents within
morphemes are prohibited (Ito & Mester|2003), and experiment-wise too, Japanese speakers treat
forms with three voiced obstruents on a par with forms with two voiced obstruents (Kawahara
& Kumagai|2023a).

To the extent that sound symbolic patterns and phonological patterns are governed by the
same system (see Alderete & Kochetov2017 and Kawaharal[2020b, in particular), we would have
expected that a similar restriction would hold—that Japanese speakers would treat forms with
three voiced obstruents just like forms with two voiced obstruents, when they make sound sym-
bolic judgements. However, the results of two experiments show that this expectation did not
hold up, when Japanese speakers make sound symbolic judgments of forms with different num-
bers of voiced obstruents.

These results were further corroborated by an additional experiment which shows that three
[p]s can evoke stronger sound symbolic images than two [p]s. It thus seems safe to conclude,
given these results, that there is a non-negligible difference between the segmental, phonological

constraints and sound symbolic patterns, at least in terms of their counting capabilities.

5.2 Some alternative interpretations

An anonymous reviewer pointed out an interesting alternative interpretation of the current re-
sults, regarding the counting capability of sound symbolism. More specifically, the difference
between “2” and “3” that we identified in the three experiments above may instead be the differ-
ences between “2” and “all”, given that our “3” condition had three target segments in trisyllabic
words (i.e. [D...D...D]y 4, where “D” represents a voiced obstruent). We admit that this is a valid
interpretation, and if this was the case, it is comparable to a property that phonological systems
routinely exhibit; e.g. a vowel harmony pattern that targets all the vowels within a domain.

A follow-up experiment is necessary to address this alternative interpretation, by using four-

syllable words which contained two target sounds and those which contain three target sounds;
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schematically, [D...D...X..X]w4 vs. [D...D...D.. X]y 4, where “D” represents a voiced obstruent,
and “X” represents a segment other than a voiced obstruent. Then the latter condition would be
“3” but not “all”.

Another question that was raised was as follows: in this paper, we made a within-language
comparison between the behavior of Lyman’s Law and the sound symbolic effects of voiced ob-
struents, and showed that only the latter can count up to three. However, while Lyman’s Law
is a negative restriction on the presence of multiple voiced obstruents, the current experiment
is about how the presence of particular segments positively impact sound symbolic judgments.
Thus, the comparison between Kawahara & Kumagai’s (2023a) results and the current experi-
ments may have to do with a difference about a negative restriction vs. a positive influence.

While this interpretation is not impossible, and more studies are warranted to fully address
it, we find this explanation not very likely, given that for example, no languages seem to require
that reduplicative patterns copy three segments; neither do we find phonological patterns which
require three tokens of the same feature/segment. In other words, the “non-counting” thesis
is not just about negative restrictions but also holds true about positive presence of particular
structures (McCarthy 2003; McCarthy & Prince 1986). Therefore, it is not clear if we can explain
the current findings vis-a-vis Kawahara & Kumagai’s (2023a) based on the positive vs. negative

nature of the patterns at issue.

5.3 Phonology and sound symbolism again

To the extent that the current experiments have identified a non-trivial difference between phono-
logical systems and sound symbolic systems, should we conclude that they are completely sepa-
rate systems? We feel that this conclusion may be going too far as well. Recall that as|Alderete
& Kochetov| (2017) and others have argued (Akinbo|2021; Akinbo & Bulkaam/2024; Akita|[2020;
Klamer|2002; Dingemanse & Thompson|2020; Kumagai|2019,|2023; Jang 2021; Mithun|1982; Mon-
aghan & Roberts 2021), sound symbolic requirements may be able to affect—or at least interact
with—phonological patterns.

To the extent that our conclusion is on the right track, then, when sound symbolic effects are
incorporated into a phonological grammar, there should be some kind of filter that “strips off” the
counting capability of sound symbolic mechanisms. Otherwise, we would expect there to be a
constraint like ExPRESS(THREEVCDOBS) (cf.|Alderete & Kochetov|2017), which requires that there
be at least three voiced obstruents to express a particular semantic notion. While it remains to be
seen that such patterns are indeed impossible in human languages, at this point we find it highly
unlikely.

And if such filtering mechanism is to be required, it may be something that is akin to an

abstraction mechanism that is at work when phonetic effects are grammaticalized into a phono-
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logical system (Gordon 2002; Hayes||1999; Smith 2002), which reflects a general observation that
even when phonetic factors appear to drive phonological generalizations, some details are ab-
stracted away from in the phonology system.

An alternative way of reconciling the current results with the view that phonology and sound
symbolism interact in non-negligible ways, as suggested by an anonymous reviewer, may be to
posit that phonology actually has an iconic component and a non-iconic component, cf. the “co-
phonology” approach which posits several phonological sub-systems within a single language
(Inkelas et al. 19965 Inkelas & Zoll 2007;/Orgun|1996; Sande|2020). Once we accept this assumption,
we can further posit that only the former has a counting capability.

Japanese sound symbolic words (i.e. mimetics) are characterized by a set of phonological char-
acteristics that distinguish them from non-iconic words, such as the presence of singleton [p]s and
active use of reduplication based on bimoraic feet (Ito & Mester;1995), which is compatible with
the idea that phonology can consist of an iconic component and a non-iconic component. This
idea that only an iconic component of phonology—to the extent that such a component exists—
can count appears compatible with the view advanced by Akinbo (2023), for example, who points
out that the number of reduplications correlates with the strengths of their expressive power (see
also Kumagai 2023). Thus, this general idea appears to be worth extensive exploration in future
studies.

However, one potential concern of this hypothesis is that reduplicative patterns, which can
be iconic, as is the case with Japanese mimetics, are predicted to be able to count, but this predic-
tion is incompatible with the general no-counting thesis discussed throughout the present paper.
Even if a certain reduplication pattern is expressive, the phonological system does not allow that
reduplication pattern to copy three segments (McCarthy & Prince 1986). There also remains a
deeper question regarding why only an iconic component has the privilege to count.

All in all, reconciling the increasing number of proposals regarding the similarity between
phonological systems and sound symbolic systems on the one hand, and the current finding that
these two nevertheless show a distinct characteristic in terms of counting capability on the other,

will continue to present an interesting challenge for phonological theorization.
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Availability of data and code

The data and the code are available at
https://osf.io/zhnda/?viewonly=de5ffbd83dc24aleb6db3b11af08c550
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