

Sound symbolism can count three segments (whereas phonological constraints presumably cannot)*

Shigeto Kawahara and Gakuji Kumagai
Keio University and Kansai University

Abstract

Some researchers have recently argued that sound symbolic requirements can cause phonological alternations, suggesting that sound symbolic patterns and phonological patterns may be governed by similar—or perhaps the same—mechanisms. Against this theoretical development, this paper further addresses the question of how similar phonological systems and sound symbolic systems are, by focusing on their counting capability. It has been known that phonological constraints can count only up to two segments. To examine whether a similar sort of restriction holds in sound symbolic patterns, we experimentally addressed the question of whether three segments of the same sort can cause stronger sound symbolic images than two segments. The results of three experiments using Pokémon names demonstrate that three segments do indeed cause stronger sound symbolic meanings than two segments. The overall results suggest that phonological systems and sound symbolic systems have a distinct characteristic, in that only the latter systems have a certain type of counting capability.

Keywords: sound symbolism, counting, voiced obstruents, [p], Pokémon, Japanese

Approximate word count: 6,000

*We are grateful to four anonymous reviewers and the associate editor of the journal for their very constructive suggestions. The research reported in this paper is supported by JSPS grants (#22K00559, #25K04035 and #19K13164). All remaining errors are ours.

1 Introduction

1.1 The relationship between phonology and sound symbolism

Sound symbolism refers to systematic connections between sounds and meanings (e.g. Akita 2015; Dingemanse et al. 2015; Hinton et al. 2006; Perniss et al. 2010; Sidhu & Pexman 2018). For example, in many languages, low vowels like /a/ tend to be associated with images larger than high vowels like /i/ (Newman 1933; Sapir 1929; Thompson & Estes 2011). However, in modern linguistic theories, sound symbolic patterns had usually been considered to lie outside the realm of linguistic inquiry, perhaps due to the influence of the Saussurian theorem of arbitrariness that the connections between sounds and meanings in natural languages are in principle arbitrary (Saussure 1916) (see also Hockett 1959 for another influential paper on arbitrariness).

However, the field has recently witnessed a rapidly increasing rise of interest on sound symbolic patterns and related phenomena (see in particular Nielsen & Dingemanse 2021 for some quantitative evidence). Some scholars now explicitly argue that exploration of sound symbolic patterns can—and should—be a part of phonological research (see Kawahara 2020a for a review of the arguments for this view).

For instance, Alderete & Kochetov (2017) point out that expressive palatalization—e.g. patterns of palatalization observed in child-directed speech—is caused by a formal requirement to use particular types of sounds (e.g. palatal consonants and high front vowels) to express particular types of meanings, such as smallness. They propose a family of Optimality Theoretic constraints (Prince & Smolensky 1993/2004)—EXPRESS(X)—and argue that this family of constraints interacts with other phonological constraints within a single grammatical system. See also Akinbo (2021), Akinbo & Bulkaam (2024), Akita (2020), Klamer (2002), Dingemanse & Thompson (2020), Kumagai (2019, 2023) and Jang (2021) for other possible cases in which sound symbolic requirements affect—or at least, interact with—phonological patterns; see also Mithun (1982) and Monaghan & Roberts (2021) for possible influences of sound symbolic effects on diachronic changes, where expressive vocabularies resisted diachronic sound changes that applied to other regular, non-iconic vocabulary items.

Approaching this issue from a slightly different perspective, Kawahara (2020b) compared particular quantitative signatures of patterns of sound symbolic judgments and those found in stochastic phonological patterns, and argued that there appears to exist an interesting parallel between the two patterns. More concretely, he argues that both sound symbolic patterns and stochastic phonological patterns exhibit what Hayes (2020, 2022) refers to as “wug-shaped curves,” a quantitative signature that is predicted by Maximum Entropy Harmonic Grammar (MaxEnt HG), a framework that is now widely deployed to model a wide range of phonological—and other linguistic—patterns (Goldwater & Johnson 2003; Hayes 2022; Hayes & Wilson 2008; McPherson

³⁶ & Hayes 2016; Shih 2017; Smolensky 1986; Zuraw & Hayes 2017).

³⁷ In short, an increasing number of studies have recently argued that sound symbolic patterns
³⁸ and phonological patterns are governed by similar—or perhaps, the same—mechanisms.

³⁹ 1.2 Counting capability of phonology or lack thereof

⁴⁰ Building on these recent proposals which treat sound symbolic patterns on a par with phono-
⁴¹ logical patterns, the current experiments examine the similarity—or dissimilarity—between the
⁴² two, by focusing on the counting capability (or lack thereof) of the two systems. To preview
⁴³ the conclusions that follow from the current experimentation, we will show in this paper that
⁴⁴ phonological systems and sound symbolic systems have a clearly distinct characteristic, in that
⁴⁵ only the sound symbolic systems have a certain type of counting capability.

⁴⁶ In order to address the (dis)similarity between the phonological systems and sound symbolic
⁴⁷ systems, the current experiments make use of the classic observation that phonological systems
⁴⁸ may count up to two but no more (e.g. Goldsmith 1976; Hayes 1995; Hewitt & Prince 1989; Ito &
⁴⁹ Mester 2003; McCarthy & Prince 1986; Myers 1997; Nelson & Toivonen 2000; Prince & Smolen-
⁵⁰ sky 1993/2004; Walker 2001 among many others).¹ While some apparent cases of counting have
⁵¹ recently been pointed out in the literature, the following generalizations still hold robustly across
⁵² known languages:

⁵³ (1) No counting in phonology

- ⁵⁴ a. No phonological constraints require the presence of three segments/features.
- ⁵⁵ b. No phonological constraints prohibit three occurrences of the same feature/segment.

⁵⁶ Let us now review the critical observations made in the literature on this topic in further detail.
⁵⁷ This now-classic thesis of “no-counting” in phonology was tacitly assumed in many phonological
⁵⁸ analyses, but was clearly expressed by McCarthy & Prince (1986: 1), who stated:

⁵⁹ Consider first the role of counting in grammar. How long may a count run? General
⁶⁰ considerations of locality, now the common currency in all areas of linguistic
⁶¹ thought, suggest that the answer is probably ‘up to two’: a rule may fix on one spec-
⁶² ified element and examine a structurally adjacent element and no other.

¹The same thesis is likely to hold in syntax (Chomsky 1965; Haspelmath 2014). In *Aspects of the Theory of Syntax*, Chomsky (1965) lists a number of syntactic operations that would be possible if syntax had the capability to count, which seem nevertheless be impossible in natural languages. To quote, “reflection of an arbitrary string (that is, replacement of any string $a_1 \dots a_n$, where each a_i is a single symbol, by $a_n \dots a_1$), or interchange of the $(2n - 1)^{th}$ word with the $2n^{th}$ word throughout a string of arbitrary length, or insertion of a symbol in the middle of a string of even length (pp. 55-56).

63 To be more concrete, McCarthy & Prince (1986) for instance argue that there exist no redu-
64 plicative patterns which copy exactly three segments from the base. Schematically, such a redu-
65 plicative pattern would look like [bad-badupi], [bia-biadupi], [adu-adupi] and [bla-bladupi], with
66 the reduplicant's shape varing from CVC, CVV, VCV to CCV. To the best of our knowledge, no
67 such reduplicative patterns have been found even after 1986.

68 Also, there are many languages that prohibit two occurrences of the same segments or fea-
69 tures (i.e. dissimilation patterns: see Bennett 2015, Hansson 2001 and Suzuki 1998 for extensive
70 typological surveys), but no known languages prohibit three occurrences while allowing for two
71 (Ito & Mester 2003: 265). A well-known example comes from the native phonology of Japanese,
72 which prohibits morphemes with two voiced obstruents; on the other hand, no known languages
73 prohibit morphemes with three voiced obstruents, while allowing for two. Further, an experi-
74 mental investigation by Kawahara & Kumagai (2023a) using nonce words shows that Japanese
75 speakers do not distinguish between forms with two voiced obstruents and those with three
76 voiced obstruents—forms with three voiced obstruents were treated on a par with forms with
77 two voiced obstruents.

78 Prince & Smolensky (1993/2004), as they proposed Optimality Theory (OT), spend some good
79 portions of their book discussing why their proposed system does not involve counting; for ex-
80 ample, they state that a comparison between two candidates based on the numbers of violations
81 of a particular constraint “is not numerical counting, but simply comparisons of *more* and *less*”
82 (p. 83) (see also their §10.1.1). McCarthy (2003) also argues that OT constraints should not count
83 or assess “degrees of violations”, stating that “no language requires the presence of at least three
84 round vowels to initiate rounding harmony, nor do we ever find that complementisers may be
85 doubly but not trebly filled” (p. 80).

86 However, some possible exceptions to the non-counting thesis have been pointed out in some
87 recent work, although as we will see, the generalizations in (1) still seem to hold. First, Paster
88 (2019) challenged the thesis that phonology can only count up to two, demonstrating that there
89 are cases that apparently involve counting. She, for example, proposes a tonal association rule for
90 Kuria, by which the H-tone is associated with the *fourth* mora from the left edge of a stem. How-
91 ever, Paster also points out that all those patterns that apparently count are limited to supraseg-
92 mental patterns, and none involves segmental patterns (see §3 of Paster 2019).

93 Another challenge to the classic no-counting thesis recently came from Kim (2022), who ar-
94 gues that Japanese disprefers a configuration in which a voiced obstruent is followed by two nasal
95 consonants, implying the presence of a constraint that apparently involves counting three seg-
96 ments (i.e. *[D...N...N]). However, a later examination demonstrates that evidence for this claim
97 in the existing words is very weak at best; neither can the productivity of this alleged restriction
98 be identified in a nonce word experiment (Kawahara & Kumagai 2023b).

99 Finally, some studies have demonstrated that multiple reduplications can induce more in-
100 tensified meanings, for instance in Fungwa (Akinbo 2023). These patterns may mean that mor-
101 phological operations (i.e. reduplication) can apply multiple times, and that each operation has
102 a semantic impact. However, these patterns do not necessarily imply that a single phonological
103 constraint has a capability to count beyond two segments.

104 To summarize, to the best of our knowledge, it is still safe to assume that the general “no-
105 counting” principles, or at least those specific implementations stated in (1), hold as a property
106 of the phonological systems at the segmental level in natural languages. Put from a slightly
107 different perspective, phonological constraints—as we formulate them in OT analyses—related to
108 segmental phonology can count up to two segments, but not three or more in their structural
109 description (McCarthy 2003).²

110 1.3 The background about the current experiments: Pokémonastics

111 In the experiments reported below, we examined whether the non-counting nature observed
112 in phonological systems would hold or not in sound symbolic patterns, by specifically testing
113 whether three segments can invoke stronger sound symbolic images than two segments. We
114 took advantage of the Pokémonastics research paradigm, which explores the nature of sound
115 symbolism in the context of Pokémon names (Kawahara et al. 2018) (for a discussion of why it
116 is useful to use specifically Pokémon names to explore sound symbolic patterns in general, see
117 e.g. Kawahara & Breiss 2021 for a summary). In the Pokémon world, some characters, when
118 they get stronger, can evolve into a different character, and in so doing their names change (e.g.
119 [iwaaku] → [hageneeru] and [messon] → [zimereon]).

120 A quantitative study of the names of the existing Pokémon names (including those up to the
121 6th generation) reported by Kawahara et al. (2018) shows that the number of voiced obstruents
122 contained in their names tend to increase as Pokémon characters evolve, a correlation which was
123 later replicated with a larger set of data by Shih et al. (2019). A number of experimental studies
124 that followed used nonce words and demonstrated that Japanese speakers judge nonce names
125 with voiced obstruents to be more likely as those of post-evolution characters than nonce names
126 without voiced obstruents (Kawahara 2020b; Kawahara & Kumagai 2019a). The first experiment
127 reported below took advantage of this sound symbolic connection between voiced obstruents
128 and Pokémon evolution status to address the question of whether three segments cause stronger
129 sound symbolic images than two segments.

²One candidate for a constraint that appears to require counting three segments in its structural description is the one that is responsible for intervocalic lenition, which needs to prohibit a configuration in which the target consonant is flanked by two vowels (e.g. *[VTV]). However, see Katz (2021) for arguments that intervocalic lenition is a matter of phonetic implementation rather than being a phonological process.

130 1.4 Previous observations about sound symbolisms

131 Before moving on, we review some previous studies which addressed the counting capability of
132 sound symbolism. First, Thompson & Estes (2011) built upon the observations that some sounds
133 are associated with images of largeness (e.g. Sapir 1929 *et seq.*). In one of their experiments,
134 they presented native speakers of English with pictures of an imaginary creature (referred to as
135 “greeble”: Gauthier & Tarr 1997) in different sizes, and different nonce names containing different
136 numbers of “large phonemes.” Their results showed that the larger the size of the named objects,
137 the more “large phonemes” were contained in their chosen names. Their result, reproduced below
138 as Figure 1, shows that the counting behavior goes well beyond two; e.g. the largest greebles were
139 assigned names with about 4.5 “large phonemes” on average.

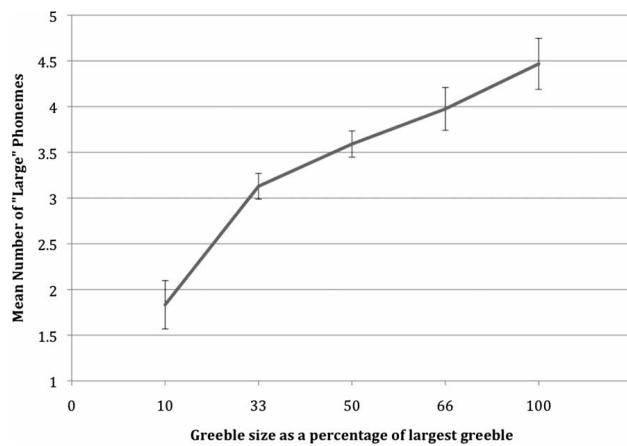


Figure 1: Results of Thompson and Estes 2011 (their Figure 3), in which the larger the named objects, the more “large phonemes” their names contained.

140 However, this analysis collapsed three different classes of sounds (i.e. back vowels, sonorants,
141 and voiced stops) into one set of “large phonemes,” and therefore it is impossible to tell whether it
142 truly instantiates an unambiguous case of counting—the pattern was instead likely to have arisen
143 from additive effects of three different factors influencing the judgment patterns.³ Similarly, there
144 exist several other studies which showed cumulative effects of sound symbolism (Cuskley 2013;
145 D’Onofrio 2014; Dingemanse & Thompson 2020; Priestly 1994), but their results are likely to have
146 arisen from additive effects of different factors, just like the results of Thompson & Estes (2011)
147 in Figure 1.

148 The first two experiments reported below improve upon this aspect by using a class of sounds
149 that is unambiguously a natural class, both from the phonetic and phonological perspectives. The

³In the parlance of recent linguistic theorization, this would be comparable to a case of ganging-up cumulativity (Jäger 2007; Jäger & Rosenbach 2006).

150 third experiment used only one kind of segment to unambiguously exclude the possibility that
151 the counting behavior arise from influences of different types of segments adding up.⁴

152 Another candidate of counting in sound symbolism in the previous literature comes from the
153 Pokémonastics experiments reported in Kawahara (2020b), in which he varied the numbers of
154 moras from two to six. The results showed that each mora count increased the post-evolution
155 responses. However, to the extent that a mora is a suprasegmental property—which seems to
156 be a fair assumption to make (McCarthy & Prince 1986)—it is not clear whether these results
157 truly instantiate a case of counting at the *segmental* level: recall that Paster (2019) identifies
158 phonological systems may be able to count, but only at the suprasegmental level. Moreover, given
159 the well-established status of bimoraic feet in Japanese phonology (Ito 1990; Mester 1990; Poser
160 1990) and the possibility of recursive prosodic phrasing (Ito & Mester 2012, 2013), the apparent
161 counting behavior may be recast in terms of different foot and prosodic word structures.

162 In short, the current experiments attempted to address the counting capability of sound sym-
163 bolism at the segmental level in the least unambiguous way possible. The first two experiments
164 also had an advantage of being able to make a fairly direct within-language comparison with a
165 phonological pattern, against the recent result reported by Kawahara & Kumagai (2023a), who
166 tested the counting behavior of voiced obstruents in Japanese phonology.

167 2 Experiment I

168 In this experiment, the participants were given one nonce word per trial and were asked to judge
169 whether that name is more suitable for a pre-evolution Pokémon character or a post-evolution
170 Pokémon character. The aim was to explore whether the numbers of voiced obstruents contained
171 in nonce names, ranging from zero to three, would impact the sound symbolic judgment of these
172 names, and more importantly, *how*. A previous study has shown that nonce words containing one
173 voiced obstruent is more likely to be judged as post-evolution names than those without a voiced

⁴One way to understand the current framing of the question from the perspective of modern phonological theorization may be that our experiments reported below address the question of whether sound symbolic patterns would show a pattern of counting cumulativity. We hasten to reiterate here, however, that while phonological patterns may show evidence for counting cumulativity (Breiss 2020; Hayes 2022), it still holds true that a single constraint cannot count three segments in their structural description, as discussed in detail in §1.2.

The cases of counting cumulativity in phonology may raise the question of whether phonology may indeed be able to count. However, there are no convincing case of counting cumulativity that involves three loci, either in phonological alternations or in phonotactics (McCarthy 2003—see Breiss 2020 for an informative review of the cases of cumulativity), and therefore, in this sense, the counting capability of phonological systems has to be limited.

If we are to deploy a theoretical mechanism like MaxEnt HG which allows for counting cumulativity, then we would have to make sure that constraints do not assign a violation mark based on a structural description that involves more than two segments. In other words, the grammar may be able to count the number of violations so that it can multiply them by the constraint weights, but the constraints themselves cannot count the number of segments to calculate their violations. See Kawahara & Kumagai (2023a) for further discussion on this point.

174 obstruent (Kawahara 2020b), and other studies have found that, in addition to that difference,
175 those words containing two voiced obstruents are more likely to be judged as post-evolution
176 names than those containing only one (e.g. Kawahara & Kumagai 2019a).

177 The novel addition of the current experiment is therefore to have explored the difference be-
178 tween the two voiced obstruent condition and the three voiced obstruent condition. This addition
179 is an important one, however, because it will address the question of how (dis-)similar sound sym-
180 bolic patterns are with respect to the nature of segmental, phonological constraints, as discussed
181 in §1.1 and §1.2.

182 If sound symbolic patterns can count only up to two, just like phonological constraints, we
183 should not expect a difference between those words with two voiced obstruents and those with
184 three voiced obstruents—recall that in terms of phonological Lyman’s Law, three voiced obstru-
185 ents are no different from two voiced obstruents. On the other hand, if sound symbolic patterns
186 simply count without a restriction, and then we should observe a difference between the two
187 conditions.

188 2.1 Method

189 The raw data, the R markdown file as well as the Bayesian posterior samples are available at the
190 OSF repository (for the importance of the open science policy in linguistic studies, see e.g. Cho
191 2021, Garellek et al. 2020 and Winter 2019). The link to this repository is provided at the end of
192 the paper.

193 2.1.1 Stimuli

194 The experiment had four conditions, differing in the numbers of voiced obstruents that they con-
195 tain (zero, one, two and three). Each condition consisted of 10 items, and they were all nonce
196 names in Japanese. They consisted of three light CV syllables. The position of voiced obstruents
197 was controlled within each condition; e.g. in one voiced obstruent condition, they were all placed
198 at the word-initial position (see Adelman et al. 2018 for the importance of word-initial position in
199 sound symbolism). Because [p] is known to have a sound symbolic effect associated with cuteness
200 (Kumagai 2019, 2022, 2023; see also Experiment III), it was not used in the current stimulus set.
201 The actual list of the stimuli is shown in Table 1.

Table 1: The list of stimuli used in the first two experiments.

VcdObs=0	VcdObs=1	VcdObs=2	VcdObs=3
[kučiju]	[bitare]	[gebiki]	[dagigo]
[suɸuma]	[birejo]	[dedara]	[bigade]
[neɸuri]	[ganija]	[zodotči]	[zabade]
[neʃiru]	[bejumi]	[zugawa]	[zegizo]
[eihone]	[bojatči]	[zudani]	[bužido]
[karutsu]	[bikohe]	[zočike]	[bogebi]
[jakama]	[baheho]	[zadoja]	[gégige]
[sawake]	[gesec̩i]	[ziboru]	[bažizu]
[rihojo]	[zihana]	[babohi]	[gubebi]
[sojuki]	[bijuri]	[gibuse]	[bibogo]

202 2.1.2 Procedure

203 The experiment was administered online using SurveyMonkey. The participants were first pre-
 204 sented with the basic background about the Pokémon world, namely, that some Pokémon char-
 205 acters can evolve, and that when they evolve, they tend to get heavier, bigger and stronger.
 206 In the main session, within each trial, the participants were presented with one nonce name
 207 and were asked to judge whether each name is suitable for a pre-evolution character or a post-
 208 evolution character. The stimuli were presented in the *katakana* orthography, which is used for
 209 real Pokémon names in general. Although the stimuli were presented in written forms, the par-
 210 ticipants were asked to read and pronounce each stimulus before they register each response.
 211 The order of the stimuli was automatically randomized for each participant by SurveyMonkey.

212 2.1.3 Participants

213 We obtained data from 110 native speakers of Japanese using the Buy Response function of Sur-
 214 veyMonkey. The qualification requirements for participation were that (1) they had to be a native
 215 speaker of Japanese, (2) they had not previously participated in an experiment on Pokémon names
 216 and (3) they had not studied sound symbolism before. Additional data from 38 native speakers
 217 of Japanese were collected using a snowball sampling method on the first author's X account
 218 (formerly Twitter).

219 2.1.4 Statistics

220 For statistical analyses, we made use of a Bayesian mixed effects logistic regression model, using
 221 the `brms` package (Bürkner 2017). We will not attempt to explicate the mechanics of Bayesian

222 analyses in detail here, but instead refer the interested readers to accessible introductory articles,
223 including Franke & Roettger (2019), Kruschke & Liddell (2018) and Vasishth et al. (2018). In a
224 nutshell, Bayesian analyses combine prior information (if any) with the obtained experimental
225 data and produce a range of possible values—which are referred to as posterior distributions—for
226 each estimated parameter.

227 One advantage of Bayesian analyses is that we can interpret the posterior distributions as
228 directly representing the likely values of the estimated parameters. One heuristic to interpret the
229 results of Bayesian modeling is to examine the middle 95% of the posterior distribution, known
230 as 95% Credible Interval (henceforth, abbreviated as “95% CrI”), of the coefficient we are inter-
231 ested in. If the 95% CrI of a parameter does not include 0, then that parameter can be considered
232 to be credible/meaningful. However, unlike in a frequentist analysis, we do not have to rely on
233 a strict—but yet arguably arbitrary—dichotomy (i.e. “significant” vs. “non-significant” or “credi-
234 ble/meaningful” vs. “not credible/meaningful”). We can instead examine how many samples in
235 the posterior distribution are in the expected direction, which reflect the probability of a partic-
236 ular hypothesis being true.

237 Another advantage of Bayesian analysis is that we can also address the question regarding
238 with how much confidence we can conclude a null effect (Gallistel 2009), which is impossible in
239 frequentist analyses. This feature of Bayesian analysis is particularly important for the case at
240 hand, because if sound symbolism were to behave like phonological patterns, we would expect
241 a null difference between the two voiced obstruent condition and the three voiced obstruent
242 condition (cf. Kawahara & Kumagai 2023a). If it turned out to be that way, we wanted to explore
243 how likely it is that there are truly no differences, which is impossible to test with a frequentist
244 regression analysis.

245 Moving on to the specifics of the model specifications for the current experiment, the binary
246 dependent variable was whether each item was judged as a post-evolution character name (=1)
247 or not (=0). The fixed independent variable was the number of voiced obstruents contained in the
248 stimuli. This factor was contrast-coded using the backward-reference coding method, in which
249 a particular level is compared against the prior adjacent level, i.e. 3 is compared against 2; 2 is
250 compared against 1; 1 is compared against 0. In addition to this fixed factor, a random intercept
251 of items and participants as well as the random slopes of participants for the fixed factor were
252 included in the model. For prior specifications, a $\text{Normal}(0, 1)$ weakly informative prior for the
253 intercept (Lemoine 2019) and a Cauchy prior with scale of 2.5 for the slope (Gelman et al. 2018)
254 were used.

255 Four chains with 2,000 iterations were run, and the first 1,000 iterations from each chain were
256 discarded as warmups. All the \hat{R} -values for the fixed effects were 1.00 and there were no divergent
257 transitions. See the R markdown file available at the OSF repository for further details.

258 **2.2 Results**

259 Figure 2 shows the distribution of the proportion of the post-evolution responses for each voiced
260 obstruent condition in the form of violin plots, in which the widths represent normalized prob-
261 ability distributions. Transparent light-blue circles, jittered slightly to avoid overlap, represent
262 the average response for each condition from each participant. Solid red circles are the grand av-
263 erages in each condition, with their 95% confidence intervals calculated by `ggplot2`: (Wickham
264 2016).

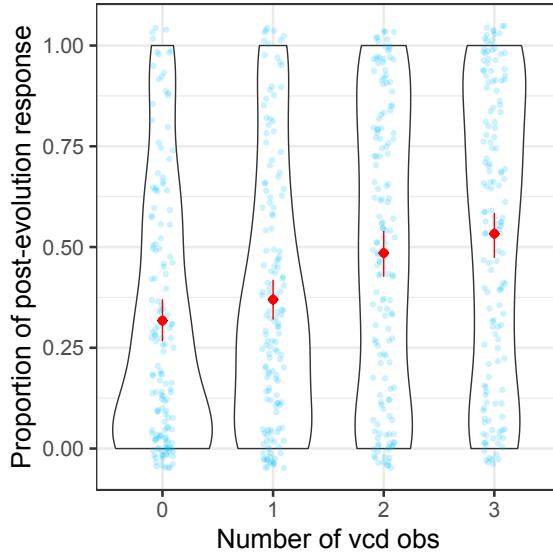


Figure 2: The results of Experiment 1, showing the distribution of the proportion of the post-
evolution responses for each number of voiced obstruents contained in the stimuli.

265 We observe a steady increase in the post-evolution responses, as the number of the voiced ob-
266 struents contained in the stimuli increase: the four conditions resulted in the following averages:
267 0.32 vs. 0.37 vs. 0.49 vs. 0.53.⁵ The central coefficient estimate of the difference between the zero
268 voiced obstruent condition and the one voiced obstruent condition is 0.35, with its 95% CrI being
269 [-0.09, 0.78]. Although this 95% CrI interval includes zero, the posterior distribution is heavily
270 skewed toward positive values, and about 94% of the posterior samples were positive.

271 More importantly, the comparison between the two voiced obstruent condition and three
272 voiced obstruent condition shows that the central coefficient estimate for this difference is 0.39
273 with its 95% CrI being [0.08, 0.72] and the posterior probability supporting this difference is 0.99.

⁵Even those nonce words that contain three voiced obstruents were judged to be post-evolution names only slightly above 50%, which was a bit surprising. Some participants reported after the experiment that post-evolution names should be longer than three moras. See Kawahara et al. (2018) and Kawahara (2020b) for the effects of name length.

274 Finally, the difference between one voiced obstruent condition and the two voiced obstruent
275 condition was also robust, with its central coefficient and 95% CrI being 0.78 and [0.40, 1.17],
276 respectively. Its posterior probability being positive was 1.00.

277 In short, we observe that each difference between the four conditions was meaningful (al-
278 though we can be only 94% confident about the difference between the first two conditions).

279 2.3 Discussion

280 The current experiment first of all replicated the findings of the previous studies that given nonce
281 words, Japanese speakers do indeed generally associate voiced obstruents with post-evolution
282 Pokémon names (Kawahara 2020b; Kawahara & Kumagai 2019a). It moreover found that names
283 with three voiced obstruents were more likely to be associated with post-evolution characters
284 than those with two voiced obstruents, suggesting that sound symbolic patterns can function in
285 an additive fashion, and count at least up to three (cf. Thompson & Estes 2011).

286 The current result is particularly interesting in the light of the general question regarding
287 how similar phonological patterns and sound symbolic patterns are, given the recent propos-
288 als that these two systems may have more in common than previously thought (e.g. Alderete &
289 Kochetov 2017; Kawahara 2020a,b), as reviewed in §1.1. Assuming that it is indeed a true prop-
290 erty of phonological constraints that it can count only up to two segments (e.g. Ito & Mester
291 2003; McCarthy 2003; McCarthy & Prince 1986; Prince & Smolensky 1993/2004), just as Japanese
292 phonology counts only up to two voiced obstruents (Ito & Mester 2003; Kawahara & Kumagai
293 2023a), the fact that sound symbolic patterns related to voiced obstruents can count up to three
294 would instantiate a non-trivial difference between the two systems. At least within Japanese, the
295 way its phonology handles voiced obstruents and the way voiced obstruents invoke their sound
296 symbolic images differ from one another.

297 An anonymous reviewer has asked if the current results—especially the most crucial differ-
298 ence between the two voiced obstruent condition and the three voiced obstruent condition—could
299 have arisen from the knowledge that the participants had about the existing Pokémon names. This
300 interpretation is unlikely, because there are only 12 existing Pokémon characters whose name
301 contains three voiced obstruents (e.g. [diguda]), and 6 of them are post-evolution characters (the
302 ratio is 0.5, with its binomial 95% confidence interval being [0.25–0.75]).⁶ On the other hand, there
303 are 121 characters whose names contain two voiced obstruents, and 81 of them are post-evolution
304 characters (the ratio is 0.67, with its binomial 95% confidence interval being [0.58–0.75]).

⁶This analysis is based on the data gathered by Kawahara et al. (2018), which includes more than 700 characters. Pokémon characters can actually evolve twice in the actual Pokémon world, but we collapsed this distinction between “evolved once” and “evolved twice”, because in the experiment, we asked the participants to make a binary “pre- evolution” vs. “post-evolution” judgment. The confidence interval was calculated using the `binom.confint` function of the `binom` package (Dorai-Raj 2022), whose syntax is available at the `osf` repository mentioned above.

305 Thus, there are not many examples from the existing names that support the association
306 between “three voiced obstruents” and “post-evolution” in the first place—the confidence interval
307 for this estimate ([0.25–0.75]) is very large, suggesting that the pattern found in the existing names
308 is not very informative about this association. And if anything, the evidence from the existing
309 names goes in the opposite way from the experimental result: those with two voiced obstruents
310 are more likely to be post-evolution characters than those with three voiced obstruents, although
311 we note that the latter confidence interval is properly contained in the former confidence interval
312 ([0.58–0.75] vs. [0.25–0.75]).

313 3 Experiment II

314 3.1 Preamble

315 To extend the scope of the findings from Experiment I, we tested another semantic dimension that
316 can be symbolically signaled by voiced obstruents. In Japanese (and perhaps other languages),
317 voiced obstruents are associated with general negative images (Hamano 1998; Kubozono 1999;
318 Suzuki 1962), and in the context of Pok  mon names, they are overrepresented in the names of
319 villainous characters (Hosokawa et al. 2018; Uno et al. 2020). More specifically, some Pok  mon
320 characters belong to particular “types”, and it has been found that voiced obstruents are over-
321 represented in the names of the “dark type” characters. The productivity of this sound symbolic
322 relationship has been confirmed by an experiment using nonce words (Kawahara & Kumagai
323 2019b). Experiment II made use of this previously identified sound symbolic relationship to fur-
324 ther address the counting capability of sound symbolic patterns.

325 There are a few differences between Experiment I and Experiment II. In Experiment II, the
326 participants were asked whether each name was suitable for a dark-type character or normal-
327 type character. Before the main trials, they were told that all Pok  mon characters belong to at
328 least one type, with two examples; [  itokage] ‘Charmander (fire lizard)’ belong to the “fire” type,
329 and [goosu] belong to both “ghost” type and “dark” type. The stimuli used in the experiment
330 were identical to those used in Experiment I. The participants were university students from Meiji
331 University.⁷ After excluding data from those who were not native speakers of Japanese and those
332 who were familiar with research on sound symbolism, the data from 141 native speakers entered
333 into the subsequent statistical analysis. The details of the statistical modeling were identical to
334 those of Experiment I.

⁷We would like to thank Tomoko Monou for her assistance with the participant recruitment for this experiment.

335 **3.2 Results**

336 Figure 3 shows the results of Experiment II. As with Experiment I, we observe a steady increase
337 in the dark-type responses, as the number of voiced obstruents contained in the stimuli increase.
338 The grand averages for each conditions were 0.18 vs. 0.43 vs. 0.71 vs. 0.79.

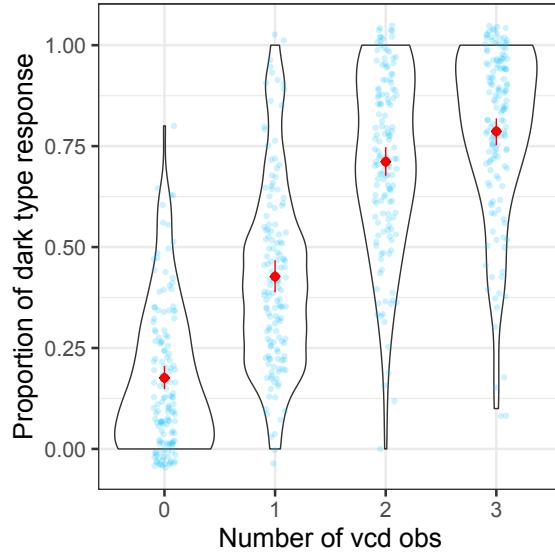


Figure 3: The results of Experiment II. The proportion of the dark-type responses for each voiced obstruent condition.

339 This effect of voiced obstruents between each level is very robust according to the Bayesian
340 modeling. The difference between the no voiced obstruent condition and one voiced obstruent
341 was very credible, with its central coefficient estimate and its 95% CrI being 1.61 and [0.95, 2.27],
342 respectively. All the posterior samples were positive.

343 More importantly, the difference between the two voiced obstruent condition and the three
344 voiced obstruent condition was also fairly credible. The central coefficient estimate is 0.59 and
345 its 95% CrI is [-0.03, 1.22]. The posterior probability of this crucial comparison being positive is
346 0.97. The difference between the one voiced obstruent and two voiced obstruents was also robust
347 (the central coefficient estimate = 1.54, its 95% CrI=[0.89, 2.19], the posterior probability being
348 positive = 1).

349 **3.3 Discussion**

350 The sound symbolic effects of voiced obstruent were clearer in Experiment II than in Experiment
351 I—names with zero voiced obstruents were unlikely to be judged as dark-type characters, whereas
352 names with three voiced obstruents were very likely to be judged as dark-type characters. And

353 most importantly for the current purpose, we have found a solid distinction between the two
354 voiced obstruent condition and the three voiced obstruent condition. The fact that this difference
355 holds is unlike how voiced obstruents are treated by the Japanese phonological system (Ito &
356 Mester 2003; Kawahara & Kumagai 2023a), which is arguably a general property of phonological
357 constraints at the segmental level in natural languages (McCarthy 2003; McCarthy & Prince 1986;
358 Prince & Smolensky 1993/2004).

359 The observed difference between the two voiced obstruent condition and the three voiced
360 obstruent condition in this experiment could not have arisen from an analogical inference from
361 existing Pokémon names, because there were no dark type Pokémon characters whose name
362 contains three voiced obstruents.

363 4 Experiment III

364 4.1 Introduction

365 The previous two experiments have shown that a distinction between two segments and three
366 segments matters when it comes to sound symbolic patterns—a distinction that phonological
367 constraints arguably do not make. However, in both experiments, the target sounds were voiced
368 obstruents, so it seemed important to us to examine how generalizable this counting property is,
369 i.e. whether this counting capability is observed for sound symbolic patterns that are caused by
370 segments other than voiced obstruents.

371 Also, we felt it useful to address the possibility that the patterns we observed in the previous
372 two experiments arose from different types of voiced obstruents—e.g. [b] and [d]—“ganging-up”
373 rather than the patterns arising from pure counting (cf. Jäger & Rosenbach 2006; Jäger 2007).
374 We reiterate that it is safe to say that a voiced obstruent is a coherent set of sounds both from
375 the phonetic and phonological perspective in Japanese (Ito & Mester 1986, 2003; Hamano 1998;
376 Kubozono 1999; Suzuki 1962).

377 Nevertheless, it is safer to be conservative and entertain the possibility that effects of different
378 voiced obstruents are governed by different sound symbolic forces. To this end, we took advan-
379 tage of the sound symbolic connection between [p] and “cuteness” (Kumagai 2019, 2022, 2023),
380 which also manifests itself in the fact that labial sounds, including [p] are, overrepresented in
381 the cute, fairy type Pokémon characters (Hosokawa et al. 2018; Kawahara & Kumagai 2019b; Uno
382 et al. 2020).

383 **4.2 Method**

384 Experiment III used the set of stimuli shown in Table 2. The experiment, like Experiments I and
385 II, varied the number of [p]s that are contained in the stimuli. The position of [p] was controlled
386 within each condition. Each condition consisted of 10 items, all of which contain only light
387 CV syllables. Since there could be a difference between sonorants and obstruents in terms of
388 their impact on cuteness judgments (Perfors 2004; Shinohara & Kawahara 2013), the syllables not
389 containing [p] all had a voiceless obstruent onset.

Table 2: The list of stimuli used in Experiment III.

[p]=0	[p]=1	[p]=2	[p]=3
[kuçisu]	[pitahe]	[pepiki]	[papipe]
[sutsuka]	[piketo]	[papeka]	[pipape]
[kusuki]	[patçihā]	[pepotçī]	[popape]
[teçiku]	[pekuçī]	[pupata]	[pepipo]
[cihake]	[posatçī]	[popaci]	[pupipo]
[kesutsu]	[pikohe]	[popike]	[popepi]
[tokaha]	[paheto]	[papoka]	[pepope]
[sahake]	[peseki]	[popitsu]	[papupi]
[tçihoto]	[pihaka]	[papoçī]	[pupepi]
[sokuki]	[pisutçī]	[pipuse]	[pipope]

390 The responses were gathered using the Buy Response function of SurveyMonkey. Data from
391 a total of 150 native speakers of Japanese were obtained. In this experiment, the participants were
392 asked, for each name, whether the name is more suitable for a normal type character or a cute
393 fairy type character. The details of the statistical analysis were identical to those of Experiments
394 I and II, except that in this analysis, we ran, for each chain, 5000 iterations with 4000 warm-ups
395 in order to avoid inappropriate ESS (effective sample size) values and divergent transitions.

396 **4.3 Results**

397 The results are presented in Figure 4, which shows the distribution of the proportions of the fairy
398 type character responses for each condition having different numbers of [p]. Similar to the two
399 previous experiments, we observe a steady increase in the fairy response, as the number of [p]s
400 contained in the names increases. The grand averages were: the zero-[p] condition = 0.21; the
401 one-[p] condition = 0.39; the two-[p] condition = 0.47; the three-[p] condition = 0.57.

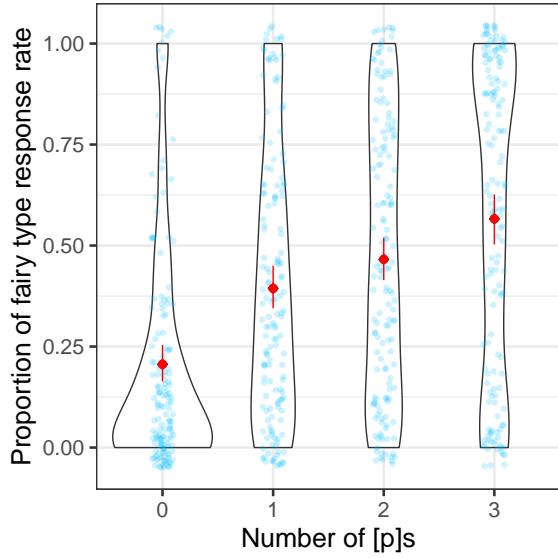


Figure 4: The results of Experiment III. The distribution of the proportion of the fairy type responses for each condition, which contained different numbers of [p]s.

402 The results of the Bayesian logistic regression show that there is a clear difference between
 403 the zero-[p] condition and the one-[p] condition (the central coefficient estimate = 1.60, its 95%
 404 CrI = [1.06, 2.17]), with all their posterior samples supporting the difference.

405 The difference between the two-[p] condition and the three-[p] condition, which is most im-
 406 portant for the purpose of the current study, was also very robust (the central coefficient estimate
 407 = 0.80 with its 95% CrI being [0.30, 1.29], and 99.9% of the posterior samples support this differ-
 408 ence). To be complete, the difference between the one-[p] condition and the two-[p] condition
 409 was also a reliable one (central coefficient estimate = 0.47, its 95% CrI [0.03, 1.29] and 98% of the
 410 posterior samples support this difference). In short, every addition of [p] in the names reliably
 411 increased the fairy-type responses.

412 **4.4 Discussion**

413 This experiment again shows that sound symbolism can count up to three. In other words, the
 414 counting capability is not a specific property of voiced obstruents, possibly different kinds of
 415 voiced obstruents “ganging-up” (Jäger & Rosenbach 2006; Jäger 2007), but it holds with one kind
 416 of segment—[p]—invoking the image of cuteness. The difference between the two-[p] condition
 417 and the three-[p] condition could not have arisen from the analogical extension from existing
 418 names, because there were no fairy characters whose names contain three [p]s.

419 **5 General discussion**

420 **5.1 Summary of the results**

421 We started with a general question—how (dis-)similar sound symbolic patterns are with respect
422 to phonological patterns. To address this question, we focused on one property of phonological
423 constraints which seems to hold robustly across languages; at least when it comes to the con-
424 straints related to segmental phonology, it can count only up to two segments, but no more. No
425 known languages have been identified to prohibit three occurrences of the same segment/feature,
426 whereas there are a plethora of examples in which two occurrences of the same segment are
427 banned. Japanese precisely instantiates a case of this kind in which two voiced obstruents within
428 morphemes are prohibited (Ito & Mester 2003), and experiment-wise too, Japanese speakers treat
429 forms with three voiced obstruents on a par with forms with two voiced obstruents (Kawahara
430 & Kumagai 2023a).

431 To the extent that sound symbolic patterns and phonological patterns are governed by the
432 same system (see Alderete & Kochetov 2017 and Kawahara 2020b, in particular), we would have
433 expected that a similar restriction would hold—that Japanese speakers would treat forms with
434 three voiced obstruents just like forms with two voiced obstruents, when they make sound sym-
435 bolic judgements. However, the results of two experiments show that this expectation did not
436 hold up, when Japanese speakers make sound symbolic judgments of forms with different num-
437 bers of voiced obstruents.

438 These results were further corroborated by an additional experiment which shows that three
439 [p]s can evoke stronger sound symbolic images than two [p]s. It thus seems safe to conclude,
440 given these results, that there is a non-negligible difference between the segmental, phonological
441 constraints and sound symbolic patterns, at least in terms of their counting capabilities.

442 **5.2 Some alternative interpretations**

443 An anonymous reviewer pointed out an interesting alternative interpretation of the current re-
444 sults, regarding the counting capability of sound symbolism. More specifically, the difference
445 between “2” and “3” that we identified in the three experiments above may instead be the differ-
446 ences between “2” and “all”, given that our “3” condition had three target segments in trisyllabic
447 words (i.e. [D...D...D]_{Wd}, where “D” represents a voiced obstruent). We admit that this is a valid
448 interpretation, and if this was the case, it is comparable to a property that phonological systems
449 routinely exhibit; e.g. a vowel harmony pattern that targets all the vowels within a domain.

450 A follow-up experiment is necessary to address this alternative interpretation, by using four-
451 syllable words which contained two target sounds and those which contain three target sounds;

452 schematically, $[D...D...X...X]_{Wd}$ vs. $[D...D...D...X]_{Wd}$, where “D” represents a voiced obstruent,
453 and “X” represents a segment other than a voiced obstruent. Then the latter condition would be
454 “3” but not “all”.

455 Another question that was raised was as follows: in this paper, we made a within-language
456 comparison between the behavior of Lyman’s Law and the sound symbolic effects of voiced ob-
457 struents, and showed that only the latter can count up to three. However, while Lyman’s Law
458 is a negative restriction on the presence of multiple voiced obstruents, the current experiment
459 is about how the presence of particular segments positively impact sound symbolic judgments.
460 Thus, the comparison between Kawahara & Kumagai’s (2023a) results and the current experi-
461 ments may have to do with a difference about a negative restriction vs. a positive influence.

462 While this interpretation is not impossible, and more studies are warranted to fully address
463 it, we find this explanation not very likely, given that for example, no languages seem to require
464 that reduplicative patterns copy three segments; neither do we find phonological patterns which
465 require three tokens of the same feature/segment. In other words, the “non-counting” thesis
466 is not just about negative restrictions but also holds true about positive presence of particular
467 structures (McCarthy 2003; McCarthy & Prince 1986). Therefore, it is not clear if we can explain
468 the current findings vis-a-vis Kawahara & Kumagai’s (2023a) based on the positive vs. negative
469 nature of the patterns at issue.

470 5.3 Phonology and sound symbolism again

471 To the extent that the current experiments have identified a non-trivial difference between phono-
472 logical systems and sound symbolic systems, should we conclude that they are completely sepa-
473 rate systems? We feel that this conclusion may be going too far as well. Recall that as Alderete
474 & Kochetov (2017) and others have argued (Akinbo 2021; Akinbo & Bulkaam 2024; Akita 2020;
475 Klamer 2002; Dingemanse & Thompson 2020; Kumagai 2019, 2023; Jang 2021; Mithun 1982; Mon-
476 aghan & Roberts 2021), sound symbolic requirements may be able to affect—or at least interact
477 with—phonological patterns.

478 To the extent that our conclusion is on the right track, then, when sound symbolic effects are
479 incorporated into a phonological grammar, there should be some kind of filter that “strips off” the
480 counting capability of sound symbolic mechanisms. Otherwise, we would expect there to be a
481 constraint like EXPRESS(THREEVCDObs) (cf. Alderete & Kochetov 2017), which requires that there
482 be at least three voiced obstruents to express a particular semantic notion. While it remains to be
483 seen that such patterns are indeed impossible in human languages, at this point we find it highly
484 unlikely.

485 And if such filtering mechanism is to be required, it may be something that is akin to an
486 abstraction mechanism that is at work when phonetic effects are grammaticalized into a phono-

487 logical system (Gordon 2002; Hayes 1999; Smith 2002), which reflects a general observation that
488 even when phonetic factors appear to drive phonological generalizations, some details are ab-
489 stracted away from in the phonology system.

490 An alternative way of reconciling the current results with the view that phonology and sound
491 symbolism interact in non-negligible ways, as suggested by an anonymous reviewer, may be to
492 posit that phonology actually has an iconic component and a non-iconic component, cf. the “co-
493 phonology” approach which posits several phonological sub-systems within a single language
494 (Inkelas et al. 1996; Inkelas & Zoll 2007; Orgun 1996; Sande 2020). Once we accept this assumption,
495 we can further posit that only the former has a counting capability.

496 Japanese sound symbolic words (i.e. mimetics) are characterized by a set of phonological char-
497 acteristics that distinguish them from non-iconic words, such as the presence of singleton [p]s and
498 active use of reduplication based on bimoraic feet (Ito & Mester 1995), which is compatible with
499 the idea that phonology can consist of an iconic component and a non-iconic component. This
500 idea that only an iconic component of phonology—to the extent that such a component exists—
501 can count appears compatible with the view advanced by Akinbo (2023), for example, who points
502 out that the number of reduplications correlates with the strengths of their expressive power (see
503 also Kumagai 2023). Thus, this general idea appears to be worth extensive exploration in future
504 studies.

505 However, one potential concern of this hypothesis is that reduplicative patterns, which can
506 be iconic, as is the case with Japanese mimetics, are predicted to be able to count, but this predic-
507 tion is incompatible with the general no-counting thesis discussed throughout the present paper.
508 Even if a certain reduplication pattern is expressive, the phonological system does not allow that
509 reduplication pattern to copy three segments (McCarthy & Prince 1986). There also remains a
510 deeper question regarding why only an iconic component has the privilege to count.

511 All in all, reconciling the increasing number of proposals regarding the similarity between
512 phonological systems and sound symbolic systems on the one hand, and the current finding that
513 these two nevertheless show a distinct characteristic in terms of counting capability on the other,
514 will continue to present an interesting challenge for phonological theorization.

515 **Conflicts of interest**

516 We declare no conflicts of interest.

517 Availability of data and code

518 The data and the code are available at
519 <https://osf.io/zhnda/?viewonly=de5ffbd83dc24a1eb6db3b11af08c550>

520 References

521 Adelman, James S., Zachary Estes & Martina Coss. 2018. Emotional sound symbolism: Languages
522 rapidly signal valence via phonemes. *Cognition* 175. 122–130.

523 Akinbo, Samuel. 2021. Featural affixation and sound symbolism in Fungwa. *Phonology* 38(4).
524 537–569.

525 Akinbo, Samuel & Michael Bulkaam. 2024. Iconicity as the motivation for the signification and
526 locality of deictic grammatical tones in Tal. *Glossa* 24(9).

527 Akinbo, Samuel Kayode. 2023. Reduplication, repetition and sound symbolism in Fungwa. *Phono-
528 logical Data and Analysis* 5(2). 1–24.

529 Akita, Kimi. 2015. Sound symbolism. In Jan-Ola Östman & Jef Verschueren (eds.), *Handbook of
530 pragmatics, installment 2015*, Amsterdam and Philadelphia: John Benjamins.

531 Akita, Kimi. 2020. A typology of depiction marking: The prosody of Japanese ideophones and
532 beyond. *Studies in Language* 45(4). 865–886.

533 Alderete, John & Alexei Kochetov. 2017. Integrating sound symbolism with core grammar: The
534 case of expressive palatalization. *Language* 93. 731–766.

535 Bennett, Wm. G. 2015. *The phonology of consonants*. Cambridge: Cambridge University Press.

536 Breiss, Canaan. 2020. Constraint cumulativity in phonotactics: Evidence from artificial grammar
537 learning studies. *Phonology* 37(4). 551–576.

538 Bürkner, Paul-Christian. 2017. brms: An R Package for Bayesian Multilevel Models using Stan.
539 *Journal of Statistical Software* 80(1). 1–28.

540 Cho, Taehong. 2021. Where we are at: Impact, special collections, open science and registered
541 report at the Journal of Phonetics. *Journal of Phonetics* 89.

542 Chomsky, Noam. 1965. *Aspects of the theory of syntax*. Cambridge: MIT Press.

543 Cuskley, Christine. 2013. Mappings between linguistic sound and motion. *The Public Journal of
544 Semiotics* 5(1). 39–62.

545 Dingemanse, Mark, Damián E. Blasi, Gary Lupyan, Morten H. Christiansen & Padraic Monaghan.
546 2015. Arbitrariness, iconicity and systematicity in language. *Trends in Cognitive Sciences* 19(10).
547 603–615.

548 Dingemanse, Mark & B. Thompson. 2020. Playful iconicity: structural markedness underlies the
549 relation between funniness and iconicity. *Language and Cognition* 12(1). 203–224.

550 D'Onofrio, Annette. 2014. Phonetic detail and dimensionality in sound-shape correspondences:
551 Refining the *bouba-kiki* paradigm. *Language and Speech* 57(3). 367–393.

552 Dorai-Raj, Sundar. 2022. binom: Binomial confidence intervals for several parameterizations. R
553 package.

554 Franke, Michael & Timo B. Roettger. 2019. Bayesian regression modeling (for factorial designs):
555 A tutorial. Ms. <https://doi.org/10.31234/osf.io/cdxv3>.

556 Gallistel, Randy C. 2009. The importance of proving the null. *Psychological Review* 116(2). 439–453.

557 Garellek, Marc, Matthew Gordon, James Kirby, Wai-Sum Lee, Alexis Michaud, Christine

558 Mooshammer, Oliver Niebuhr, Daniel Recasens, Timo B. Roettger, Adrian Simpson & Kris-
559 tine Yu. 2020. Toward open data policies in phonetics: What we can gain and how we can
560 avoid pitfalls. *Journal of Speech Sciences* 9(1).

561 Gauthier, I & M. J. Tarr. 1997. Becoming a “greeble” expert: Exploring mechanisms for face
562 recognition. *Vision research* 38(12). 1673–1682.

563 Gelman, Andrew, Aleks Jakulin, Maria Grazia Pittau & Yu-Sung Su. 2018. A weakly informative
564 default prior distribution for logistic and other regression models. *Annual Applied Statistics*
565 2(4). 1360–1383.

566 Goldsmith, John. 1976. *Autosegmental phonology*: MIT Doctoral dissertation.

567 Goldwater, Sharon & Mark Johnson. 2003. Learning OT constraint rankings using a maximum
568 entropy model. *Proceedings of the Workshop on Variation within Optimality Theory* 111–120.

569 Gordon, Matthew. 2002. A phonetically driven account of syllable weight. *Language* 78(1). 51–80.

570 Hamano, Shoko. 1998. *The sound-symbolic system of Japanese*. Stanford: CSLI Publications.

571 Hansson, Gunnar Olafur. 2001. *Theoretical and typological issues in consonant harmony*: University
572 of California, Berkeley Doctoral dissertation.

573 Haspelmath, Martin. 2014. Comparative syntax. In *The Routledge handbook of syntax*, 490–508.
574 Routledge.

575 Hayes, Bruce. 1995. *Metrical stress theory: Principles and case studies*. Chicago: The University of
576 Chicago Press.

577 Hayes, Bruce. 1999. Phonetically-driven phonology: The role of Optimality Theory and inductive
578 grounding. In Michael Darnell, Edith Moravscik, Michael Noonan, Frederick Newmeyer &
579 Kathleen Wheatley (eds.), *Functionalism and formalism in linguistics, vol. 1: General papers*, 243–
580 285. Amsterdam: John Benjamins.

581 Hayes, Bruce. 2020. Assessing grammatical architectures through their quantitative signatures.
582 Talk preseneted at BLS.

583 Hayes, Bruce. 2022. Deriving the wug-shaped curve: A criterion for assessing formal theories of
584 linguistic variation. *Annual Review of Linguistics* 8. 473–494.

585 Hayes, Bruce & Colin Wilson. 2008. A maximum entropy model of phonotactics and phonotactic
586 learning. *Linguistic Inquiry* 39. 379–440.

587 Hewitt, Mark & Alan Prince. 1989. OCP, locality and linking: The N. Karanga verb. In E. J. Fee &
588 K. Hunt (eds.), *Proceedings of West Coast Conference on Formal Linguistics* 8, 176–191. Stanford:
589 Stanford Linguistic Association.

590 Hinton, Leane, Johanna Nichols & John Ohala. 2006. *Sound symbolism, 2nd edition*. Cambridge:
591 Cambridge University Press.

592 Hockett, Charles. 1959. Animal “languages” and human language. *Human Biology* 31. 32–39.

593 Hosokawa, Yuta, Naho Atsumi, Ryoko Uno & Kazuko Shinohara. 2018. Evil or not? Sound sym-
594 bolism in Pokémon and Disney character names. Talk presented at the 1st international con-
595 ference on Pokémonastics.

596 Inkelas, Sharon, Orhan Orgun & Cheryl Zoll. 1996. Subregularities as cogrammars: the theoretical
597 status of nonproductive patterns and exceptions in grammars. In *Proceedings of the nels 26*, Ms.,
598 University of California, Berkeley.

599 Inkelas, Sharon & Cheryl Zoll. 2007. Is grammar dependence real? A comparison between
600 cophonological and indexed constraint approaches to morphologically conditioned phonology.
601 *Linguistics* 45. 133–172.

602 Ito, Junko. 1990. Prosodic minimality in Japanese. In Michael Ziolkowski, Manual Noske & Karen

603 Deaton (eds.), *Proceedings of Chicago Linguistic Society: Parasession on the syllable in phonetics*
 604 and phonology, 213–239. Chicago: Chicago Linguistic Society.

605 Ito, Junko & Armin Mester. 1986. The phonology of voicing in Japanese: Theoretical consequences
 606 for morphological accessibility. *Linguistic Inquiry* 17. 49–73.

607 Ito, Junko & Armin Mester. 1995. Japanese phonology. In John Goldsmith (ed.), *The handbook of*
 608 *phonological theory*, 817–838. Oxford: Blackwell.

609 Ito, Junko & Armin Mester. 2003. *Japanese morphophonemics*. Cambridge: MIT Press.

610 Ito, Junko & Armin Mester. 2012. Recursive prosodic phrasing in Japanese. In Toni Borowsky,
 611 Shigeto Kawahara, Takahito Shinya & Mariko Sugahara (eds.), *Prosody matters*, 280–303. Lon-
 612 don: Equinox Publishing.

613 Ito, Junko & Armin Mester. 2013. Prosodic subcategories in Japanese. *Lingua* 124. 20–40.

614 Jäger, Gerhard. 2007. Maximum Entropy Models and Stochastic Optimality Theory. In Joan W.
 615 Bresnan (ed.), *Architectures, rules, and preferences: Variations on themes*, 467–479. CSLI.

616 Jäger, Gerhard & Anette Rosenbach. 2006. The winner takes it all—almost: Cumulativity in gram-
 617 matical variation. *Linguistics* 44(5). 937–971.

618 Jang, Hayeun. 2021. How cute do I sound to you?: Gender and age effects in the use and evaluation
 619 of Korean baby-talk register, Aegyo. *Language Sciences* 83. 101289.

620 Katz, Jonah. 2021. Intervocalic lenition is not phonological: Evidence from Campidanese Sar-
 621 dinian. *Phonology* 38(4). 651–692.

622 Kawahara, Shigeto. 2020a. Sound symbolism and theoretical phonology. *Language and Linguistic*
 623 *Compass* 14(8). e12372.

624 Kawahara, Shigeto. 2020b. A wug-shaped curve in sound symbolism: The case of Japanese
 625 Pokémon names. *Phonology* 37(3). 383–418.

626 Kawahara, Shigeto & Canaan Breiss. 2021. Exploring the nature of cumulativity in sound sym-
 627 bolism: Experimental studies of Pokémonastics with English speakers. *Laboratory Phonology*
 628 12(1). 3, <https://doi.org/10.5334/labphon.280>.

629 Kawahara, Shigeto & Gakuji Kumagai. 2019a. Expressing evolution in Pokémon names: Experi-
 630 mental explorations. *Journal of Japanese Linguistics* 35(1). 3–38.

631 Kawahara, Shigeto & Gakuji Kumagai. 2019b. Inferring Pokémon types using sound symbolism:
 632 The effects of voicing and labiality. *Journal of the Phonetic Society of Japan* 23(2). 111–116.

633 Kawahara, Shigeto & Gakuji Kumagai. 2023a. Lyman’s law counts only up to two. *Laboratory*
 634 *Phonology* .

635 Kawahara, Shigeto & Gakuji Kumagai. 2023b. Rendaku is not blocked by two nasal consonants:
 636 A reply to Kim (2022). *Glossa* .

637 Kawahara, Shigeto, Atsushi Noto & Gakuji Kumagai. 2018. Sound symbolic patterns in Pokémon
 638 names. *Phonetica* 75(3). 219–244.

639 Kim, Seoyoung. 2022. A maxent learner for super-additive counting cumulativity. *Glossa* 7(1).

640 Klamer, Marian. 2002. Semantically motivated lexical patterns: A study of Dutch and Kambera
 641 expressives. *Language* 78(2). 258–286.

642 Kruschke, John K. & Torrin M. Liddell. 2018. The Bayesian new statistics: Hypothesis testing, esti-
 643 mation, meta-analysis, and power analysis from a Bayesian perspective. *Psychological Bulletin*
 644 and Review

645 Kubozono, Haruo. 1999. *Nihongo-no onsei: Gendai gengogaku nyuumon 2 [Japanese phonetics: An*
 646 *introduction to modern linguistics 2]*. Tokyo: Iwanami Shoten.

647 Kumagai, Gakuji. 2019. A sound-symbolic alternation to express cuteness and the orthographic

648 Lyman's Law in Japanese. *Journal of Japanese Linguistics* 35(1). 39–74.

649 Kumagai, Gakuji. 2022. What's in a Japanese *kawaii* 'cute' name? A linguistic perspective. *Frontiers in Psychology* <https://doi.org/10.3389/fpsyg.2022.104>.

650 Kumagai, Gakuji. 2023. EXPRESS[P] in expressive phonology: Analysis of a nicknaming pattern

651 using 'princess' in Japanese. *Phonology* 40. 267–290.

652 Lemoine, Nathan P. 2019. Moving beyond noninformative priors: Why and how to choose weakly

653 informative priors in Bayesian analyses. *Oikos* 128. 912–928.

654 McCarthy, John J. 2003. OT constraints are categorical. *Phonology* 20(1). 75–138.

655 McCarthy, John J. & Alan Prince. 1986. Prosodic morphology. Ms., University of Massachusetts

656 and Rutgers University.

657 McPherson, Laura & Bruce Hayes. 2016. Relating application frequency to morphological struc-

658 ture: The case of Tommo So vowel harmony. *Phonology* 33. 125–167.

659 Mester, Armin. 1990. Patterns of truncation. *Linguistic Inquiry* 21. 475–485.

660 Mithun, Marianne. 1982. The synchronic and diachronic behavior of plops, squeaks, croaks, sighs,

661 and moans. *International Journal of American Linguistics* 48(1). 49–58.

662 Monaghan, Padraic & Seán G. Roberts. 2021. Iconicity and diachronic language change. *Cognitive*

663 *Science* 45(4). e12968.

664 Myers, Scott. 1997. OCP effects in Optimality Theory. *Natural Language and Linguistic Theory*

665 15(4). 847–892.

666 Nelson, Diane & Ida Toivonen. 2000. Counting and the grammar: Case and numerals in Inari

667 Sami. In Diane Nelson & Paul Foulkes (eds.), *Leeds working papers in linguistics* 8, 179–182.

668 Newman, Stanley. 1933. Further experiments on phonetic symbolism. *American Journal of Psy-*

669 *chology* 45. 53–75.

670 Nielsen, Alan K. S. & Mark Dingemanse. 2021. Iconicity in word learning and beyond: A critical

671 review. *Language and Speech* 64(1). 52–72.

672 Orgun, C. Orhan. 1996. *Sign-based morphology and phonology: With special attention to Optimality*

673 *Theory*: University of California, Berkeley Doctoral dissertation.

674 Paster, Mary. 2019. Phonology counts. *Radical* 1. 1–61.

675 Perfors, Amy. 2004. What's in a name?: The effect of sound symbolism on perception of facial

676 attractiveness. In K. Forbus, D. Gentner & T. Regier (eds.), *26th annual conference of the cognitive*

677 *science society*, Chicago, IL: Psychology Press.

678 Perniss, Pamela, Robin L. Thompson & Gabriella Vigliocco. 2010. Iconicity as a general prop-

679 erty of language: Evidence from spoken and signed languages. *Frontiers in Psychology*

680 doi:10.3389/fpsyg.2010.00227.

681 Poser, William. 1990. Evidence for foot structure in Japanese. *Language* 66. 78–105.

682 Priestly, Tom. 1994. On levels of analysis of sound symbolism in poetry, with an application

683 to Russian poetry. In Leane Hinton, Johanna Nichols & John Ohala (eds.), *Sound symbolism*,

684 237–238. Cambridge: Cambridge University Press.

685 Prince, Alan & Paul Smolensky. 1993/2004. *Optimality Theory: Constraint interaction in generative*

686 *grammar*. Malden and Oxford: Blackwell.

687 Sande, Hannah. 2020. Cophonologies by Ph(r)ase. *Natural Language and Linguistic Theory* 38.

688 1211–1261.

689 Sapir, Edward. 1929. A study in phonetic symbolism. *Journal of Experimental Psychology* 12.

690 225–239.

691 Saussure, Ferdinand de. 1916. *Cours de linguistique générale*. Paris: Payot.

693 Shih, Stephanie S. 2017. Constraint conjunction in weighted probabilistic grammar. *Phonology*
694 34(2). 243–268.

695 Shih, Stephanie S, Jordan Ackerman, Noah Hermelin, Sharon Inkelas, Hayeun Jang, Jessica John-
696 son, Darya Kavitskaya, Shigeto Kawahara, Miran Oh, Rebecca L Starr & Alan Yu. 2019. Cross-
697 linguistic and language-specific sound symbolism: Pokémonastics. Ms. University of Southern
698 California, University of California, Merced, University of California, Berkeley, Keio Univer-
699 sity, National University of Singapore and University of Chicago.

700 Shinohara, Kazuko & Shigeto Kawahara. 2013. The sound symbolic nature of Japanese maid
701 names. *Proceedings of the 13th Annual Meeting of the Japanese Cognitive Linguistics Association*
702 13. 183–193.

703 Sidhu, David & Penny M. Pexman. 2018. Five mechanisms of sound symbolic association. *Psy-
704 chonomic Bulletin & Review* 25(5). 1619–1643.

705 Smith, Jennifer. 2002. *Phonological augmentation in prominent positions*: University of Mas-
706 sachusetts, Amherst Doctoral dissertation.

707 Smolensky, Paul. 1986. Information processing in dynamical systems: Foundations of harmony
708 theory. In D. Rumelhart, J. McClelland & PDPR Group (eds.), *Parallel distributed processing:
709 Explorations in the microstructure of cognition*, vol. 1: Foundations, 194–281. Cambridge, MA:
710 Bradford Books/MIT Press.

711 Suzuki, Keiichiro. 1998. *A typological investigation of dissimilation*: University of Arizona Doctoral
712 dissertation.

713 Suzuki, Takao. 1962. Oninkookan to igibunka no kankei ni tsuite–iwayuru seidakuon tairitsu-o
714 chuushin toshite. *Gengo Kenkyu [Journal of the Linguistic Society of Japan]* 42. 23–30.

715 Thompson, Patrick D. & Zachary Estes. 2011. Sound symbolic naming of novel objects is a graded
716 function. *Quarterly Journal of Experimental Psychology* 64(12). 2392–2404.

717 Uno, Ryoko, Kazuko Shinohara, Yuta Hosokawa, Naho Ataumi, Gakuji Kumagai & Shigeto Kawa-
718 hara. 2020. What's in a villain's name? Sound symbolic values of voiced obstruents and bilabial
719 consonants. *Review of Cognitive Linguistics* 18(2). 428–457.

720 Vasishth, Shravan, Bruno Nicenboim, Mary Beckman, Fangfang Li & Eun Jong Kong. 2018.
721 Bayesian data analysis in the phonetic sciences: A tutorial introduction. *Journal of Phonet-
722 ics* 71. 147–161.

723 Walker, Rachel. 2001. Round licensing, harmony, and bisyllabic triggers in Altaic. *Natural Lan-
724 guage and Linguistic Theory* 19. 827–878.

725 Wickham, Hadley. 2016. *ggplot2: Elegant graphics for data analysis*. New York: Springer-Verlag.

726 Winter, Bodo. 2019. *Statistics for linguists*. New York: Taylor & Francis Ltd.

727 Zuraw, Kie & Bruce Hayes. 2017. Intersecting constraint families: An argument for Harmonic
728 Grammar. *Language* 93. 497–548.